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Abstract The AR-quiver and derived equivalence are two important subjects in the repre-

sentation theory of finite dimensional algebras, and for them there are two important research

tools-AR-sequences and D-split sequences. So in order to study the representations of triangular

matrix algebra T2(T ) =

(

T 0

T T

)

where T is a finite dimensional algebra over a field, it is

important to determine its AR-sequences and D-split sequences. The aim of this paper is to

construct the right(left) almost split morphisms, irreducible morphisms, almost split sequences

and D-split sequences of T2(T ) through the corresponding morphisms and sequences of T . Some

interesting results are obtained.
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1. Introduction and preliminaries

The representation theory of algebras is one of the main branches of mathematics, and

the almost split sequence plays an important role in it. A special quiver of a finite dimensional

algebra-AR-quiver was constructed through the almost split sequences and irreducible morphisms

in [1]. It gives a good description of the finitely generated module category of the algebra, and

now becomes a main research tool of the representation theory of algebras. The triangular matrix

algebra is a new algebra which is introduced in the study of the decomposition of algebra and

direct sum of two rings. The one-point extension is a special case of the triangular matrix algebra.

In paper [2], the triangular matrix algebra of rank two was extended to the one of rank n, and it

is obtained that there is an equivalent relation between the morphism category and the module

category of the corresponding triangular matrix algebra. Furthermore, the relations between its

projective modules, injective modules and monomorphism category, epimorphism category are

determined. Now, we recall some basic definitions and given results required in the paper. All

rings in this paper are artinian algebras and all modules are assumed to be finitely generated.

Let T and U be rings and UMT a U -T -bimodule. By Λ we denote the triangular matrix

algebra

(

T 0

UMT U

)

. The module over Λ is in the form of the triple (TA,U B, f) with f :

Received July 15, 2011; Accepted October 31, 2011
Supported by the National Natural Science Foundation of China (Grant No. 10971172) and the Natural Science

Foundation of Beijing (Grant Nos. 1092002; 1122002).
* Corresponding author

E-mail address: zhanglinxxby@163.com (Yulin ZHANG); yaohl@bjut.edu.cn (Hailou YAO)



12 Yulin ZHANG and Hailou YAO

M ⊗T A → B a U -morphism. In particular, let T2(T ) =

(

T 0

T T

)

. The T2(T )-modules can

be described by triples (TA,T B, f) with f : A → B a T -morphism [1]. We can determine

its right(left) almost split and irreducible morphisms and then construct its AR-quiver. The

definitions and theorems on the right(left) almost split morphism and irreducible morphism are

introduced in [1].

Theorem 1.1 ([1]) The following are equivalent for a morphism f : B → C.

(a) The morphism f : B → C is right almost split.

(b) The morphism f is not a split epimorphism, the module C is indecomposable and if

X is an indecomposable module not isomorphic to C, then every morphism g : X → C factors

through f .

Theorem 1.2 ([1]) The following are equivalent for a morphism g : A→ B.

(a) The morphism g : A→ B is left almost split.

(b) The morphism g is not a split monomorphism, the module A is indecomposable and if Y

is an indecomposable module not isomorphic to A, then every nonisomorphism A → Y factors

through g.

Applying the above theorems, the right(left) almost split morphisms and irreducible mor-

phisms of T , we can determine the corresponding morphisms of T2(T ), and its AR-quiver fur-

thermore.

Derived equivalence is another important subject in the modern representation theory. It

preserves many significant invariants of groups and algebras such as the number of irreducible

representations, Cartan determinants, Hochschild cohomology groups, algebraic K-theory and G-

theory and so on. The Morita theory for derived categories was established through the tilting

complex by Rickard in [3]. It gives a concrete description of derived equivalence. In [4], the D-split

sequence was introduced to study the derived equivalence. Let C be an additive category, and let

D be a full subcategory of C, and X an object in C. A morphism f : D → X in C is called a right

D-approximation of X if D ∈ D and the induced map HomC( , f) : Hom(D′, D) → HomC(D′, X)

is surjective for every object D′ ∈ D. Dually, there is the notion of a left D-approximation. We

will use them to construct the D-split sequence.

Definition 1.3 ([5]) Let C be an additive category and D a full subcategory of C. A sequence

X
f
−→M ′ g

−→ Y

in C is called a D-split sequence if

(1) M ∈ D;

(2) f is a left D-approximation of X , and g is a right D-approximation of Y ;

3) f is a kernel of g, and g is a cokernel of f .

Theorem 1.4 ([4]) Let C be an additive category and M an object in C. Suppose

X
f
−→M ′ g

−→ Y



The almost split sequences and D-split sequences of T2(T ) 13

is an addM -split sequence in C, then the endomorphism ring EndC(M ⊕X) of M ⊕X and the

endomorphism ring EndC(M ⊕ Y ) of M ⊕ Y are derived-equivalent.

