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Abstract In this paper, we give a definition of the alternating iterative maximum likelihood

estimator (AIMLE) which is a biased estimator. Furthermore we adjust the AIMLE to result

in asymptotically unbiased and consistent estimators by using a bootstrap iterative bias cor-

rection method as in Kuk (1995). Two examples and simulation results reported illustrate the

performance of the bias correction for AIMLE.
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1. Introduction

The method of maximum likelihood is, by far, the most popular technique for deriving

estimators, which can be expressed in the form

L(θ̂(x); x) = max
θ∈C

L(θ; x), (1)

where L(θ; x) is log-likelihood function, x is a given sample point, θ is a k dimensional vector

of parameters, θ̂(x) is the MLE of θ and C is a convex subset of Rk. If the function L(θ; x) is

concave in θ, then the problem (1) can be transformed into the convex programming problem,

which has been solved by some approaches provided by Avirel [1], Peressini et al [9] and Stoer

[12]. In many estimating problems, however, the log-likelihood function L(θ; x) may not be

concave. Recently, Shi et al [10] studied the problem (1) when L(θ; x) is semi-concave by using

an alternating iterative method (AIM). A semi-concave function is defined as follows:

Definition Let C be a convex subset of Rk1 and D be a convex subset of Rk2 . A function

f(θ, ϕ; x) is said to be a semi-concave function of (θ, ϕ) if
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i) f(θ, ϕ; x) is defined on C × D;

ii) For any given θ ∈ C, f(θ, ·; x) is strictly concave on D, and for any given ϕ ∈ D, f(·, ϕ; x)

is strictly concave on C.

In fact, many log-likelihood functions are semi-concave functions. Two examples are pro-

vided in Section 4.

The problems of MLE when log-likelihood function is semi-concave can be written:

max
θ∈C,ϕ∈D

L(θ, ϕ; x), (2)

where L(θ, ϕ; x) is a semi-concave function defined on C ×D, x is a given sample, C is a convex

subset of Rk1 and D is a convex subset of Rk2 . Under some conditions, Shi et al [10] proposed

AIM to solve problem (2) and shown that the AIM converged. In fact, it can been found that

the estimated value is a biased , when the AIM is applied to solve problem (2). For adjusting

bias, in Section 2, we give a definition of the alternating iterative maximum likelihood estimator

(AIMLE) through AIM for problem (2). And we adjust AIMLE to result in asymptotically

unbiased and consistent estimators by using the iterative bias correction method as in Kuk [7].

Section 3 completes the proof of Theorem 1. In Section 4, two examples and a simulation will

be given to illustrate the AIMLE and the bias correction for AIMLE.

2. The AIMLE and bias correction

In this section, we propose the alternating iterative maximum likelihood estimator (AIMLE)

for problem (2), and discuss the asymptotic properties of the AIMLE. According to the definition

of a semi-concave function, problem (2) can be transformed into problem (1) if θ or ϕ is fixed.

To derive the AIMLE, the following alternating iterative method will be useful:

Step (0, 1) For any ϕ ∈ D, find θ(0)(ϕ; x), the maximum point of L(θ, ϕ; x) on C;

Step (0, 2) For θ(0)(ϕ; x), find ϕ(0)(x), the maximum point of L(θ(0)(ϕ; x), ϕ; x) on D;

Step (n, 1) For ϕ(n−1)(x), find θ(n)(x), the maximum point of L(θ, ϕ(n−1)(x); x) on C;

Step (n, 2) For θ(n)(x), find ϕ(n)(x), the maximum point of L(θ(n)(x), ϕ; x) on D.

