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Abstract This paper considers the updating problem of the hyperbolic matrix factorizations.

The sufficient conditions for the existence of the updated hyperbolic matrix factorizations are

first provided. Then, some differential inequalities and first order perturbation expansions for

the updated hyperbolic factors are derived. These results generalize the corresponding ones

for the updating problem of the classical QR factorization obtained by Jiguang SUN.
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1. Introduction

To simplify the presentation, we first introduce some symbols used in this paper. Let R
m×n

be the set of m×n real matrices and R
m×n
r be the subset of R

m×n consisting of matrices with rank

r. Let Ir be the identity matrix of order r. Given A ∈ R
m×n
r , the symbols AT , A†, tr(A), det(A),

λmax(A), λmin(A), N(A), ‖A‖2, and ‖A‖F stand for its transpose, Moore-Penrose inverse, trace,

determinant, largest eigenvalue, smallest eigenvalue, null space, spectral norm, and Frobenius

norm, respectively. For a matrix A = (aij), define its condition number by κ(A) = ‖A‖2‖A†‖2

and differential by dA = (daij).

A matrix Q ∈ R
m×m
m is said to be J1-orthogonal if QT J1Q = J1, where J1 = diag(±1) ∈

R
m×m
m is a signature matrix. The definition can be extended to the rectangular matrices. We say

that a matrix Q ∈ R
m×n
n is (J1, J2)-orthogonal if QT J1Q = J2, where J2 = diag(±1) ∈ R

n×n
n is

another signature matrix. More on the J-orthogonal matrices can be found in [1]. Considering the

generalized orthogonal matrices, several matrix factorizations involved with orthogonal factors

can be generalized to the corresponding hyperbolic ones. The hyperbolic QR factorization and

the hyperbolic polar factorization are the two typical ones.

We say that a matrix A ∈ R
m×n
n admits a hyperbolic QR factorization with respect to the

signature matrices J1 and J2 if A = QH , where Q ∈ R
m×n
n is (J1, J2)-orthogonal and H ∈ R

n×n
n

is upper triangular with positive diagonal elements. When the leading principal minors of AT J1A
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have the same signs as the corresponding minors of J2, the hyperbolic QR factorization of A

always exists and is unique [2, 3]. The above condition is also necessary. In addition, there

are some other forms of the hyperbolic QR factorization [4, 5]. A matrix A ∈ R
m×n
n admits a

hyperbolic polar factorization A = QH , where Q ∈ R
m×n
n is (J1, J2)-orthogonal, if and only if

there exists a J2-symmetric matrix H ∈ R
n×n
n , i.e., the matrix H satisfies J2H = HT J2, such

that J2A
T J1A = H2 and N(A) = N(H) (see [1, 6–8]).

In this paper, we consider the following problem. Given A ∈ R
m×n
n , X ∈ R

m×r
r , and

Y ∈ R
n×r
r such that rank(A + XY T ) = n, find a (J1, J2)-orthogonal matrix P ∈ R

m×n
n and a

nonsingular matrix U ∈ R
n×n
n such that

A + XY T = PU.

The problem is called the rank-r updating problem of the hyperbolic matrix factorizations, and

the matrices P and U are referred to as the updated hyperbolic factors. When J1 and J2 are

identity matrices, the problem reduces to the rank-r updating problem of the corresponding

classical matrix factorizations, where the problem of the classical QR factorization has many

important applications and has been extensively studied in the literature [9–11]. Sun [10] con-

sidered its perturbation analysis. In the present paper, we will provide the perturbation analysis

of the rank-r updating problem of the hyperbolic matrix factorizations using the technique from

[10]. The sufficient conditions for the existence of two specific updated hyperbolic factoriza-

tions, i.e., the hyperbolic QR factorization and the hyperbolic polar factorization, are first given.

Then, the differential inequalities and first order perturbation expansions for the general updated

hyperbolic factors are obtained.

2. The hyperbolic matrix factorization updating problem

A lemma is first introduced as follows, which can be found in [12] and will be useful to

derive the sufficient conditions for the existence of the updated hyperbolic matrix factorizations.

