Module-Relative-Hochschild (Co)homology under Ground Ring Extensions

Yuan CHEN ${ }^{1,2}$
1. School of Mathematics and Computer Science, Hubei University, Hubei 430062, P. R. China;
2. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P. R. China

Abstract

In this paper, we consider the module-relative-Hochschild homology and cohomology under the ground ring extensions.

Keywords ground ring extension; module-relative-Hochschild (co)homology; formal smoothness.

MR(2010) Subject Classification 16E10; 16E40; 18G10; 18G25

1. Introduction

Module-relative-Hochschild (co)homology was introduced in [1] by Ardizzoni, Brzeziński and Menini when they studied the formal smoothness. It plays an important role in non-commutative algebraic geometry and provides a natural characterization of the separable bimodules and formally smooth bimodules. One can view the separable bimodules as (non-commutative, relative) "bundles of points", that is, the objects with relative-Hochschild cohomology dimension zero; and the formally smooth bimodules can be understood as (non-commutative, relative) "bundles of curves" or "line bundles", that is, the objects with relative-Hochschild cohomology dimension at most one.

The notions of formal smoothness have attracted much attention in recent literature [111]. A convenient description and conceptual interpretation of formal smoothness is provided by \mathcal{E}-relative derived functors $[6,12,13]$. Ardizzoni, Menini and Stefan have introduced in [3] the Hochschild cohomology in monoidal abelian categories in this way, instead of generalizing ordinary Hochschild's construction [14] or by using the (co)simplicial approach explained in [15]. This general algebraic approach to formal smoothness in monoidal abelian categories, including the cohomological aspects, was also proposed in [2]. These gave rise to the introduction of module-relative-Hochschild cohomology [1].

Let A and B be k-algebras with k a commutative ring. Given a bimodule ${ }_{B} M_{A}$ such that ${ }_{B} M$ is a generator in ${ }_{B} \mathcal{M}$, we consider the following projective class of epimorphisms

$$
\mathcal{E}_{M, B}:=\left\{f \in{ }_{B} \mathcal{M}_{B} \mid \operatorname{Hom}_{B}(M, f) \text { is split epimorphic in }{ }_{A} \mathcal{M}_{B}\right\} .
$$

Received December 7, 2011; Accepted August 8, 2012
Supported by the National Natural Science Foundation of China (Grant No. 11126110).
E-mail address: cy2010@hubu.edu.cn

Here ${ }_{B} \mathcal{M}_{B}$ and ${ }_{A} \mathcal{M}_{B}$ denote categories of B - B-bimodules and A - B-bimodules, respectively. Based on the theory of $\mathcal{E}_{M, B}$-relative derived functor, the nth ${ }_{B} M_{A}$-Hochschild cohomology and homology of B over A are defined by

$$
\mathrm{H}_{\mathcal{E}_{M, B}}^{n}(B):=\operatorname{Ext}_{\mathcal{E}_{M, B}}^{n}(B, B)
$$

and

$$
\mathrm{H}_{n}^{\mathcal{E}_{M, B}}(B):=\operatorname{Tor}_{n}^{\mathcal{E}_{M, B}}(B, B)
$$

respectively. In particular, when k is a field, taking ${ }_{B} M_{A}={ }_{B} B_{k}$, we get the ordinary Hochschild (co)homology of B; moreover, if there is an algebra homomorphism $\mu: A \rightarrow B$, by taking ${ }_{B} M_{A}={ }_{B} B_{A}$, we get the relative Hochschild (co)homology of B with respect to μ. Thus the concept of module-relative-Hochschild (co)homology is in fact a generalization of the notion of ordinary (relative) Hochschild (co)homology.

In this paper, we will consider the module-relative-Hochschild homology and cohomology under the ground ring extensions. Let k be a commutative ring. Consider the ground ring extension from k to a commutative k-algebra R. Each k-algebra B yields an R-algebra $B^{R}=$ $R \otimes_{k} B$. We will show that the module-relative-Hochschild (co)homology of B^{R} is entirely determined by that of B if R as a k-module is finitely generated and projective. Moreover, we show that B^{R} is formally smooth if and only if B is formally smooth, provided k is a field.