From the above algorithm, we can obtain two point estimation value sequences {θ(n)(x)} ⊂
C and {ϕ(n)(x)} ⊂ D. It can also be seen that, for n ≥ 1

L(θ(n)(x), ϕ(n)(x); x) ≤ L(θ(n+1)(x), ϕ(n)(x); x) ≤ L(θ(n+1)(x), ϕ(n+1)(x); x). (3)

Since the sequences {θ(n)(x)} and {ϕ(n)(x)} are obtained alternately, if they converge to

θ̂(x), ϕ̂(x) respectively under some regularity conditions, the estimators θ̂(x) and ϕ̂(x) are both

called the alternating iterative maximum likelihood estimator (AIMLE). Since, due to non-

linearity, the AIMLE have no explicit expression of the sample point x. The AIMLE ϕ̂(x) can

also be seen as solving the following problem:

max
ϕ∈D

L(θ̂(x), ϕ; x). (4)
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Similarly to the AIMLE ϕ̂(x), the AIMLE θ̂(x) solves the following problem:

max
θ∈C

L(θ, ϕ̂(x); x). (5)

Since L(θ̂(x), ϕ; x) and L(θ, ϕ̂(x); x) are obtained alternately by using AIM, which are similar

to profile likelihood function, the two functions are called alternating iterative profile likelihood

function (AIPLF). Some results about the profile likelihood function have been studied by some

authors, for example, Bartlett [3], Barndorff-Nielsen [2] and so on.

By assumption, for any θ ∈ C, L(θ, ·; x) is strictly concave on D. So, we can establish a

continuous mapping relation ϕ(·) from C to D which satisfies L(θ, ϕ(θ); x) = maxϕ∈D L(θ, ϕ; x),

similarly to ϕ(·), we can also establish a continuous mapping θ(·) from D to C such that

L(θ(ϕ), ϕ; x) = maxθ∈C L(θ, ϕ; x). The proof for the continuity of ϕ(·) will be provided in

Section 3. According to two continuous mappings, θ(·) and ϕ(·), a continuous composite map-

ping θ ◦ ϕ(·) from C to C can be obtained. So the alternating iterative formula can be written

as θ(n+1)(x) = θ ◦ ϕ(θ(n)(x)) = θ(ϕ(θ(n)(x)) (n ≥ 1).

We next present conditions for the convergence of alternating iterative sequences {θ(n)(x)}
and {ϕ(n)(x)}.

Theorem 1 (Convergence) Let the following assumptions hold:

(A1) The log-likelihood function L(θ; ϕ; x) is semi-concave function defined on C ×D, x is

a given sample, C is a convex subset of Rk1 and D is a convex subset of Rk2 .

(A2) The log-likelihood function L(θ; ϕ; x) is continuous second-order partial derivatives

on an open set contained in C × D.

(A3) For any given ϕ ∈ D, the Hessian matrix (∂2L(θ;ϕ;x)
∂θi∂θj

) of L(θ; ϕ; x) is negative definite

for θ ∈ C.

(A4) The continuous composite mapping θ ◦ ϕ(·) has at most countable fixed points in C.

Let the alternating iterative sequences {θ(n)(x)} and {ϕ(n)(x)} obtained by the alternating

iterative method be a sequence of solutions to the problem

max
θ∈C,ϕ∈D

L(θ, ϕ; x). (6)

For k1 ≥ 2, then {θ(n)(x), ϕ(n)(x)} converges.

The proof of Theorem 1 is similar to that of Shi et al [10] and is provided in the section 3.

Remark For k1 = 1, let assumptions (A1)–(A3) hold, without assumptions (A4), then {θ(n)(x),

ϕ(n)(x)} also converges.

It is well known that the alternating iterative profile likelihood function (AIPLF) is not a

true likelihood function, for example, Eθ{∂L(θ,ϕ̂(x);x)
∂θ

} 6= 0. The AIMLE obtained by AIPLF is

a biased estimator, though alternating iterative sequences {θ(n)(x)} and {ϕ(n)(x)} can converge

to the AIMLE θ̂(x) and ϕ̂(x) respectively under some conditions.