There are some definitons and theorems about the almost split sequence and irreducible mor-

phism in [1]. In this paper, we will use them to construct the right(left) almost split morphisms,

irreducible morphisms, almost split sequences and D-split sequences of T2(T ) through the corre-

sponding morphisms and sequences of T .

2. The almost split morphisms and irreducible morphisms of triangular

matrix algebras

In this section, we will construct the right(left) almost split morphisms of a triangular matrix

algebra from the ones of the corresponding algebras. For the special case T2(T ), we will have more

results. According to right(left) almost split morphism for indecomposable projective(injective)

modules, it is easy to get the following facts:

Fact 2.1 For Λ =

(

T 0

UMT U

)

, we have the following

(1) If P is an indecomposable projective U -module, and rP is the radical of P , i : rP → P

is the embedding morphism, then (0, i) : (0, rP, 0) → (0, P, 0) is a right almost split morphism in

mod Λ.

(2) If I is an indecomposable injective T -module, and j : I → I/soc I is the natural epimor-

phism, then (j, 0) : (I, 0, 0) → (I/soc I, 0, 0) is a left almost split morphism in mod Λ.

(3) If P ′ is an indecomposable projective T -module, then (i, Id) : (rP ′,M ⊗ P ′, iM⊗rP ′) →

(P ′,M ⊗ P ′, 1M⊗P ′) is a right almost split morphism in mod Λ.

(4) If I ′ is an indecomposable injective U -module, then (Id, j) : (HomU (M, I ′), I ′, φ) →

(HomU (M, I ′), I ′/soc I ′, φ) is a left almost split morphism in mod Λ, where φ : M⊗HomU (M, I ′) →

I ′ is given by φ(m⊗ f) = f(m) for m ∈M and f ∈ HomU (M, I ′).

Corollary 2.2 For T2(T ) =

(

T 0

T T

)

, we have the following.

(1) If P is an indecomposable projective T -module, then morphisms (0, i) : (0, rP, 0) →

(0, P, 0) and (i, Id) : (rP, P, i) → (P, P, 1P ) are right almost split in modT2(T ).

(2) If I is an indecomposable injective T -module, then morphisms (j, 0) : (I, 0, 0) →

(I/soc I, 0, 0) and (Id, j) : (I, I, 1I) → (I, I/soc I, j) are left almost split in modT2(T ).

Fact 2.3 For Λ =

(

T 0

UMT U

)

, we have the following

(1) Let A and B be indecomposable U -modules. If the monomorphism f : A → B is a

(minimal) right almost split morphism, then (0, f) : (0, A, 0) → (0, B, 0) is a (minimal) right

almost split morphism in mod Λ.

(2) Let A and B be indecomposable T -modules. If the epimorphism g : A → B is a

(minimal) left almost split morphism, then (g, 0) : (A, 0, 0) → (B, 0, 0) is a (minimal) left almost

split morphism in mod Λ.
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Corollary 2.4 For T2(T ) =

(

T 0

T T

)

, let A and B be indecomposable T -modules. Then we

have the following

(1) If the monomorphism f : A → B is a (minimal) right almost split morphism, then

(0, f) : (0, A, 0) → (0, B, 0) is a (minimal) right almost split morphism in modT2(T ).

(2) If the epimorphism g : A → B is a (minimal) left almost split morphism, then (g, 0) :

(A, 0, 0) → (B, 0, 0) is a (minimal) left almost split morphism in modT2(T ).

Theorem 2.5 For T2(T ), we have the following.

(1) If f : A → B is not a split monomorphism, and there exists g : B → A such that

gf = 1A, then (1A, f) : (A,A, 1A) → (A,B, f) is a left almost split morphism in modT2(T ).

(2) If g : A→ B is not a split epimorphism, and there exists g : B → A such that gf = 1A,

then (g, 1A) : (B,A, g) → (A,A, 1A) is a right almost split morphism in modT2(T ).

Proof We only prove (1); the proof of (2) is similar.

Since f is not split, we know that (1A, f) is not a split monomorphism. For any indecompos-

able T2(T )-module (C1, C2, k) and nonisomorphism (g1, g2) : (A,A, 1A) → (C1, C2, k), it follows

that there is a commutative diagram

A

1A

��

g1 // C1

k

��
A

g2 // C2

.

Thus, g2 = kg1. Now, let (h1, h2) = (g1, g2g). It is easy to know (h1, h2) is a T2(T )-morphism.

And also (h1, h2)(1A, f) = (g1, g2gf) = (g1, g2). Consequently, (g1, g2) factors through (1A, f).