2. Module-relative-Hochschild (co)homology

Throughout this paper, for an algebra (a ring) we mean a unital associative algebra (a ring). Let ${ }_{B} \mathcal{M}, \mathcal{M}_{A}$ and ${ }_{B} \mathcal{M}_{A}$ denote categories of (unital) left B-modules, right A-modules and B -A-bimodules, respectively. The notation ${ }_{B} M_{A}$ means that M is a B - A-bimodule.

Let A and B be k-algebras with k a commutative ring. Let $A^{e}=A \otimes_{k} A^{o p}$ denote the enveloping algebra of A. Given a bimodule ${ }_{B} M_{A}$, we consider the following adjunction:

$$
\begin{aligned}
\mathbb{L}_{B} & :=M \otimes_{A}-:{ }_{A} \mathcal{M}_{B} \rightarrow{ }_{B} \mathcal{M}_{B} \\
\mathbb{R}_{B} & :=\operatorname{Hom}_{B}(M,-):{ }_{B} \mathcal{M}_{B} \rightarrow{ }_{A} \mathcal{M}_{B}
\end{aligned}
$$

Let

$$
\mathcal{E}_{M, B}:=\left\{f \in{ }_{B} \mathcal{M}_{B} \mid \operatorname{Hom}_{B}(M, f) \text { is split epimorphic in }{ }_{A} \mathcal{M}_{B}\right\} .
$$

$\mathcal{E}_{M, B}$ is always a projective class [2, Theorem 1.4], and if M is a generator in ${ }_{B} \mathcal{M}$, then $\mathcal{E}_{M, B}$ is a projective class of epimorphisms [1, Proposition 3.1]. Then every object in ${ }_{B} \mathcal{M}_{B}$ has an $\mathcal{E}_{M, B}$-projective resolution, which is unique up to a homotopy. The reader is referred to [6] for further information on relatively projective object and projective class of epimorphisms. Note that ${ }_{B} P_{B}$ is $\mathcal{E}_{M, B}$-projective if and only if $\operatorname{Hom}_{B^{e}}(P,-)$ is $\mathcal{E}_{M, B^{-}}$-exact. Another condition is that ${ }_{B} P_{B}$ is $\mathcal{E}_{M, B}$-projective if and only if there is a split epimorphism $\pi: \mathbb{L}_{B}(X) \rightarrow P$ for a suitable $X \in{ }_{A} \mathcal{M}_{B}$. So it is easy to see that all projective B - B-bimodules and B - B-bimodules of the form $\mathbb{L}_{B}(X), X \in{ }_{A} \mathcal{M}_{B}$, are $\mathcal{E}_{M, B}$-projective.

Recall first from [1] some definitions. Let M be a B - A-bimodule which is a generator as a left B-module. The nth ${ }_{B} M_{A}$-Hochschild cohomology of B over A with coefficients in a B - B bimodule Y is defined to be

$$
\mathrm{H}_{\mathcal{E}_{M, B}}^{n}(B, Y):=\operatorname{Ext}_{\mathcal{E}_{M, B}}^{n}(B, Y) .
$$

In particular, if $Y=B$, then $\mathrm{H}_{\mathcal{E}_{M, B}}^{n}(B):=\mathrm{H}_{\mathcal{E}_{M, B}}^{n}(B, B)$ is called the nth ${ }_{B} M_{A}$-Hochschild cohomology of B over A. The number $\min \left\{n \in \mathbb{N} \mid \mathrm{H}_{\mathcal{E}_{M, B}}^{n+1}(B, Y)=0\right.$ for any $\left.Y \in{ }_{B} \mathcal{M}_{B}\right\}$ is called the ${ }_{B} M_{A}$-Hochschild cohomology dimension of B (if it exists), and denoted by hch. $\operatorname{dim}_{M}(B)$. If such an n does not exist, we will say that ${ }_{B} M_{A}$-Hochschild cohomology dimension of B is infinite.