From a first order expansion of the concentrated score ∂L(θ,ϕ̂(x);x)
∂θ

around the value θ⋆

which is not the true value θ and called pseudo true value, we obtain the usual expression for
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the AIMLE θ̂(x)

HN

√
N(θ̂(x) − θ⋆) = − 1√

N

∂L(θ, ϕ̂(x); x)

∂θ
|θ=θ⋆ + Op(

1√
N

), (7)

where θ⋆ = h(θ) is contained in the following equation (8) for given ϕ̂(x)

Eθ{
∂L(θ, ϕ̂(x); x)

∂θ
|θ=θ⋆} = 0, (8)

and

HN =
1

N

∂2L(θ, ϕ̂(x); x)

∂θ2
|θ=θ⋆ . (9)

A standard central limit theorem applies to the concentrated score ∂L(θ,ϕ̂(x);x)
∂θ

|θ=θ⋆ . From

(8) we have
1√
N

∂L(θ, ϕ̂(x); x)

∂θ
|θ=θ⋆

d−→ N(0, VN ), (10)

where

VN =
1

N
Eθ{

∂L(θ, ϕ̂(x); x)

∂θ
|θ=θ⋆(

∂L(θ, ϕ̂(x); x)

∂θ
|θ=θ⋆)T }. (11)

Finally, combining (7) and (10), we have the following Theorem 2:

Theorem 2 (Asymptotic normality of AIMLE) When sample size N −→ ∞
√

N(θ̂(x) − θ⋆)
d−→ N(0, Λ), (12)

where

Λ = H−1
N × VN × (H−1

N )T . (13)

It is well known that the estimating equation obtained by using AIPLF is generally biased

so that θ⋆ 6= θ. From (12), the asymptotic bias of the AIMLE θ̂(x) is b(θ) = θ⋆ − θ = h(θ) − θ.

Kuk [7] proposed sampling-based methods to study the estimating problem for generalized linear

models with random effects. Also the method given in Kuk [7] can be applied to our proposed

bias correction problems. The method for correcting the bias b(θ) is the following. Let b(0) be

an initial estimate of the bias of θ̂(x). The k + 1 step updated estimate of bias of θ̂(x) can be

written as

b(k+1) = h(θ̂(x) − b(k)) − (θ̂(x) − b(k)). (14)

The k + 1 step updated bias corrected estimate of θ̂(x) can be denoted by

θ̃(k+1)(x) = θ̂(x) − b(k+1). (15)

Assuming that the limit of b(k) exists, we can let k → ∞ in equation (14) to obtain

b = h(θ̃(x)) − (θ̂(x) − b), (16)

so that

θ̃(x) = h−1(θ̂(x)). (17)

Assuming that h(·) is one to one and differentiable, from the above expression (12) and Slutsky’s

theorem, we can obtain the following Theorem 3:
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Theorem 3 (Iterative bias correction of AIMLE) When sample size N −→ ∞
√

N(θ̃(x) − θ)
d−→ N(0, DΛDT ), (18)

where D =
dh−1(θ)

dθ
|θ=θ⋆.

Thus the estimator θ̃(x) defined by equation (17) is asymptotically unbiased and consistent,

where the estimator θ̃(x) can be understood as an estimate resulting from iterative bias correction

for θ̂(x).

The equations (14) and (15) are the very core of the subject about iterative bias correction

of θ̂(x). So the function h(·) contained in equation (8), which is used in equation (14), is very

important. Except for very simple problems, the function θ⋆ = h(θ) has no explicit expression,

and usually is complicated integral equation. Just for the complexity of the function h(·), the

implementation of iterative bias correction is difficult. From (12), we can find that h(θ) = θ⋆ is

the asymptotic mean of θ̂(x). We propose to approximate h(θ) by hM (θ) which is the average

of θ̂(x) over simulated samples. hM (θ) can be written as the follows:

hM (θ) =
1

M

M∑

i=1

θ̂(xi), (19)

where x1, . . . ,xM are simulated from the model with the parameters set at θ and ϕ. Replacing

hM (θ) in equations (14) and (15), we obtain

b
(k+1)
M = hM (θ̂(x) − b

(k)
M ) − (θ̂(x) − b

(k)
M ) (20)

as bootstrap estimate of the bias of θ̂(x) at the k + 1th iteration and

θ̃(k+1)(x) = θ̂(x) − b
(k+1)
M (21)

as the updated bootstrap iterative bias correction estimate of θ.

The bias correction method for profile likelihood is also researched by many scholars, for

example, Cox and Reid [4] proposed a conditional modified profile likelihood function to reduce

the bias, but it needs orthogonal reparameterizations. McCullagh and Tibshirani [8] modified

a biased estimating equation to result in an unbiased estimating equation. Our method is to

solve the biased estimating equation, to obtain the AIMLE without modification, then to adjust

the AIMLE using the iterative bias bootstrap correction method as in Kuk [7], and to result in

asymptotically unbiased and consistent estimators.