In conclusion, (1A, f) is a left almost split morphism. 2

The irreducible morphism is a main tool when we construct the AR-quiver of a finite dimen-

sional algebra. The arrows between two vertices are determined by the irreducible morphism in

an AR-quiver. So, we will study the irreducible morphism of the triangular matrix algebra in

the following.

Theorem 2.6 For Λ, we have the following.

(1) If the monomorphism f : A → B is an irreducible morphism in modU , then (0, f) :

(0, A, 0) → (0, B, 0) is irreducible in mod Λ.

(2) If the epimorphism f : A → B is an irreducible morphism in modT , then (f, 0) :

(A, 0, 0) → (B, 0, 0) is irreducible in mod Λ.

Proof (1) We will prove the theorem in two steps by the definition of irreducible morphism.

1◦. As f is neither a split monomorphism nor a split epimorphism, it is easy to see that the

same conclusion is true for (0, f).

2◦. If there exist a Λ-module (X1, X2, h) and a Λ-morphism (0, s) : (0, A, 0) → (X1, X2, h) as

well as (0, t) : (X1, X2, h) → (0, B, 0) such that (0, f) = (0, t)(0, s), then we have the commutative

diagram
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0

0

��

0 // M ⊗X1

h

��

0 // 0

0

��
A

s // X2
t // B

.

Thus, ts = f and th = 0. Since f is irreducible, we know that t is a split epimorphism or s is a

split monomorphism.

(a) If t is a split epimorphism, then there exists a U -module B′ such that X2
∼= B ⊕ B′

where B′ ∼= ker t. We have that Imh ⊆ ker t ∼= B′ since th = 0. And so (X1, X2, h) ∼=

(X1, B
′, h) ⊕ (0, B, 0). Hence, (0, t) is a split epimorphism.

(b) If s is a split monomorphism, then there exists a U -module A′ such that X2
∼= A ⊕ A′

where A ∼= Im s. Since f = st is a monomorphism and th = 0, we have that Imh ⊆ ker t ⊆ A′.

This means that (X1, X2, h) ∼= (X1, A
′, h) ⊕ (0, A, 0). Hence, (0, s) is a split monomorphism.

In conclusion, (0, f) is irreducible.

(2) Similarly to the proof of (1), there is a commutative diagram

M ⊗A

0

��

1⊗s
// M ⊗X1

h

��

1⊗t
// M ⊗B

0

��
0

0 // X2
0 // 0

(1)

Hence, h(1 ⊗ s) = 0 and (1 ⊗ t)(1 ⊗ s) = 1 ⊗ f . Thus, f = ts. Since f is irreducible, t is a split

epimorphism or s is a split monomorphism.

(a) If t is a split epimorphism, then there exists a T -module B′ such that X1
∼= B⊕B′ where

B′ ∼= ker t. Since f is an epimorphism and h(1 ⊗ s) = 0, we have that M ⊗ B ⊆ Im(1 ⊗ s) ⊆

kerh. Thus, we have that (X1, X2, h) ∼= (B, 0, 0) ⊕ (B′, X2, h). This means that (0, t) is a split

epimorphism.

(b) If s is a split monomorphism, then there exists a T -module A′ such that X1
∼= A ⊕ A′

where A ∼= Im s. We have that M ⊗ A ⊆ kerh since Im(1 ⊗ s) ⊆ kerh. Thus, (X1, X2, h) ∼=

(A, 0, 0) ⊕ (A′, X2, h). This means that (0, s) is a split monomorphism.

In conclusion, (f, 0) is irreducible. 2

Corollary 2.7 For T2(T ), we have the following.

(1) If a monomorphism f : A → B is irreducible, then (0, f) : (0, A, 0) → (0, B, 0) is

irreducible in modT2(T ).

(2) If an epimorphism f : A→ B is irreducible, then (f, 0) : (A, 0, 0) → (B, 0, 0) is irreducible

in modT2(T ).

Theorem 2.8 For the algebra T2(T ), we have the following.

(1) If a monomorphism f : A → B is irreducible, then (1A, f) : (A,A, 1A) → (A,B, f) is

irreducible in modT2(T ).

(2) If f : A → B and g : B → A are irreducible in modT , then (f, 0) : (A, 0, 0) → (B,A, g)

and (0, g) : (A,B, f) → (0, A, 0) are irreducible in modT2(T ).
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Proof (1) Similarly to the proof of Theorem 2.6, there is a commutative diagram

A

1A

��

s1 // X1

h

��

t1 // A

f

��
A

s2 // X2
t2 // B

(2)

Thus, hs1 = s2, t1s1 = 1A and t2s2 = f . Hence, s1 is a split monomorphism and t1 is a split

epimorphism. So, there exists a T -module A′ such that X1
∼= A⊕A′ where A′ ∼= ker t1. Since f

is irreducible, we know that t2 is a split epimorphism or s2 is a split monomorphism.