Using relative-Tor-functor, we propose the following:
Definition 2.1 ([16]) Consider a B - A-bimodule M such that ${ }_{B} M$ is a generator in ${ }_{B} \mathcal{M}$. The nth ${ }_{B} M_{A}$-Hochschild homology of B over A with coefficients in ${ }_{B} Y_{B}$ is defined by

$$
H_{n}^{\mathcal{E}_{M, B}}(B, Y):=\operatorname{Tor}_{n}^{\mathcal{E}_{M, B}}(B, Y) .
$$

In particular, if $Y=B$, then $H_{n}^{\mathcal{E}_{M, B}}(B):=H_{n}^{\mathcal{E}_{M, B}}(B, B)$ is called the nth ${ }_{B} M_{A}$-Hochschild homology of B over A. The number $\min \left\{n \in \mathbb{N} \mid H_{n+1}^{\mathcal{E}_{M, B}}(B, Y)=0\right.$ for any $\left.Y \in{ }_{B} \mathcal{M}_{B}\right\}$ is called the ${ }_{B} M_{A}$-Hochschild homology dimension of B (if it exists), and denoted by hh. $\operatorname{dim}_{M}(B)$. If such an n does not exist, we will say that ${ }_{B} M_{A}$-Hochschild homology dimension of B is infinite.

Similarly to the non-relative case, ${ }_{B} M_{A}$-Hochschild (co)homology can be equivalently described as the (co)homology of a complex associated with the standard resolution. Let ε_{B} : $\mathbb{L}_{B} \mathbb{R}_{B} \rightarrow \operatorname{Id}_{B} \mathcal{M}_{B}$ be the counit of the adjunction $\left(\mathbb{L}_{B}, \mathbb{R}_{B}\right)$ and M a B - A-bimodule which is a generator in ${ }_{B} \mathcal{M}$. Then, for every B - B-bimodule X, the associated augmented chain complex $\left(\mathbb{P}_{X}, d_{*}\right)$ of ${ }_{B} X_{B}:$

$$
\cdots \longrightarrow\left(\mathbb{L}_{B} \mathbb{R}_{B}\right)^{2}(X) \xrightarrow{d_{1}} \mathbb{L}_{B} \mathbb{R}_{B}(X) \xrightarrow{d_{0}}\left(\mathbb{L}_{B} \mathbb{R}_{B}\right)^{0}(X):=X \longrightarrow 0
$$

where $d_{n}=\sum_{i=0}^{n}(-1)^{i}\left(\mathbb{L}_{B} \mathbb{R}_{B}\right)^{i}\left(\varepsilon_{B}\left(\left(\mathbb{L}_{B} \mathbb{R}_{B}\right)^{n-i}(B)\right)\right)$, is an $\mathcal{E}_{M, B}$-projective resolution of ${ }_{B} X_{B}$, called the standard $\mathcal{E}_{M, B}$-projective resolution of ${ }_{B} X_{B}$.

3. Ground ring extensions

This section is devoted to the module-relative-Hochschild homology and cohomology under the ground ring extensions.

Let k be a commutative ring. We always write \otimes for \otimes_{k}. Consider the ground ring extension from k to a commutative k-algebra R. Each k-algebra B yields an R-algebra $B^{R}=R \otimes B$; there are ring homomorphisms $i_{k}: k \rightarrow R$ and $i_{B}: B \rightarrow B^{R}$ given by $i_{k}\left(k_{1}\right)=k_{1} 1_{R}$ and $i_{B}(b)=1_{R} \otimes b$, so that $\left(i_{k}, i_{B}\right):(k, B) \rightarrow\left(R, B^{R}\right)$ is a change of algebras. Each B^{R}-module or bimodule pulls back along i_{B} to be a B-module or bimodule. Each B-module M determines a B^{R}-module $M^{R}=R \otimes M$ and a homomorphism $i_{M}: M \rightarrow M^{R}$ of B-modules given by $i_{M}(m)=1_{R} \otimes m$. Each B-module homomorphism $\mu: M \rightarrow N$ determines a B^{R}-module homomorphism $\mu^{R}: M^{R} \rightarrow N^{R}$ by $\mu^{R}(r \otimes m)=r \otimes \mu m$, so that $\mu^{R} i_{M}=i_{N} \mu^{R}$. Thus
$T^{R}(M)=M^{R}, T^{R}(\mu)=\mu^{R}$ is a covariant functor on B-modules to B^{R}-modules. This functor has some good properties. To see it, we need the following lemma.