3. Proof of Theorem 1

The following Lemma 1 is well known:

Lemma 1 Let {yn} be a bounded infinite sequence in Rk. If every convergent subsequence of

{yn} has a common limit point ŷ, then {yn} converges.

Lemma 2 If L(θ, ϕ; x) satisfies (A1), (A2) and (A3) of Theorem 1, then ‖θ(n+1)(x)−θ(n)(x)‖ −→
0 as n −→ ∞.
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The proof of Lemma 2 is similar to that of Shi et al [10].

Lemma 3 Suppose that {θ(nk)(x), ϕ(nk)(x)} is an arbitrary convergent subsequence of {θ(n)(x),

ϕ(n)(x)}, and (θ(nk)(x), ϕ(nk)(x)) −→ (θ′(x), ϕ′(x)) when k −→ ∞, then

L(θ′(x), ϕ′(x); x) = max
θ∈C

L(θ, ϕ′(x); x) = max
ϕ∈D

L(θ′(x), ϕ; x).

Proof For any ϕ ∈ D, the algorithm shows that

L(θ(nk)(x), ϕ(nk)(x); x) ≥ L(θ(nk)(x), ϕ; x).

Therefore

lim
k→∞

L(θ(nk)(x), ϕ(nk)(x); x) ≥ lim
k→∞

L(θ(nk)(x), ϕ; x),

i.e.,

L(θ′(x), ϕ′(x); x) ≥ L(θ′(x), ϕ; x).

Similarly, for any θ ∈ C we have

L(θ′(x), ϕ′(x); x) ≥ L(θ, ϕ′(x); x).

This completes the proof of Lemma 3. �

Lemma 4 The mapping ϕ(·) is continuous from C to D.

Proof Suppose that the sequence θ(n)(x) converges to θ0(x) ∈ C, and let {ϕ(θ(nk)(x))} be a

convergent subsequence of {ϕ(θ(n)(x))} with ϕ0(x) = limk→∞{ϕ(θ(nk)(x))}. By the definition

of ϕ(·), for any ϕ ∈ D

L(θ(nk)(x), ϕ(θ(nk))(x); x) ≥ L(θ(nk)(x), ϕ; x).

And by the continuity of L(θ, ϕ; x) as k −→ ∞, we have

L(θ0(x), ϕ0(x); x) ≥ L(θ0(x), ϕ; x).

Namely L(θ0(x), ϕ0(x); x) = maxϕ∈D L(θ0(x), ϕ; x) or ϕ0(x) = ϕ(θ0(x)). By Lemma 1, we

have

lim
n→∞

{ϕ(θ(n)(x)} = ϕ(θ0(x)).

This completes the proof of Lemma 4.

From the alternating iterative process in Section 2, the sequence {θ(n)(x), ϕ(n)(x)} obtained

by alternating iterative method is the same as the sequence {θ(n)(x), ϕ(θ(n)(x))}. By Lemma 4,

we have the following Corollary 1.

Corollary 1 The sequence {θ(n)(x), ϕ(n)(x)} obtained by the alternating iterative method

converges if and only if {θ(n)(x)} converges.

The following Lemma 5 is given in Shi and Jiang [11]:

Lemma 5 Let {yn} be a uniformly bounded sequence in Rk. If ‖yn+1 − yn‖ −→ 0 as n → ∞,
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and the sequence is not convergent, then there are infinitely many accumulation points of the

sequence {yn}.
Since C is a convex and compact sunset of Rk, and θ ◦ϕ(·) is continuous from C to C, there

exists a vector θ0 ∈ C such that θ ◦ ϕ(θ0) = θ0 (see Smart [6]). We have the following lemma.

Lemma 6 Any accumulation point of the iterative sequence {θ(n)(x)} is a fixed point of the

composed mapping θ ◦ ϕ(·) in C.