(a) If s2 is a split monomorphism, then there exists a T -module A′′ such that X2
∼= A⊕A′′.

From the above commutative diagram we know that h(A) = A and h|A = 1A. Since ft1(A
′) =

t2h(A
′) and f = t2s2 is a monomorphism, we have that h(A′) ⊆ ker t2 ⊆ A′′. Now, we know

that (X1, X2, h) ∼= (A,A, 1A) ⊕ (A′, A′′, h). This means that (s1, s2) is a split monomorphism.

(b) If t2 is a split epimorphism, then there exists a T -module B′ such that X2
∼= B ⊕ B′

where B′ ∼= ker t2. From the above commutative diagram we learn that h(A) ⊆ B and h|A = f ,

and so h(A′) ⊆ ker t2 ⊆ B′. Now, we have that (X1, X2, h) ∼= (A,B, f)⊕ (A′, B′, h). This means

that (t1, t2) is a split epimorphism.

In conclusion, (1A, f) is irreducible.

(2) Similarly to the proof of Theorem 2.6, there is a commutative diagram

A

0

��

s1 // X1

h

��

t1 // B

g

��
0

0 // X2
t2 // A

(3)

Thus, hs1 = 0 and t1s1 = f . As f is irreducible, we have that t2 is a split epimorphism or s2 is

a split monomorphism.

(a) If s1 is a split monomorphism, then there exists a T -module A′ such that X1
∼= A⊕A′.

Now, we have that h(A) = 0 since hs1 = 0. Thus, (X1, X2, h) ∼= (A, 0, 0) ⊕ (A′, X2, h). This

means that (s1, 0) is a split monomorphism.

(b) If t2 is a split epimorphism, then there exists t′1 which is the right inverse of t2, such

that t1t
′
1 = 1. So we have that g = t2ht

′
1. Since g is irreducible, we know that ht′1 is a split

monomorphism or t2 is a split epimorphism. If ht′1 is a split monomorphism, then there exist T -

modules B′ and B′′ such that X1
∼= B⊕B′ and X2

∼= B⊕B′′. We have that hs1(A) = 0 because

hs1 = 0. Since ht′1 is a split monomorphism, it is easy to know that s1(A) ⊆ B′. Now t1s1 = 0.

This means that f = 0. It is a contradiction. Therefore, ht′1 is not a split monomorphism, and

so t2 is a split epimorphism. It follows that there exists a T -module A′′ such that X2
∼= A⊕A′′

where A′′ ∼= ker t2. From the above commutative diagram we learn that h|B = g and t2h(B
′) = 0,

i.e., h(B′) ⊆ A′′. Hence (X1, X2, h) ∼= (B,A, g) ⊕ (B′, A′′, h). This means that (t1, t2) is a split

epimorphism.

In conclusion, (f, 0) is irreducible.

Similarly, one can prove that (0, g) is irreducible. 2
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3. The D-split sequences

We can establish the derived equivalence of algebras from the addM -split sequence [2]. So

we try to construct the D-split sequence from the corresponding sequence of T in this section.

We denote T2(T ) by ∆ for the convenience of the statement in the following. It is easy to get

the following fact from Theorem 1.4.

Fact 3.1 If 0 → X
f
−→ M ′ g

−→ Y → 0 is an addM -split sequence in modT , then End∆((X ⊕

M, 0, 0)) and End∆((Y ⊕M, 0, 0)) are derived-equivalent.

Theorem 3.2 If 0 → X
f
−→ M ′ g

−→ Y → 0 is an addM -split sequence in modT , then

End∆((M,M ⊕ X, (1M , 0))) and End∆((M ⊕ M ′,M ⊕ Y,

(

1M 0

0 g

)

)) are derived-equivalent.

Meanwhile, End∆((M ⊕X,M ⊕M ′,

(

1M 0

0 f

)

)) and End∆((M ⊕ Y,M, (1M , 0))) are derived-

equivalent.

Proof It follows from the definition of a submodule of the module over triangular matrix algebra

∆ = T2(T ), we can choose (N,N, 1N ) ∈ add(M,M, 1M ) and ∆-morphism (0, s) : (0, X, 0) →

(N,N, 1N ) without loss of generality. Then there exists h : M ′ → N such that s = hf ac-

cording to the fact that f is a left addM -approximation of X . So, (0, s) = (h, h)(0, f). This

means that (0, f) is a left add(M,M, 1M )-approximation of (0, X, 0). Now, for any (L,L, 1L) ∈

add(M,M, 1M ) and ∆-morphism (t1, t2) : (L,L, 1L) → (M ′, Y, g) we learn that t2 = gt1 from

the commutative diagram

L

1L

��

t1 // M
′

g

��
L

t2

// Y

.