Lemma 3.1 Let R be a commutative k-algebra. Let A and B be two k-algebras. If R as a k-module is finitely generated and projective, then, for any two B-modules M and N, there is an isomorphism

$$
R \otimes \operatorname{Hom}_{B}(M, N) \simeq \operatorname{Hom}_{R \otimes B}(R \otimes M, R \otimes N)
$$

of k-modules.
Proof Let $\varphi: R \otimes \operatorname{Hom}_{B}(M, N) \longrightarrow \operatorname{Hom}_{R \otimes B}(R \otimes M, R \otimes N)$ be given by $r \otimes g \mapsto g_{r}$, where $g_{r}\left(r^{\prime} \otimes m\right)=r r^{\prime} \otimes g_{r}(m)$. It is clear that g_{r} is an $R \otimes B$-map, and it is an isomorphism when $M=B$. There is an exact sequence of left B-modules

$$
\coprod_{J} B \longrightarrow \coprod_{I} B \longrightarrow M \longrightarrow 0
$$

Applying the functors $R \otimes-$ and $\operatorname{Hom}_{B}(M,-)$ to it, respectively, we get the following two exact sequences

$$
R \otimes \coprod_{J} B \rightarrow R \otimes \coprod_{I} B \rightarrow R \otimes M \rightarrow 0
$$

and

$$
0 \rightarrow \operatorname{Hom}_{B}(M, N) \rightarrow \operatorname{Hom}_{B}\left(\coprod_{I} B, N\right) \rightarrow \operatorname{Hom}_{B}\left(\coprod_{J} B, N\right)
$$

Note that we have

$$
\begin{aligned}
\operatorname{Hom}_{R \otimes B}\left(R \otimes \coprod_{I} B, R \otimes N\right) & \simeq \operatorname{Hom}_{R \otimes B}\left(\coprod_{I}(R \otimes B), R \otimes N\right) \\
& \simeq \prod_{I} \operatorname{Hom}_{R \otimes B}(R \otimes B, R \otimes N) \\
& \simeq \prod_{I}(R \otimes N)
\end{aligned}
$$

and

$$
R \otimes \operatorname{Hom}_{B}\left(\coprod_{I} B, N\right) \simeq R \otimes \prod_{I} \operatorname{Hom}_{B}(B, N) \simeq R \otimes \prod_{I} N
$$

By [12, Theorem 3.2.22], $R \otimes \prod_{I} B \simeq \prod_{I}(R \otimes B)$ for any index set I since R is a finitely generated projective k-module. Hence there is a commutative diagram with exact rows:

Note that the second two vertical maps are isomorphisms, so is the first. Then the result follows.

Let A and B be two k-algebras. Then we have two R-algebras A^{R} and B^{R}. By Lemma 3.1, we get the following proposition.

Proposition 3.2 Let R be a commutative k-algebra. Let A and B be two k-algebras.
(1) If R as a k-module is finitely generated and projective, then, for any ${ }_{B} M_{A}$ and ${ }_{B} N$, we have

$$
\operatorname{Hom}_{B^{R}}\left(\left(M^{R}\right)_{A^{R}}, N^{R}\right) \simeq \operatorname{Hom}_{B}\left(M_{A}, N\right)^{R}
$$

as left A^{R}-modules.
(2) For ${ }_{B} M_{A},{ }_{A} N$, we have

$$
B^{R} M^{R} \otimes_{A^{R}} N^{R} \simeq\left(M \otimes_{A} N\right)^{R}
$$

as left B^{R}-modules.
Given a bimodule ${ }_{B} M_{A}$, we get a bimodule $B_{B^{R}}\left(M^{R}\right)_{A^{R}}$. Consider the following adjunctions

$$
\begin{aligned}
\mathbb{L}_{B} & :=M \otimes_{A}-:{ }_{A} \mathcal{M}_{B} \rightarrow{ }_{B} \mathcal{M}_{B} \\
\mathbb{R}_{B} & :=\operatorname{Hom}_{B}(M,-):{ }_{B} \mathcal{M}_{B} \rightarrow{ }_{A} \mathcal{M}_{B}
\end{aligned}
$$

and

$$
\begin{gathered}
\mathbb{L}_{B^{R}}:=M^{R} \otimes_{A^{R}}-:{ }_{A^{R}} \mathcal{M}_{B^{R}} \rightarrow{ }_{B^{R}} \mathcal{M}_{B^{R}} \\
\mathbb{R}_{B^{R}}:=\operatorname{Hom}_{B^{R}}\left(M^{R},-\right):{ }_{B^{R}} \mathcal{M}_{B^{R}} \rightarrow{ }_{A^{R}} \mathcal{M}_{B^{R}}
\end{gathered}
$$

