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1. Introduction

Module-relative-Hochschild (co)homology was introduced in [1] by Ardizzoni, Brzeziński and

Menini when they studied the formal smoothness. It plays an important role in non-commutative

algebraic geometry and provides a natural characterization of the separable bimodules and for-

mally smooth bimodules. One can view the separable bimodules as (non-commutative, relative)

“bundles of points”, that is, the objects with relative-Hochschild cohomology dimension zero;

and the formally smooth bimodules can be understood as (non-commutative, relative) “bundles

of curves” or “line bundles”, that is, the objects with relative-Hochschild cohomology dimension

at most one.

The notions of formal smoothness have attracted much attention in recent literature [1–

11]. A convenient description and conceptual interpretation of formal smoothness is provided

by E-relative derived functors [6, 12, 13]. Ardizzoni, Menini and Stefan have introduced in [3]

the Hochschild cohomology in monoidal abelian categories in this way, instead of generalizing

ordinary Hochschild’s construction [14] or by using the (co)simplicial approach explained in [15].

This general algebraic approach to formal smoothness in monoidal abelian categories, including

the cohomological aspects, was also proposed in [2]. These gave rise to the introduction of

module-relative-Hochschild cohomology [1].

Let A and B be k-algebras with k a commutative ring. Given a bimodule BMA such that

BM is a generator in BM, we consider the following projective class of epimorphisms

EM,B := {f ∈ BMB | HomB(M, f) is split epimorphic in AMB}.
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Here BMB and AMB denote categories of B-B-bimodules and A-B-bimodules, respectively.

Based on the theory of EM,B-relative derived functor, the nth BMA-Hochschild cohomology and

homology of B over A are defined by

Hn
EM,B

(B) := Extn
EM,B

(B, B)

and

HEM,B

n (B) := TorEM,B

n (B, B),

respectively. In particular, when k is a field, taking BMA=BBk, we get the ordinary Hochschild

(co)homology of B; moreover, if there is an algebra homomorphism µ : A → B, by taking

BMA=BBA, we get the relative Hochschild (co)homology of B with respect to µ. Thus the

concept of module-relative-Hochschild (co)homology is in fact a generalization of the notion of

ordinary (relative) Hochschild (co)homology.

In this paper, we will consider the module-relative-Hochschild homology and cohomology

under the ground ring extensions. Let k be a commutative ring. Consider the ground ring

extension from k to a commutative k-algebra R. Each k-algebra B yields an R-algebra BR =

R ⊗k B. We will show that the module-relative-Hochschild (co)homology of BR is entirely

determined by that of B if R as a k-module is finitely generated and projective. Moreover, we

show that BR is formally smooth if and only if B is formally smooth, provided k is a field.

2. Module-relative-Hochschild (co)homology

Throughout this paper, for an algebra (a ring) we mean a unital associative algebra (a ring).

Let BM,MA and BMA denote categories of (unital) left B-modules, right A-modules and B-

A-bimodules, respectively. The notation BMA means that M is a B-A-bimodule.

Let A and B be k-algebras with k a commutative ring. Let Ae = A ⊗k Aop denote the

enveloping algebra of A. Given a bimodule BMA, we consider the following adjunction:

LB := M ⊗A − : AMB → BMB,

RB := HomB(M,−) : BMB → AMB.

Let

EM,B := {f ∈ BMB | HomB(M, f) is split epimorphic in AMB}.

EM,B is always a projective class [2, Theorem 1.4], and if M is a generator in BM, then EM,B

is a projective class of epimorphisms [1, Proposition 3.1]. Then every object in BMB has an

EM,B-projective resolution, which is unique up to a homotopy. The reader is referred to [6] for

further information on relatively projective object and projective class of epimorphisms. Note

that BPB is EM,B-projective if and only if HomBe(P,−) is EM,B-exact. Another condition is

that BPB is EM,B-projective if and only if there is a split epimorphism π : LB(X) → P for a

suitable X ∈ AMB. So it is easy to see that all projective B-B-bimodules and B-B-bimodules

of the form LB(X), X ∈ AMB, are EM,B-projective.
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Recall first from [1] some definitions. Let M be a B-A-bimodule which is a generator as a

left B-module. The nth BMA-Hochschild cohomology of B over A with coefficients in a B-B-

bimodule Y is defined to be

Hn
EM,B

(B, Y ) := Extn
EM,B

(B, Y ).

In particular, if Y = B, then Hn
EM,B

(B) := Hn
EM,B

(B, B) is called the nth BMA-Hochschild

cohomology of B over A. The number min{n ∈ N | Hn+1
EM,B

(B, Y ) = 0 for any Y ∈ BMB} is called

the BMA-Hochschild cohomology dimension of B (if it exists), and denoted by hch.dimM (B).

If such an n does not exist, we will say that BMA-Hochschild cohomology dimension of B is

infinite.

Using relative-Tor-functor, we propose the following:

Definition 2.1 ([16]) Consider a B-A-bimodule M such that BM is a generator in BM. The

nth BMA-Hochschild homology of B over A with coefficients in BYB is defined by

HEM,B

n (B, Y ) := TorEM,B

n (B, Y ).