Thus, (1′M , g)(t1, t1) = (t1, gt1) = (t1, t2). So, (1M ′ , g) is a right add(M,M, 1M )-approximation of

(M ′, Y, g). Hence, 0 → (0, X, 0)
(0,f)
−−−→ (M ′,M ′, 1M ′)

(1M′ ,g)
−−−−−→ (M ′, Y, g) → 0 is an add(M,M, 1M )-

split sequence. By Theorem 1.4 End∆((M,M⊕X, (1M , 0))) and End∆((M⊕M ′,M⊕Y,

(

1M 0

0 g

)

))

are derived-equivalent.

Similarly, one can prove that 0 → (X,M ′, f)
(f,1M′ )
−−−−−→ (M ′,M ′, 1M ′)

(g,0)
−−−→ (Y, , 0, 0) →

0 is an add(M,M, 1M )-split sequence. By Theorem 1.4 we know that End∆((M ⊕ X,M ⊕

M ′,

(

1M 0

0 f

)

)) and End∆((M ⊕ Y,M, (1M , 0))) are derived-equivalent. 2

Theorem 3.3 If 0 → X
f
−→ M ′ g

−→ Y → 0 is an addM -split sequence in modT , then

End∆((X ⊕ M,X ⊕M,

(

1X 0

0 1M

)

)) and End∆((Y ⊕ M,Y ⊕ M,

(

1Y 0

0 1M

)

)) are derived-

equivalent.

Proof It is easy to know that 0 → (X,X, 1X)
(f,f)
−−−→ (M ′,M ′, 1M ′)

(g,g)
−−−→ (Y, Y, 1Y ) → 0 is an
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add(M,M, 1M )-split sequence. Then by Theorem 1.4 we can get the derived equivalence in the

theorem. 2

By the easy calculation we know that End∆((X⊕M,X⊕M,

(

1X 0

0 1M

)

)) ≃ HomT (X,M)⊕

HomT (M,X) and End∆((Y ⊕M,Y ⊕M,

(

1Y 0

0 1M

)

)) ≃ HomT (M,Y ) ⊕ HomT (Y,M). Thus

by Theorem 3.3, we know that HomT (X,M) ⊕ HomT (M,X) and HomT (M,Y ) ⊕ HomT (Y,M)

are derived equivalent.

Theorem 3.4 (1) If 0 → X
f
−→ M ′ g

−→ Y → 0 is an addM -split sequence in modT , then we

have that End∆((X⊕M,A, (h, 0))) and End∆((Y ⊕M, 0, 0)) are derived-equivalent. Meanwhile,

End∆((X ⊕M, 0, 0)) and End∆((A, Y ⊕M, (k, 0))) are derived-equivalent for any T -module A,

T -morphism h : X → A and k : A→ Y .

(2) If 0 → X1
f1
−→M ′ g1

−→ Y1 → 0 and 0 → X2
f2
−→ M ′ g2

−→ Y2 → 0 are addM -split sequences

in modT . h : X1 → X2 and k : Y1 → Y2 in modT satisfy f1 = f2h and g2 = kg1. Then

End∆((X1 ⊕ M,X2 ⊕ M,

(

h 0

0 1M

)

)) and End∆((Y1 ⊕ M,Y2 ⊕ M,

(

k 0

0 1M

)

)) are derived-

equivalent.

Proof (1) Similarly to the proof of Theorem 3.2, it is easy to know that 0 → (X,A, h)
(f,0)
−−−→

(M ′, 0, 0)
(g,0)
−−−→ (Y, 0, 0) → 0 is an add(M, 0, 0)-split sequence. At the same time 0 → (0, X, 0)

(0,f)
−−−→

(0,M ′, 0)
(0,g)
−−−→ (A, Y, k) → 0 is an add(0,M, 0)-split sequence. By Theorem 1.4 we can get the

corresponding derived equivalences.

(2) Similarly to the proof of Theorem 3.2, we know that 0 → (X1, X2, h)
(f1,f2)
−−−−→ (M ′,M ′, 1M ′)

(g1,g2)
−−−−→ (Y1, Y2, k) → 0 is the add(M,M, 1M )-split sequence. By Theorem 1.4 we can get the cor-

responding derived equivalence. 2

Remark (1) Let A = 0 in Theorem 3.4(1). It is clear that Fact 3.1 is the corollary of Theorem

3.4(1).

(2) Let h = 1X , k = 1Y in Theorem 3.4(2). Then Theorem 3.3 can be viewed as the corollary

of Theorem 3.4(2).

Up to now we have constructed some irreducible morphisms, D-split sequences in modT2(T ).