Lemma 2.1 Let M ∈ R
n×n be symmetric and ‖M‖2 < 1. Then there exists a lower triangular

matrix L ∈ R
n×n with positive diagonal elements such that

J + M = LJLT ,

where J = diag(±1) ∈ R
n×n
n .

Theorem 2.1 Let A ∈ Rm×n
n have the following hyperbolic matrix factorization

A = QH, (1)

where Q is (J1, J2)-orthogonal. Let X ∈ R
m×r
r and Y ∈ R

n×r
r such that rank(A + XY T ) = n.

Define V = H−T Y ,

M = QT J1XV T + V XT J1Q + V XT J1XV T ,

and assume that ‖M‖2 < 1.
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i) If H in (1) is upper triangular with positive diagonal elements, then A + XY T has the

unique hyperbolic QR factorization

A + XY T = PU, (2)

where P is (J1, J2)-orthogonal and U is upper triangular with positive diagonal elements.

ii) If H in (1) is J2-symmetric and HT L = LT H , where J2 + M = LJ2L
T , then A + XY T

has the hyperbolic polar factorization

A + XY T = PU, (3)

where P is (J1, J2)-orthogonal and U is J2-symmetric.

Proof Since A has the hyperbolic matrix factorization A = QH , upon computation, we have

(A + XY T )T J1(A + XY T ) = HT (J2 + M)H.

Note that ‖M‖2 < 1. Applying Lemma 2.1, we have

J2 + M = LJ2L
T ,

where L is lower triangular with positive diagonal elements. Thus,

(A + XY T )T J1(A + XY T ) = HT LJ2L
T H. (4)

i) When H is upper triangular with positive diagonal elements, partition the matrices H ,

L, and J2 in the same form as follows

H =

[
H11 H12

0 H22

]
, L =

[
L11 0

L21 L22

]
, J2 =

[
J211 0

0 J222

]
,

where H11, L11, J211 ∈ R
k×k. After some calculation, we have that the k-th leading principal

minor of (A + XY T )T J1(A + XY T ) is

det(HT
11L11J211L

T
11H11) =

(
det(HT

11L11)
)2

det(J211),

which has the same sign as the k-th leading principal minor of J2. Therefore, A + XY T has the

unique hyperbolic QR factorization as in (2).

ii) When H is J2-symmetric, from (4), it is seen that

J2(A + XY T )T J1(A + XY T ) = J2H
T LJ2L

T H,

which combined with HT L = LT H gives

J2(A + XY T )T J1(A + XY T ) = (J2H
T L)2.

It is easy to check that J2H
T L is J2-symmetric. Moreover, since rank(A + XY T ) = n, we have

N(A + XY T ) = N(J2H
T L) = Null.

Therefore, A + XY T has the hyperbolic polar factorization as in (3). �

In the following, we consider the perturbation analysis for the updating problem of the

hyperbolic matrix factorizations. Some differential inequalities for the updated hyperbolic factors
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are first derived in the following, which generalize the corresponding ones in Theorem 3.1 in [10]

and can be used to obtain their first order perturbation expansions.

Theorem 2.2 Assume that A ∈ R
m×n
n and A + XY T ∈ Rm×n

n have the hyperbolic matrix

factorizations as in (1) and (2), respectively. Define

W = QT X, V = H−T Y, S(Q, W, V, X) = QT Q + WV T + V WT + V XT XV T ,

δ(Q, W, V, X) = λmin(S(Q, W, V, X)), ρ(Q, W, V, X) = λmax(S(Q, W, V, X)),

and let the eigenvalues of J2dUU−1 be real. Then

‖dU‖F ≤
√

2‖P‖3
2

(
κ(A + XY T )(‖dA‖F + ‖X‖2‖dY ‖F ) +

‖A + XY T ‖2‖V ‖2

(δ(Q, W, V, X))1/2
‖dX‖F

)
, (5)

‖dU‖F ≤
√

2(
ρ(Q, W, V, X)

δ(Q, W, V, X)
)1/2‖P‖3

2(κ(A)‖Q‖2
2(‖dA‖F + ‖X‖2‖dY ‖F )+

‖Q‖2‖A‖2‖V ‖2‖dX‖F ), (6)