In particular, if Y = B, then HEM,B

n (B) := HEM,B

n (B, B) is called the nth BMA-Hochschild

homology of B over A. The number min{n ∈ N | H
EM,B

n+1 (B, Y ) = 0 for any Y ∈ BMB} is called

the BMA-Hochschild homology dimension of B (if it exists), and denoted by hh.dimM (B). If

such an n does not exist, we will say that BMA-Hochschild homology dimension of B is infinite.

Similarly to the non-relative case, BMA-Hochschild (co)homology can be equivalently de-

scribed as the (co)homology of a complex associated with the standard resolution. Let εB :

LBRB → Id
BMB

be the counit of the adjunction (LB , RB) and M a B-A-bimodule which is a

generator in BM. Then, for every B-B-bimodule X , the associated augmented chain complex

(PX , d∗) of BXB:

· · · −→ (LBRB)2(X)
d1−→ LBRB(X)

d0−→ (LBRB)0(X) := X −→ 0

where dn =
∑n

i=0(−1)i(LBRB)i(εB((LBRB)n−i(B))), is an EM,B-projective resolution of BXB,

called the standard EM,B-projective resolution of BXB.

3. Ground ring extensions

This section is devoted to the module-relative-Hochschild homology and cohomology under

the ground ring extensions.

Let k be a commutative ring. We always write ⊗ for ⊗k. Consider the ground ring extension

from k to a commutative k-algebra R. Each k-algebra B yields an R-algebra BR = R ⊗ B;

there are ring homomorphisms ik : k → R and iB : B → BR given by ik(k1) = k11R and

iB(b) = 1R ⊗ b, so that (ik, iB) : (k, B) → (R, BR) is a change of algebras. Each BR-module

or bimodule pulls back along iB to be a B-module or bimodule. Each B-module M determines

a BR-module MR = R ⊗ M and a homomorphism iM : M → MR of B-modules given by

iM (m) = 1R ⊗ m. Each B-module homomorphism µ : M → N determines a BR-module

homomorphism µR : MR → NR by µR(r ⊗ m) = r ⊗ µm, so that µRiM = iNµR. Thus
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T R(M) = MR, T R(µ) = µR is a covariant functor on B-modules to BR-modules. This functor

has some good properties. To see it, we need the following lemma.

Lemma 3.1 Let R be a commutative k-algebra. Let A and B be two k-algebras. If R as a

k-module is finitely generated and projective, then, for any two B-modules M and N , there is

an isomorphism

R ⊗ HomB(M, N) ≃ HomR⊗B(R ⊗ M, R ⊗ N)

of k-modules.

Proof Let ϕ : R⊗ HomB(M, N) −→ HomR⊗B(R ⊗M, R ⊗N) be given by r ⊗ g 7→ gr, where

gr(r
′

⊗ m) = rr
′

⊗ gr(m). It is clear that gr is an R ⊗ B-map, and it is an isomorphism when

M = B. There is an exact sequence of left B-modules
∐

J

B −→
∐

I

B −→ M −→ 0.

Applying the functors R ⊗ − and HomB(M,−) to it, respectively, we get the following two

exact sequences

R ⊗
∐

J

B → R ⊗
∐

I

B → R ⊗ M → 0

and

0 → HomB(M, N) → HomB(
∐

I

B, N) → HomB(
∐

J

B, N).

Note that we have

HomR⊗B(R ⊗
∐

I

B, R ⊗ N) ≃ HomR⊗B(
∐

I

(R ⊗ B), R ⊗ N)

≃
∏

I

HomR⊗B(R ⊗ B, R ⊗ N)

≃
∏

I

(R ⊗ N)

and

R ⊗ HomB(
∐

I

B, N) ≃ R ⊗
∏

I

HomB(B, N) ≃ R ⊗
∏

I

N.

By [12, Theorem 3.2.22], R⊗
∏

I B ≃
∏

I(R⊗B) for any index set I since R is a finitely generated

projective k-module. Hence there is a commutative diagram with exact rows:

0 // HomR⊗B(R ⊗ M, R ⊗ N) //

ϕ

��

∏
I(R ⊗ N) //

≃

��

∏
J (R ⊗ N)

≃

��

0 // R ⊗ HomB(M, N) // R ⊗
∏

I N // R ⊗
∏

J N.

Note that the second two vertical maps are isomorphisms, so is the first. Then the result

follows. �

Let A and B be two k-algebras. Then we have two R-algebras AR and BR. By Lemma 3.1,

we get the following proposition.
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Proposition 3.2 Let R be a commutative k-algebra. Let A and B be two k-algebras.

(1) If R as a k-module is finitely generated and projective, then, for any BMA and BN , we

have

HomBR((MR)AR , NR) ≃ HomB(MA, N)R

as left AR-modules.

(2) For BMA, AN , we have

BRMR ⊗AR NR ≃ (M ⊗A N)R

as left BR-modules.