In the next section we will study the almost split sequence in modT2(T ).

4. The almost split sequences in mod T2(T )

We constructed the right(left) almost split morphisms and irreducible morphisms in modT2(T )

from the ones of T in section 1. We can construct the almost split sequence from them in this

section.

Firstly we will introduce some properties of the module over T2(T ). Let D be the duality

Hom∆( , k) and (A,B, f) in modT2(T ). Then D(A,B, f) = (DB,DA,Dφ(f)ϕ), with φ the

adjoint isomorphism HomT (M ⊗T A,B) → HomT (A,HomT (M,B)), and ϕ : M ⊗T op DB →

DHomT (M,B), given by ψ(m ⊗ g)(f) = gf(m). By ()∗ we denote the morphism Hom∆( ,∆).
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For an indecomposable projective T2(T )-module (P, P, 1P ), we have that (P, P, 1P )∗ = (0, P ∗, 0).

When X = (0, P, 0), we have that (0, P, 0)∗ = (P ∗, P ∗, 1P∗). In order to compute the AR-

translation, we will investigate the minimal projective resolution in modT2(T ).

Lemma 4.1 Let A in modT , · · · → P1
d0−→ P0

ǫ
−→ A → 0 be a minimal projective resolution of

A. Then

(1) · · · → (0, P1, 0)
(0,d0)
−−−−→ (0, P0, 0)

(0,ǫ)
−−−→ (0, A, 0) → 0 is a minimal projective resolution of

(0, A, 0).

(2) · · · → (P1, P1 ⊕ P0, (1, 0))

(d0,

(

d0

1

)

)

−−−−−−−→ (P0, P0, 1)
(ǫ,0)
−−−→ (A, 0, 0) → 0 is a minimal projec-

tive resolution of (A, 0, 0).

Proof (1) is obvious. We will prove (2).

Firstly, (ǫ, 0)(d0,

(

d0

1

)

) = 0. Secondly, ker(ǫ, 0) = (kerǫ, P0) and Im(d0,

(

d0

1

)

) = (Imd0,

Imd0+P0) = (kerǫ, P0). It means that (P1, P1⊕P0, (1, 0))

(d0,

(

d0

1

)

)

−−−−−−−→ (P0, P0, 1)
(ǫ,0)
−−−→ (A, 0, 0) →

0 is an exact sequence.

At the same time, r(P1, P1⊕P0, (1, 0)) =

(

radT 0

T radT

)(

P1

P1 ⊕ P0

)

= (rP1, P1⊕rP0, (i, 0)).

Also we know that ker(d0,

(

d0

1

)

) ⊆ (ker d0, P1 ⊕ Im d0, (1, 0)) ⊆ r(P1, P1 ⊕ P0, (1, 0)).

In conclusion, the exact sequence in (2) is a minimal projective resolution of (A, 0, 0). 2

Theorem 4.2 (1) IfA is an indecomposable nonprojective T -module, then 0 → (DTrA,DTrA, 1)

→ E → (0, A, 0) → 0 is an almost split sequence in modT2(T ), where E is a T2(T )-module.

(2) If A is an indecomposable noninjective T -module, then 0 → (A, 0, 0) → E → (TrDA,

T rDA, 1) → 0, is an almost split sequence, where E is a T2(T )-module.

Proof Suppose A is an indecomposable nonprojective T -module, then (0, A, 0) is an indecom-

posable nonprojective T2(T )-module. According to Proposition 1.12 in [1, p. 142] there exists an

almost split sequence 0 → DTr(0, A, 0) → E → (0, A, 0) → 0. We compute the DTr(0, A, 0) as

follows.

(a) Suppose P1
d0−→ P0

ǫ
−→ A → 0 is a minimal projective presentation of A. Then

(0, P1, 0)
(0,d0)
−−−−→ (0, P0, 0)

(0,ǫ)
−−−→ (0, A, 0) → 0 is a minimal projective presentation of (0, A, 0).

(b) (0, d0)
∗ : (0, P0, 0)∗ → (0, P1, 0)∗. By the introduction in the front of this section we

know that (0, P0, 0)∗ = (P ∗
0 , P

∗
0 , 1) and (0, P1, 0)∗ = (P ∗

1 , P
∗
1 , 1). Hence (0, d0)

∗ = (d∗0, d
∗
0) :

(P ∗
1 , P

∗
1 , 1) → (P ∗

0 , P
∗
0 , 1). So, Tr(0, A, 0) = Coker(0, d0)

∗ = Coker(d∗0, d
∗
0) = (TrA, T rA, 1).

(c) From the foregoing discussion, it is clear that DTr(0, A, 0) = D(TrA, T rA, 1) = (DTrA,

DTrA, 1).