Let

$$
\mathcal{E}_{M, B}:=\left\{f \in{ }_{B} \mathcal{M}_{B} \mid \operatorname{Hom}_{B}(M, f) \text { is split epimorphic in }{ }_{A} \mathcal{M}_{B}\right\}
$$

and

$$
\mathcal{E}_{M^{R}, B^{R}}:=\left\{f \in{ }_{B^{R}} \mathcal{M}_{B^{R}} \mid \operatorname{Hom}_{B^{R}}\left(M^{R}, f\right) \text { is split epimorphic in } A^{R} \mathcal{M}_{B^{R}}\right\}
$$

Lemma 3.3 If $B_{B} M_{A}$ is a generator in ${ }_{B} \mathcal{M}$, then $B_{B^{R}}\left(M^{R}\right)_{A^{R}}$ is a generator in $B_{B^{R}} \mathcal{M}$.
Proof Since ${ }_{B} M_{A}$ is a generator in ${ }_{B} \mathcal{M}, B$ is a direct summand of a sum of copies of ${ }_{B} M$ as a left B-module. Then $B^{R}=R \otimes B$ is a direct summand of a sum of copies of $M^{R}=R \otimes M$ as a left B^{R}-module. The result follows.

Suppose that ${ }_{B} M_{A}$ is a generator in ${ }_{B} \mathcal{M}$. Then ${ }_{B^{R}}\left(M^{R}\right)_{A^{R}}$ is a generator in ${ }_{B^{R}} \mathcal{M}$. Thus both $\mathcal{E}_{M, B}$ and $\mathcal{E}_{M^{R}, B^{R}}$ are projective classes of epimorphisms. The module-relative-Hochschild (co)homology of an extended algebra B^{R} over A^{R}, with coefficients in any B^{R}-bimodule Y^{R} where Y is a B - B-bimodule, is entirely determined by that of B over A with coefficients in ${ }_{B} Y_{B}$.

Theorem 3.4 Let R be a commutative k-algebra such that R is finitely generated and projective over k. Let A and B be two k-algebras. Consider a bimodule ${ }_{B} M_{A}$ such that ${ }_{B} M$ is a generator in ${ }_{B} \mathcal{M}$. Then, for all B - B-bimodules Y and $n \geq 0$,

$$
H_{\mathcal{E}_{M^{R}, B R}^{n}}^{n}\left(B^{R}, Y^{R}\right) \simeq R \otimes H_{\mathcal{E}_{M, B}}^{n}(B, Y), \quad H_{n}^{\mathcal{E}_{M}{ }^{R}, B^{R}}\left(B^{R}, Y^{R}\right) \simeq R \otimes H_{n}^{\mathcal{E}_{M, B}}(B, Y)
$$

Moreover, when k is a field,

$$
\operatorname{hch} \cdot \operatorname{dim}_{M^{R}}\left(B^{R}\right)=\mathrm{hch} \cdot \operatorname{dim}_{M}(B), \quad \mathrm{hh} \cdot \operatorname{dim}_{M^{R}}\left(B^{R}\right)=\mathrm{hh} \cdot \operatorname{dim}_{M}(B)
$$