Given a bimodule BMA, we get a bimodule BR(MR)AR . Consider the following adjunctions

LB := M ⊗A − : AMB → BMB,

RB := HomB(M,−) : BMB → AMB

and

LBR := MR ⊗AR − : ARMBR → BRMBR ,

RBR := HomBR(MR,−) : BRMBR → ARMBR .

Let

EM,B := {f ∈ BMB | HomB(M, f) is split epimorphic in AMB}

and

EMR,BR := {f ∈ BRMBR | HomBR(MR, f) is split epimorphic in ARMBR}.

Lemma 3.3 If BMA is a generator in BM, then BR(MR)AR is a generator in BRM.

Proof Since BMA is a generator in BM, B is a direct summand of a sum of copies of BM as

a left B-module. Then BR = R⊗ B is a direct summand of a sum of copies of MR = R⊗M as

a left BR-module. The result follows. �

Suppose that BMA is a generator in BM. Then BR(MR)AR is a generator in BRM. Thus

both EM,B and EMR,BR are projective classes of epimorphisms. The module-relative-Hochschild

(co)homology of an extended algebra BR over AR, with coefficients in any BR-bimodule Y R

where Y is a B-B-bimodule, is entirely determined by that of B over A with coefficients in BYB.

Theorem 3.4 Let R be a commutative k-algebra such that R is finitely generated and projective

over k. Let A and B be two k-algebras. Consider a bimodule BMA such that BM is a generator

in BM. Then, for all B-B-bimodules Y and n ≥ 0,

Hn
E

MR,BR
(BR, Y R) ≃ R ⊗ Hn

EM,B
(B, Y ), H

E
MR,BR

n (BR, Y R) ≃ R ⊗ HEM,B

n (B, Y ).

Moreover, when k is a field,

hch.dimMR(BR) = hch.dimM (B), hh.dimMR(BR) = hh.dimM (B).
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Proof Let PB be the standard EM,B-projective resolution of B in BMB. Let PBR be the

standard EMR,BR-projective resolution of BR in BRMBR . Note that

(LBRRBR)(XR) = BR(MR) ⊗AR HomBR((MR)AR , XR)

≃ BR(MR) ⊗AR HomB(MA, X)R

≃ (M ⊗A HomB(MA, X))R

= ((LBRB)(X))R

for all B-B-bimodules X . In particular, we have

(LBRRBR)n(BR) ≃ ((LBRB)n(B))R.

Firstly, we apply the functor −⊗(BR)e Y to PBR . Note that

(BR)e = BR ⊗R (BR)op ≃ (Be)R.

We have

(LBRRBR)n(BR) ⊗(BR)e Y R ≃ ((LBRB)n(B))R ⊗(BR)e Y R

≃ ((LBRB)n(B))R ⊗(Be)R Y R

≃ R ⊗ ((LBRB)n(B) ⊗Be Y )

where the third isomorphism follows from Lemma 3.2(2). Since R is projective over k, R ⊗ −

preserves monomorphisms and kernels. Thus one can easily get

H
E

MR,BR

n (BR, Y R) ≃ R ⊗ HEM,B

n (B, Y )

for all n ≥ 0.

Secondly, applying the functor Hom(BR)e(−, Y R) to PBR , we have

Hom(BR)e((LBR RBR)n(BR), Y R) ≃ Hom(Be)R(((LBRB)n(B))R, Y R)

≃ R ⊗ HomBe((LBRB)n(B), Y )

where the second isomorphism follows from Lemma 3.2(1). By the same arguments as above, we

conclude that

Hn
E

MR,BR
(BR, Y R) ≃ R ⊗ Hn

EM,B
(B, Y )

for all n ≥ 0.

It remains to prove the last statement. Suppose that k is a field. Since R is finitely generated

over k, one can easily check that

Hn
E

MR,BR
(BR, Y R) ≃ R ⊗ Hn

EM,B
(B, Y ) = 0 ⇐⇒ Hn

EM,B
(B, Y ) = 0,

H
E

MR,BR

n (BR, Y R) ≃ R ⊗ HEM,B

n (B, Y ) = 0 ⇐⇒ HEM,B

n (B, Y ) = 0.

This completes the proof. �

Corollary 3.5 Let R be a commutative k-algebra such that R is finitely generated and projective
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over k. Let A and B be two arbitrary k-algebras. Consider a bimodule BMA such that BM is a

generator in BM. Then for all n ≥ 0, we have

Hn
E

MR,BR
(BR) ≃ R ⊗ Hn

EM,B
(B)

and

H
E

MR,BR

n (BR) ≃ R ⊗ HEM,B

n (B).

Recall in [1] that B is BMA-separable if and only if

hch.dimM (B) = 0;

and that B is M -smooth if and only if

hch.dimM (B) 6 1.

By Theorem 3.4, we directly obtain the following corollary.

Corollary 3.6 When k is a field, BR is MR-smooth (resp. MR-separable) if and only if B is

M -smooth (resp. M -separable).
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