Therefore, by the above calculation and Proposition 1.12 in [1, p. 142] we have that 0 →

(DTrA,DTrA, 1) → E → (0, A, 0) → 0 is an almost split sequence in modT2(T ).
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(2) is the duality of (1). 2

Theorem 4.3 (1) If f : A → B is an irreducible monomorphism in modT , with A indecom-

posable, then 0 → (0, A, 0) → (0, B, 0) ⊕ E → (P ∗
0 , P

∗
1 , f) → 0 is an almost split sequence in

modT2(T ), where Im f = TrDA, E is a T2(T )-module, and P1 → P0 → DA → 0 is a minimal

projective presentation of DA.

(2) If g : B → A is an irreducible epimorphism, with A indecomposable, then 0 →

(DP ∗
1 , DP

∗
0 , Dφ(f)ϕ) → (B, 0, 0) ⊕ E → (A, 0, 0) → 0 is an almost split sequence in modT2(T ),

where E is a T2(T )-module, φ and ϕ are as the same isomorphisms as ones in the front of this

section, and P1 → P0 → A→ 0 is a minimal projective presentation of A.

Proof (1) By Corollary 2.7(1) we know that (0, f) : (0, A, 0) → (0, B, 0) is an irreducible mor-

phism. Thus, there exists E in modT2(T ) such that (0, A, 0) → (0, B, 0) ⊕ E is a left almost

split monomorphism. So, 0 → (0, A, 0) → (0, B, 0) ⊕ E → TrD(0, A, 0) → 0 is an almost split

sequence in modT2(T ). Next, we will compute TrD(0, A, 0).

(a) We know that D(0, A, 0) = (DA, 0, 0).

(b) Suppose P1
d0−→ P0

ǫ
−→ DA→ 0 is a minimal projective presentation ofDA, then according

to Lemma 4.1 we have that (P1, P1 ⊕ P0, (1, 0))

(d0,

(

d0

1

)

)

−−−−−−−→ (P0, P0, 1)
(ǫ,0)
−−−→ (DA, 0, 0) → 0 is a

minimal projective presentation of (DA, 0, 0).

(c) (d0,

(

d0

1

)

)∗ : (P0, P0, 1)∗ → (P1, P1 ⊕ P0, (1, 0))∗. For any (h, h) ∈ (P0, P0, 1)∗ we

know that (d0,

(

d0

1

)

)∗(h, h) = (d0h,

(

d0h h

0 0

)

). Hence, TrD(0, A, 0) = Tr(DA, 0, 0) =

Coker(d0,

(

d0

1

)

)∗ ∼= {(h, k) | h ∈ P ∗
0 , k ∈ P ∗

1 , d0h /∈ Imd∗0} = (P ∗
0 , P

∗
1 , f), where f(P ∗

0 ) = TrDA.

Therefore, by the computation above and Proposition 1.12 in [1, p. 142] we have that 0 →

(0, A, 0) → (0, B, 0) ⊕ E → (P ∗
0 , P

∗
1 , f) → 0 is an almost split sequence in modT2(T ).

(2) From Lemma 4.1 we learn that (P1, P1⊕P0, (1, 0))

(d0,

(

d0

1

)

)

−−−−−−−→ (P0, P0, 1)
(ǫ,0)
−−−→ (A, 0, 0) →

0 is a minimal projective presentation of (A, 0, 0) if P1 → P0 → A → 0 is a minimal projective

presentation of A. The rest of the proof is similar to (1).2

According to the above theorems we can construct the almost split sequences in modT2(T )

from the corresponding sequences in modT .

Corollary 4.4 (1) If A is an indecomposable injective T -module, then 0 → (0, A, 0) → E →

((DA)∗, 0, 0) → 0 is an almost split sequence in modT2(T ), where E is a T2(T )-module.

(2) If A is an indecomposable projective T -module, then 0 → (0, D(A∗), 0) → E →

(A, 0, 0) → 0 is an almost split sequence in modT2(T ), where E is a T2(T )-module.

Proof Suppose A is an indecomposable injective T -module, then DA is an indecomposable

projective T op-module, and (0, A, 0) is a noninjective T2(T )-module. Hence, TrDA = 0 and

0 → DA → DA → 0 is a minimal projective presentation of DA. From the proof of Theorem
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4.3, we know that TrD(A, 0, 0) = ((DA)∗, 0, 0). One can get the almost split sequence in (1) by

Proposition 1.13 in [1, p. 143].

One can prove (2) by Theorem 4.3(2). 2

Corollary 4.5 Suppose 0 → A
f
−→ B

g
−→ C → 0 is an almost split sequence in modT . Then

(1) 0 → (0, A, 0) → (0, B, 0)⊕E → (P ∗
0 , P

∗
1 , f) → 0 is an almost split sequence in modT2(T ),

where E is a T2(T )-module, and P1 → P0 → DA → 0 is a minimal projective presentation of

DA.