Proof Let \mathbb{P}_{B} be the standard $\mathcal{E}_{M, B}$-projective resolution of B in ${ }_{B} \mathcal{M}_{B}$. Let $\mathbb{P}_{B^{R}}$ be the standard $\mathcal{E}_{M^{R}, B^{R}}$-projective resolution of B^{R} in ${ }_{B^{R}} \mathcal{M}_{B^{R}}$. Note that

$$
\begin{aligned}
\left(\mathbb{L}_{B^{R}} \mathbb{R}_{B^{R}}\right)\left(X^{R}\right) & ={ }_{B^{R}}\left(M^{R}\right) \otimes_{A^{R}} \operatorname{Hom}_{B^{R}}\left(\left(M^{R}\right)_{A^{R}}, X^{R}\right) \\
& \simeq{ }_{B^{R}}\left(M^{R}\right) \otimes_{A^{R}} \operatorname{Hom}_{B}\left(M_{A}, X\right)^{R} \\
& \simeq\left(M \otimes_{A} \operatorname{Hom}_{B}\left(M_{A}, X\right)\right)^{R} \\
& =\left(\left(\mathbb{L}_{B} \mathbb{R}_{B}\right)(X)\right)^{R}
\end{aligned}
$$

for all B - B-bimodules X. In particular, we have

$$
\left(\mathbb{L}_{B^{R}} \mathbb{R}_{B^{R}}\right)^{n}\left(B^{R}\right) \simeq\left(\left(\mathbb{L}_{B} \mathbb{R}_{B}\right)^{n}(B)\right)^{R}
$$

Firstly, we apply the functor $-\otimes_{\left(B^{R}\right)^{e}} Y$ to $\mathbb{P}_{B^{R}}$. Note that

$$
\left(B^{R}\right)^{e}=B^{R} \otimes_{R}\left(B^{R}\right)^{o p} \simeq\left(B^{e}\right)^{R}
$$

We have

$$
\begin{aligned}
\left(\mathbb{L}_{B^{R}} \mathbb{R}_{B^{R}}\right)^{n}\left(B^{R}\right) \otimes_{\left(B^{R}\right)^{e}} Y^{R} & \simeq\left(\left(\mathbb{L}_{B} \mathbb{R}_{B}\right)^{n}(B)\right)^{R} \otimes_{\left(B^{R}\right)^{e}} Y^{R} \\
& \simeq\left(\left(\mathbb{L}_{B} \mathbb{R}_{B}\right)^{n}(B)\right)^{R} \otimes_{\left(B^{e}\right)^{R}} Y^{R} \\
& \simeq R \otimes\left(\left(\mathbb{L}_{B} \mathbb{R}_{B}\right)^{n}(B) \otimes_{B^{e}} Y\right)
\end{aligned}
$$

where the third isomorphism follows from Lemma 3.2(2). Since R is projective over $\mathrm{k}, R \otimes-$ preserves monomorphisms and kernels. Thus one can easily get

$$
\mathrm{H}_{n}^{\mathcal{E}_{M^{R}, B^{R}}}\left(B^{R}, Y^{R}\right) \simeq R \otimes \mathrm{H}_{n}^{\mathcal{E}_{M, B}}(B, Y)
$$

for all $n \geq 0$.
Secondly, applying the functor $\operatorname{Hom}_{\left(B^{R}\right)^{e}}\left(-, Y^{R}\right)$ to $\mathbb{P}_{B^{R}}$, we have

$$
\begin{aligned}
\operatorname{Hom}_{\left(B^{R}\right)^{e}}\left(\left(\mathbb{L}_{B^{R}} \mathbb{R}_{B^{R}}\right)^{n}\left(B^{R}\right), Y^{R}\right) & \simeq \operatorname{Hom}_{\left(B^{e}\right)^{R}}\left(\left(\left(\mathbb{L}_{B} \mathbb{R}_{B}\right)^{n}(B)\right)^{R}, Y^{R}\right) \\
& \simeq R \otimes \operatorname{Hom}_{B^{e}}\left(\left(\mathbb{L}_{B} \mathbb{R}_{B}\right)^{n}(B), Y\right)
\end{aligned}
$$

where the second isomorphism follows from Lemma 3.2(1). By the same arguments as above, we conclude that

$$
\mathrm{H}_{\mathcal{E}_{M^{R}, B R}}^{n}\left(B^{R}, Y^{R}\right) \simeq R \otimes \mathrm{H}_{\mathcal{E}_{M, B}}^{n}(B, Y)
$$

for all $n \geq 0$.
It remains to prove the last statement. Suppose that k is a field. Since R is finitely generated over k, one can easily check that