Proof Let θ′(x) be an accumulation point of {θ(n)(x)}. Then there exists a subsequence

{θ(nk)(x)} ⊂ {θ(n)(x)} satisfying limk→∞ θ(nk)(x) = θ′(x). By Corollary 1, {ϕ(θ(nk)(x))} con-

verges. By Lemma 3, L(θ′(x), ϕ(θ′(x)); x) = maxθ∈C L(θ, ϕ(θ′(x)); x) or θ′(x) = θ ◦ ϕ(θ′(x)).

This completes the proof of Lemma 6. �

Proof of Theorem 1 By Corollary 1, it suffices to prove the sequence {θ(n)(x)} is convergent.

Since L(θ, ϕ; x) satisfies conditions (A1), (A2) and (A3), we have ‖θ(n+1)(x)− θ(n)(x)‖ −→ 0 as

n −→ ∞ by Lemma 2. If {θ(n)(x)} is not convergent, the conditions of Lemma 5 hold. There-

fore, there are infinitely many accumulation points of the sequence {θ(n)(x)}. By Lemma 6, any

accumulation point of the iterative sequence {θ(n)(x)} is a fixed point of the composed mapping

θ ◦ϕ(·) in C. So θ ◦ϕ(·) has at most countable fixed points in C. This contradicts the condition

(A4). The contradiction implied that this problem is true. This completes the proof of Theorem

1. �

4. Examples and simulation

In this section, we provide two examples and a simulation. In Example 1, the AIMLE has

an explicit expression and happens to coincide with the MLE, and we derive the bias correction

for the AIMLE. In Example 2, we study the estimation problem of binary panel data model, and

the AIMLE has no explicit expression. Based on Example 1, we do a Monte carlo simulation.

Example 1 Given a sample X1, X2, . . . , Xn from N(µ, σ2), where µ and σ2 are all unknown.

The log-likelihood function is L(µ, σ2; x) = −n lnσ −
∑n

i=1(xi − µ)2/2σ2 + c, where the log-

likelihood function L(µ, σ2; x) is not concave function, c is a constant. The MLE of µ and σ2

solve the following problem

max
µ∈R,σ2∈R+

L(µ, σ2; x). (∗)

From the above, its maximum occurs at µ̂ = x̄, σ̂2 = 1
n

∑n
i=1(xi − x̄)2. The proof that the

estimates µ̂ and σ̂2 are the MLE of µ and σ2 can be found in Rao [5]. It can be found that σ̂2

is a biased estimator. Of course, we can replace the n in σ̂2 by n − 1 and thus correct the bias

in σ̂2, called modified MLE.

The following will give the AIMLE of µ and σ2 by the alternating iterative method where

the AIMLE of µ and σ2 is the same as the MLE. Let v = 1
σ2 . Replacing v in L(µ, σ2; x), we can
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obtain

L⋆(µ, v; x) =
n

2
ln v − v

2

n∑

i=1

(xi − µ)2 + c,

where c is a constant. So the solution of (∗) is equivalent to the solution of following:

max
µ∈R,v∈R+

L⋆(µ, v; x). (∗∗)

It can be found that the log-likelihood function L⋆(µ, v; x) is semi-concave function of (µ, v)

defined on R × R+. Because µ ∈ R, i.e., k1 = 1, and it is found that the log-likelihood function

L⋆(µ, v; x) satisfies the conditions (A1), (A2) and (A3) of Theorem 1. So the iterative sequence

{(µ(n)(x), v(n)(x))} converges and the sequence {(µ(n)(x), σ2(n)
(x)} also converges, obviously we

can find that {µ(n)(x)} converges to x̄, the MLE of µ, and {σ2(n)
(x)} converges to 1

n

∑n
i=1(xi −

x̄)2, the MLE of σ2. According to the definition of the AIMLE, the AIMLE of µ and σ2

coincides with the MLE, which is the explicit expression of x. We find that the AIMLE of σ2

is a biased estimator. It is well known that the asymptotic distribution of the AIMLE σ̂2(x)

is N(n−1
n

σ2, 2(n−1)2σ4

n3 ). Let σ2⋆ = n−1
n

σ2. Thus we have h(x) = n−1
n

x, which is an explicit

expression. The AIMLE of σ2 has an asymptotic bias given by b(σ2) = σ2⋆ − σ2 = h(σ2) − σ2.