‖dP‖F ≤
√

2κ(P̃ )‖P‖2

(
‖(A + XY T )†‖2(‖dA‖F + ‖X‖2‖dY ‖F )+

‖V ‖2

(δ(Q, W, V, X))1/2
‖dX‖F

)
, (7)

‖dP‖F ≤
√

2κ(P̃ )‖P‖2

(δ(Q, W, V, X))1/2
(‖A†‖2‖Q‖2(‖dA‖F + ‖X‖2‖dY ‖F ) + ‖V ‖2‖dX‖F ), (8)

where P̃ = [P, P[⊥]] satisfies

P̃T J1P̃ =

[
J2 0

0 J3

]
∈ R

m×m
m , J3 = diag(±1) ∈ R

(m−n)×(m−n)
(m−n) . (9)

Proof From (2), we know that P and U are the differentiable functions of the elements of A,

X , and Y . Thus, differentiating the equation (2), we have

dA + dXY T + XdY T = dPU + PdU. (10)

Premultiplying (10) by PT J1 and postmultiplying it by U−1, and noting PT J1P = J2 gives

PT J1dAU−1 + PT J1dXY T U−1 + PT J1XdY T U−1 = PT J1dP + J2dUU−1. (11)

Note that differentiating the equation PT J1P = J2 leads to

dPT J1P + PT J1dP = 0. (12)

Thus, considering (11) and (12), and setting Φ = PT J1dAU−1+PT J1dXY T U−1+PT J1XdY T U−1,

we have

Φ + ΦT = J2dUU−1 + (J2dUU−1)T . (13)

From the Schur’s triangulariation theorem on real matrix [13, Theorem 2.3.4] and the hypothesis

that the eigenvalues of J2dUU−1 are real, there exists an orthogonal matrix G such that

J2dUU−1 = GRGT , (14)
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where R is upper triangular. Then

‖J2dUU−1 + (J2dUU−1)T ‖F = ‖GRT GT + GRGT ‖F = ‖RT + R‖F . (15)

Applying the technique of [14], we have

‖R + RT ‖F ≥
√

2‖R‖F =
√

2‖GRGT ‖F =
√

2‖J2dUU−1‖F . (16)

Furthermore, from the definition of the Frobenius norm, it follows that

‖J2dUU−1‖F = (tr((J2dU)(U−1U−T )(J2dU)T ))1/2

≥ (tr((J2dU)λmin(U−1U−T )(J2dU)T ))1/2 = ‖U‖−1
2 ‖dU‖F ,

which together with (16), (15), and (13) leads to

‖dU‖F ≤
√

2‖U‖2‖PT J1dAU−1 + PT J1dXY T U−1 + PT J1XdY T U−1‖F

≤
√

2‖U‖2‖P‖2(‖U−1‖2(‖dA‖F + ‖X‖2‖dY ‖F ) + ‖U−T Y ‖2‖dX‖F ). (17)

In the following, we establish the upper bounds of ‖U‖2, ‖U−1‖2, and ‖U−T Y ‖2, respec-

tively.

Premultiplying (2) by J2P
T J1 and noting PT J1P = J2 and J2J2 = In leads to

J2P
T J1(A + XY T ) = U, (18)

which in turn implies

‖U‖2 ≤ ‖P‖2‖A + XY T ‖2. (19)

From the fact that rank(A + XY T ) = n, it follows that

(A + XY T )†(A + XY T ) = In,

which together with (2) leads to

U−1 = (A + XY T )†P. (20)

Then

‖U−1‖2 ≤ ‖P‖2‖(A + XY T )†‖2. (21)

In order to present the other forms of the upper bounds of ‖U‖2 and ‖U−1‖2, and derive the

upper bound of ‖U−T Y ‖2, we now prove the fact that if rank(A+XY T ) = n, then S(Q, W, V, X)

is positive definite.

Take Q[⊥] ∈ R
m×(m−n)
(m−n) such that Q̃ = [Q, Q[⊥]] satisfies

Q̃T J1Q̃ =

[
J2 0

0 J4

]
∈ R

m×m
m , J4 = diag(±1) ∈ R

(m−n)×(m−n)
(m−n) .