(2) 0 → (DP ∗
1 , DP

∗
0 , Dφ(f)ϕ) → (B, 0, 0) ⊕ E → (C, 0, 0) → 0 is an almost split sequence

in modT2(T ), where E is a T2(T )-module, and P1 → P0 → C → 0 is a minimal projective

presentation of C.

(3) If A is an indecomposable noninjective T -module, then 0 → (A, 0, 0) → E → (C,C, 1) →

0 is an almost split sequence in modT2(T ), where E is a T2(T )-module.

(4) If C is an indecomposable nonprojective T -module, then 0 → (A,A, 1) → (A,B, f)⊕E →

(0, C, 0) → 0 is an almost split sequence in modT2(T ), where E is a T2(T )-module.

Proof We learn that A ∼= DTrC and C ∼= TrDA from the definition of the almost split

sequence. By Theorem 2.8(1) we have that (A,A, 1) → (A,B, f) is an irreducible morphism.

Then by Theorems 4.2 and 4.3 we can get the conclusions in the Corollary 4.5. 2

Now, some almost split sequences in modT2(T ) can be constructed and the others can be

given from the properties of AR-quivers. Next, we will give an example to illustrate it.

Example Let k be a field and A be the k-algebra given by the quiver • −→ •. Then the

AR-quiver of A is

P (1)
p

##GG
GG

G

S(2)

σ
;;wwwww

S(1)

(4)

Now, we will give the AR-quiver of T2(A) as showed in this paper as follows.

For the noninjective indecomposable module (0, S(2), 0), there exists an irreducible morphism

(0, S(2), 0) → (0, P (1), 0) by Corollary 2.7(1). From Corollary 2.2 we learn that (0, S(2), 0) →

(S(2), S(2), 1) is irreducible. It is easy to see that DS(1) → DP (1) → DS(2) → 0 is a min-

imal projective presentation of DS(2). By computation we know that (DS(1))∗ = P (1) and

(DP (1))∗ = S(2). Thus, we know that TrD(0, S(2), 0) = (S(2), P (1), σ) by Theorem 4.3(1). In

conclusion, we have the following almost split sequence

0 → (0, S(2), 0) → (0, P (1), 0) ⊕ (S(2), S(2), 1) → (S(2), P (1), σ) → 0.

For (0, P (1), 0), it is easy to see that 0 → DP (1) → DP (1) → 0 is a minimal projective

presentation of DP (1). By Theorem 4.3(1) we have the following almost split sequence

0 → (0, P (1), 0) → (S(2), P (1), σ) → (S(2), 0, 0) → 0.

For (S(2), S(2), 1), we know that DTrS(1) = S(2). By Theorem 4.2 we have the following
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almost split sequence

0 → (S(2), S(2), 1) → (S(2), P (1), σ) → (0, S(1), 0) → 0.

Since (P (1), P (1), 1) is an indecomposable projective module, there exists a right almost split

morphism (S(2), P (1), σ) → (P (1), P (1), 1) by Corollary 2.2. So it is irreducible. From the above

two almost split sequences, there exists an almost split sequence

0 → (S(2), P (1), σ) → (S(2), 0, 0)⊕ (P (1), P (1), 1) ⊕ (0, S(1), 0) → (P (1), S(1), p) → 0.

Similarly, we have the following almost split sequences

0 → (S(2), 0, 0) → (P (1), S(1), p) → (S(1), S(1), 1) → 0,

0 → (0, S(1), 0) → (P (1), S(1), p) → (P (1), 0, 0) → 0.

Since P (1) → S(1) is irreducible, there exists an irreducible morphism (P (1), 0, 0) → (S(1), 0, 0)

by Corollary 2.7(2). Combining the above two sequences, we have the following almost split se-

quence

0 → (P (1), S(1), p) → (S(1), S(1), 1) ⊕ (P (1), 0, 0) → (S(1), 0, 0) → 0.

Collecting all the above information, we have that the entire AR-quiver of T2(A) is as follows.

(0, P(1), 0)

))SSSSSSS
(S(2), 0, 0)

))SSSSSSS
(S(1), S(1), 1)

((RRRRRRR

(0, S(2), 0)

66lllllll

((RRRRRRR
(S(2), P(1), σ)

55kkkkkkk

))SSSSSSS
// (P (1), P (1), 1) // (P (1), S(1), p)

55kkkkkkk

))SSSSSSS
(S(1), 0, 0)

(S(2), S(2), 1)

55kkkkkkk
(0, S(1), 0)

55kkkkkkk
(P (1), 0, 0)

66lllllll

(5)
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