Let b(0) be an initial estimate of the bias of the AIMLE σ̂2(x). The k + 1 step updated estimate

of bias of σ̂2(x) can be obtained by equation (14) in Section 2. The k + 1 step updated bias

corrected estimate of σ2 can also be obtained by equation (15) in Section 2. Assuming that the

limit of b(k) exists, we can let k → ∞ to obtain σ̃2(x) = n
n−1 σ̂2(x). Because h(x) = n−1

n
x is

one to one and differentiable, from the above expression and Slutsky’s theorem, we can obtain

the asymptotic distribution of σ̃2(x), where σ̃2(x) is the bias correction estimate for AIMLE

σ̂2(x), and the asymptotic distribution is N(σ2, 2σ4

n
). Thus the bias correction estimator σ̃2(x)

is asymptotically unbiased and consistent for σ2, which corrects the bias in σ̂2(x) as before.

Example 2 Consider the estimation problem in binary panel data model with fixed T and large

N . The model is

yit = I(α + βxit + ηi + vit ≥ 0), t = 1, . . . , T ; i = 1, . . . , N, (†)

where I(·) is indicator function, ηi is fixed effect, and vit is independently identical distributed

with logistic distribution Λ(x) = ex

1+ex . We are interested in estimating α and β, and therefore

treat ηi as parameters to be estimated (nuisance parameters). The estimation problem can be

written as

max
θ∈R,η∈RN

L(θ, η; x), (††)

where L(θ, η; x) is log-likelihood function of model (†), θ = (α, β) and η = (η1, . . . , ηN ). We

can find that the objective function of problem (††) is semi-concave function and satisfies the

assumption conditions (A1), (A2), (A3) and (A4) of Theorem 1. So the iterative sequence

{θ(n)(x), η(n)(x)} converges. By the definition of AIMLE, we know that the AIMLE θ̂(x) of θ

exists, which is a biased estimator by Theorem 2. Using Theorem 3, we can adjust the AIMLE

θ̂(x) to the unbiased estimator θ̃(x), which is BCAIMLE. Here h(x) has no explicit expression,
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so we obtain the AIMLE by using equations (20) and (21).

Simulation We present a small Monte Carlo study to illustrate the usefulness of the bias

correction for AIMLE. We will report the results for our bias correction estimator for AIMLE

(BCAIMLE) and AIMLE. Throughout, we report the mean, SD (standard deviation) of these

two estimators based on 1000 replications for each design with sample size equal to 50 and 100

respectively. The results are in Table 1 below.

N(µ, σ2) N Method Mean SD

N(0, 1) 50 AIMLE 0.981 0.206

BCAIMLE 1.001 0.212

100 AIMLE 0.986 0.140

BCAIMLE 0.996 0.142

N(2, 4) 50 AIMLE 3.918 0.794

BCAIMLE 3.994 0.812

100 AIMLE 3.939 0.574

BCAIMLE 3.981 0.582

N(4, 16) 50 AIMLE 15.66 3.186

BCAIMLE 15.98 3.266

100 AIMLE 15.80 2.157

BCAIMLE 15.96 2.197

N(6, 36) 50 AIMLE 35.27 6.897

BCAIMLE 35.97 6.998

100 AIMLE 35.59 4.725

BCAIMLE 35.96 4.808

Table 1 Various estimators of σ
2 in normal model

For simplicity, the simulation is based on Example 1, the data for the simulation is generated

by the normal model with different mean and variance. To illustrate the bias correction for

AIMLE, here we assume that the function h(x) has no closed form and is only defined implicitly

by equation (8) which is a complicated integral equation, even though we know that h(x) has an

explicit expression. For each simulated data set, we compute the AIMLE σ̂2(x) by the alternating

iterative method. The bias correction for AIMLE σ̃2(x) is obtained from σ̂2(x) iteratively by

using equations (20) and (21) with starting value b(0) = 0 so that σ̃2
(0)

(x) = σ̂2(x). To save

computations, we set M = 100.

As expected, the mean of the BCAIMLE performs better than that of the AIMLE. In

general, the simulation results confirm our proposed bias correction for AIMLE.
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