Premultiplying the first equation above by Q̃

[
J2 0

0 J4

]
and postmultiplying it by Q̃−1J1, and

noting [
J2 0

0 J4

][
J2 0

0 J4

]
= Im and J1J1 = Im
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gives

Q̃

[
J2 0

0 J4

]
Q̃T = J1,

from which we have

QJ2Q
T + Q[⊥]J4Q

T
[⊥] = J1.

Define Ω1 = J2Q
T J1X and Ω2 = J4Q

T
[⊥]J1X . Then, considering the above equation, it is easy

to verify that

Q̃

[
Ω1

Ω2

]
= X.

As a result,

A + XY T = Q̃

[
H

0

]
+ Q̃

[
Ω1

Ω2

]
V T H = Q̃CH, (22)

where C =

[
In

0

]
+

[
Ω1

Ω2

]
V T . From the fact that rank(A + XY T ) = n, we have that

(A + XY T )T (A + XY T ) = (Q̃CH)T (Q̃CH) = HT (Q̃C)T (Q̃C)H

is positive definite, and so is (Q̃C)T (Q̃C). Note that

Q̃C = Q̃

([
In

0

]
+

[
Ω1

Ω2

]
V T

)
= Q + QΩ1V

T + Q[⊥]Ω2V
T

= Q + QJ2Q
T J1XV T + Q[⊥]J4Q

T
[⊥]J1XV T = Q + XV T .

Then

(Q̃C)T (Q̃C) = (Q + XV T )T (Q + XV T )

= QT Q + QT XV T + V XT Q + V XT XV T = S(Q, W, V, X). (23)

Therefore, S(Q, W, V, X) is positive definite. Now, using the above fact, we give the other forms

of the upper bounds of ‖U‖2 and ‖U−1‖2, and derive the upper bound of ‖U−T Y ‖2.

From (18), (20), and (22), we have U = J2P
T J1Q̃CH and U−1 = (Q̃CH)†P . Then

‖U‖2 ≤ ‖P‖2‖Q̃C‖2‖H‖2, ‖U−1‖2 ≤ ‖P‖2‖(Q̃CH)†‖2.

Considering (23), we get

‖U‖2 ≤ (ρ(Q, W, V, X))1/2‖P‖2‖H‖2. (24)

Note that

‖(Q̃CH)†‖2 = λ1/2
max

(
(Q̃CH)†((Q̃CH)†)T

)
= λ1/2

max

(
((Q̃CH)T (Q̃CH))†

)

= λ1/2
max

(
((Q̃CH)T (Q̃CH))−1

)
= λ1/2

max

(
H−1((Q̃C)T (Q̃C))−1H−T

)

= ‖H−1((Q̃C)T (Q̃C))−1H−T ‖1/2
2 ≤ ‖H−1‖2‖((Q̃C)T (Q̃C))−1‖1/2

2 . (25)
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Thus, considering (23), we get

‖U−1‖2 ≤ ‖H−1‖2‖P‖2/(δ(Q, W, V, X))1/2. (26)

Note that U−T Y = PT ((Q̃CH)†)T Y . Then

‖U−T Y ‖2 ≤ ‖P‖2‖((Q̃CH)†)T Y ‖2. (27)

Similarly to the induction of (25), we have

‖((Q̃CH)†)T Y ‖2 = ‖V T ((Q̃C)T (Q̃C))−1V ‖1/2
2 .

Substituting the above equation into (27) and considering (23), we get

‖U−T Y ‖2 ≤ ‖P‖2‖V ‖2/(δ(Q, W, V, X))1/2. (28)

In addition, from A = QH , it follows that

‖H‖2 = ‖J1Q
T J1A‖2 ≤ ‖Q‖2‖A‖2, ‖H−1‖2 = ‖A†Q‖2 ≤ ‖A†‖2‖Q‖2. (29)

Thus, combining (17) with (19), (21), and (28), we get the inequality (5), and combining (17)

with (24), (26), (28), and (29), we get the inequality (6).

Next, we prove the inequalities (7) and (8). From (10), we have

dP = (dA + dXY T + XdY T )U−1 − PdUU−1. (30)

Take P[⊥] ∈ R
m×(m−n)
(m−n) such that P̃ =

[
P, P[⊥]

]
satisfies (9). Premultiplying (30) by PT J1 and

noting PT J1P = J2 and (14) gives

PT J1dP = PT J1(dA + dXY T + XdY T )U−1 − GRGT . (31)

Premultiplying (31) by GT and postmultiplying it by G gives

GT PT J1dPG = GT PT J1(dA + dXY T + XdY T )U−1G − R. (32)

Meanwhile, from (12), it follows that

GT PT J1dPG + GT dPT J1PG = 0.

That is, GT PT J1dPG is skew-symmetric. While, for any skew-symmetric matrix B, from the

definition of the Frobenius norm, we have

‖B‖2
F = 2‖BL‖2

F ,

where BL denotes the lower triangular part of B. Applying the above fact to GT PT J1dPG and

noting the structure of R in (32) gives

‖GT PT J1dPG‖2
F = 2‖(GT PT J1dPG)L‖2

F = 2‖[GT PT J1(dA + dXY T + XdY T )U−1G]L‖2
F .

Since G is orthogonal and ‖BL‖2
F ≤ ‖B‖2

F for any square matrix B, we have

‖PT J1dP‖2
F ≤ 2‖PT J1(dA + dXY T + XdY T )U−1‖2

F . (33)

On the other hand, premultiplying (30) by PT
[⊥]J1 and noting PT

[⊥]J1P = 0 gives

PT
[⊥]J1dP = PT

[⊥]J1(dA + dXY T + XdY T )U−1.
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Then

‖PT
[⊥]J1dP‖2

F = ‖PT
[⊥]J1(dA + dXY T + XdY T )U−1‖2

F . (34)

Note that

‖P̃T J1dP‖2
F = ‖PT J1dP‖2

F + ‖PT
[⊥]J1dP‖2

F . (35)

Thus, substituting (33) and (34) into (35) gives

‖P̃T J1dP‖2
F ≤ 2‖PT J1(dA + dXY T + XdY T )U−1‖2

F + ‖PT
[⊥]J1(dA + dXY T + XdY T )U−1‖2

F

= ‖PT J1(dA + dXY T + XdY T )U−1‖2
F + ‖P̃T J1(dA + dXY T + XdY T )U−1‖2

F

≤ 2‖P̃T J1(dA + dXY T + XdY T )U−1‖2
F .

Since dP = J1P̃
−T P̃T J1dP , we have

‖dP‖F ≤ ‖P̃−1‖F‖P̃T J1dP‖F

≤
√

2κ(P̃ )
(
‖U−1‖2(‖dA‖F + ‖X‖2‖dY ‖F ) + ‖U−T Y ‖2‖dX‖F

)
,

which together with (21) and (28) yields the inequality (7), and together with (26), (28), and

(29) yields the inequality (8). �

Remark 2.1 If the hyperbolic matrix factorization in Theorem 2.2 is the hyperbolic QR fac-

torization, the hypothesis that the eigenvalues of J2dUU−1 are real is unnecessary. The reason

is that, in this case, J2dUU−1 itself is real upper triangular. Applying the technique from [14],

we have

‖J2dUU−1 + (J2dUU−1)T ‖F ≥
√

2‖J2dUU−1‖F ,

which is the combination of (15) and (16). Hence, the Schur’s triangulariation theorem is needless

here, and nor is the hypothesis. Whereas, for hyperbolic polar factorization, the hypothesis is

necessary. If not, the relation (14) cannot be derived, and nor can (16). In addition, if J2dUU−1

is symmetric, of course its eigenvalues are real, we can obtain two smaller bounds. That is, the

coefficient
√

2 in the bounds (5), (6), (7), and (8) will be replaced with 1.

Using Theorem 2.2, we can state the first order perturbation expansions for the updated

hyperbolic factors, which extend the corresponding results in Theorem 3.2 in [10].

Theorem 2.3 Assume that the conditions in Theorem 2.2 are satisfied. Moreover, let ε0 > 0

be small enough so that the hyperbolic matrix factorizations

A + εE = (Q + R(ε))(H + S(ε)) (36)

and

A + εE + (X + εF )(Y + εG)T = (P + Z(ε))(U + T (ε)) (37)

always exist for ε ∈ (−ε0, ε0). Then

‖T (ε)‖F ≤
√

2‖P‖3
2

(
κ(A + XY T )(‖E‖F + ‖X‖2‖G‖F )+

‖A + XY T ‖2‖V ‖2

(δ(Q, W, V, X))1/2
‖F‖F

)
|ε| + O(ε2), (38)
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‖T (ε)‖F ≤
√

2(
ρ(Q, W, V, X)

δ(Q, W, V, X)
)1/2‖P‖3

2(κ(A)‖Q‖2
2(‖E‖F + ‖X‖2‖G‖F )+

‖Q‖2‖A‖2‖V ‖2‖F‖F )|ε| + O(ε2), (39)

‖Z(ε)‖F ≤
√

2κ(P̃ )‖P‖2

(
‖(A + XY T )†‖2(‖E‖F + ‖X‖2‖G‖F )+

‖V ‖2

(δ(Q, W, V, X))1/2
‖F‖F

)
|ε| + O(ε2), (40)

‖Z(ε)‖F ≤
√

2κ(P̃ )‖P‖2

(δ(Q, W, V, X))1/2

(
‖A†‖2‖Q‖2(‖E‖F + ‖X‖2‖G‖F )+

‖V ‖2‖F‖F

)
|ε| + O(ε2), (41)

where P̃ =
[
P, P[⊥]

]
satisfies (9).

Proof For ε ∈ (−ε0, ε0), let

A(ε) = A + εE, Q(ε) = Q + R(ε), H(ε) = H + S(ε),

P (ε) = P + Z(ε), U(ε) = U + T (ε), X(ε) = X + εF, Y (ε) = Y + εG,

W (ε) = QT (ε)X(ε), V (ε) = H−T (ε)Y (ε), P̃ (ε) = [P (ε), P[⊥](ε)]. (42)

Then when ε → 0, the following facts hold

κ(A(ε)) = κ(A) + O(ε), κ(A(ε) + X(ε)Y T (ε)) = κ(A + XY T ) + O(ε),

‖A(ε) + X(ε)Y T (ε)‖2 = ‖A + XY T ‖2 + O(ε),

‖(A(ε) + X(ε)Y T (ε))†‖2 = ‖(A + XY T )†‖2 + O(ε),

‖A†(ε)‖2 = ‖A†‖2 + O(ε), ‖Q(ε)‖2 = ‖Q‖2 + O(ε),

‖P (ε)‖2 = ‖P‖2 + O(ε), ‖P̃ (ε)‖2 = ‖P̃‖2 + O(ε), ‖V (ε)‖2 = ‖V ‖2 + O(ε),

‖δ(Q(ε), W (ε), V (ε), X(ε))‖2 = ‖δ(Q, W, V, X)‖2 + O(ε),

‖ρ(Q(ε), W (ε), V (ε), X(ε))‖2 = ‖ρ(Q, W, V, X)‖2 + O(ε). (43)

Thus, from (42), (43), and the inequality (5), we have

‖T (ε)‖F =‖U(ε) − U(0)‖F = ‖
∫ ε

0

dU(τ)‖F ≤
∫ |ε|

0

‖dU(τ)‖F

≤
√

2

∫ |ε|

0

‖P‖3
2

(
κ(A(τ) + X(τ)Y T (τ))(‖E‖F + ‖X(τ)‖2‖G‖F )+

‖A(τ) + X(τ)Y T (τ)‖2‖V (τ)‖2

(δ(Q(τ), W (τ), V (τ), X(τ)))1/2
‖F‖F

)
dτ

≤
√

2‖P‖3
2

(
κ(A + XY T )(‖E‖F + ‖X‖2‖G‖F )+

‖A + XY T ‖2‖V ‖2

(δ(Q, W, V, X))1/2
‖F‖F

)
|ε| + O(ε2).

Using the same method, combining (42) and (43) with the inequalities (6), (7), and (8), we can

obtain the inequalities (39), (40), and (41), respectively. �

Remark 2.2 When the signature matrices such as J1, J2, J3, and J4 reduce to the corresponding
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identity matrices, the results in Theorems 2.2 and 2.3 will reduce to the corresponding ones for

the updating problem of the classical matrix factorizations [10].
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