$$
\begin{aligned}
& \mathrm{H}_{\mathcal{E}_{M^{R}, B R}}^{n}\left(B^{R}, Y^{R}\right) \simeq R \otimes \mathrm{H}_{\mathcal{E}_{M, B}}^{n}(B, Y)=0 \Longleftrightarrow \mathrm{H}_{\mathcal{E}_{M, B}}^{n}(B, Y)=0, \\
& \mathrm{H}_{n}^{\mathcal{E}_{M^{R}, B^{R}}}\left(B^{R}, Y^{R}\right) \simeq R \otimes \mathrm{H}_{n}^{\mathcal{E}_{M, B}}(B, Y)=0 \Longleftrightarrow \mathrm{H}_{n}^{\mathcal{E}_{M, B}}(B, Y)=0 .
\end{aligned}
$$

This completes the proof.
Corollary 3.5 Let R be a commutative k-algebra such that R is finitely generated and projective
over k. Let A and B be two arbitrary k-algebras. Consider a bimodule ${ }_{B} M_{A}$ such that ${ }_{B} M$ is a generator in ${ }_{B} \mathcal{M}$. Then for all $n \geq 0$, we have

$$
H_{\mathcal{E}_{M^{R}, B^{R}}}\left(B^{R}\right) \simeq R \otimes H_{\mathcal{E}_{M, B}}^{n}(B)
$$

and

$$
H_{n}^{\mathcal{E}_{M^{R}, B^{R}}}\left(B^{R}\right) \simeq R \otimes H_{n}^{\mathcal{E}_{M, B}}(B) .
$$

Recall in [1] that B is ${ }_{B} M_{A}$-separable if and only if

$$
\operatorname{hch} \cdot \operatorname{dim}_{M}(B)=0
$$

and that B is M-smooth if and only if

$$
{\operatorname{hch} . \operatorname{dim}_{M}(B) \leqslant 1}
$$

By Theorem 3.4, we directly obtain the following corollary.
Corollary 3.6 When k is a field, B^{R} is M^{R}-smooth (resp. M^{R}-separable) if and only if B is M-smooth (resp. M-separable).

References

[1] A. ARDIZZONI, T. BRZEZIŃSKI, C. MENINI. Formally smooth bimodules. J. Pure Appl. Algebra, 2008, 212(5): 1072-1085.
[2] A. ARDIZZONI. Separable functors and formal smoothness. J. K-Theory, 2008, 1(3): 535-582.
[3] A. ARDIZZONI, C. MENINI, D. STEFAN. Hochschild cohomology and smoothness in monoidal categories. J. Pure Appl. Algebra, 2007, 208(1): 297-330.
[4] W. CRAWLEY-BOEVEY, P. ETINGOF, V. GINZBURG. Noncommutative geometry and quiver algebras. Adv. Math., 2007, 209(1): 274-336.
[5] J. CUNTZ, D. QUILLEN. Algebra extensions and nonsingularity. J. Amer. Math. Soc., 1995, 8(2): 251-289.
[6] P. J. HILTON, U. STAMMBACH. A Course In Homological Algebra. Springer-Verlag, New York-Berlin, 1971.
[7] P. JARA, D. LLENA, L. MERINO, et al. Hereditary and formally smooth coalgebras. Algebr. Represent. Theory, 2005, 8(3): 363-374.
[8] M. KONTSEVICH, A. ROSENBERG. Noncommutative Smooth Spaces. Birkhäuser, Boston, Boston, MA, 2000.
[9] M. KONTSEVICH, A. ROSENBERG. Noncommutative spaces. 2004, preprint MPI-2004-35.
[10] W. F. SCHELTER. Smooth algebras. J. Algebra, 1986, 103(2): 677-685.
[11] K. SUGANO. Note on separability of endomorphism rings. J. Fac. Sci. Hokkaido Univ. Ser. I, 1970/71, 21: 196-208.
[12] E. E. ENOCHS, M. G. JENDA OVERTOUN. Relative Homological Algebra. Walter de Gruyter \& Co., Berlin, 2000.
[13] G. HOCHSCHILD. Relative homological algebra. Trans. Amer. Math. Soc., 1956, 82: 246-269.
[14] G. HOCHSCHILD. On the cohomology groups of an associative algebra. Annals of Math.(2), 1945, 46: 58-67.
[15] S. MAC LANE. Categories For The Working Mathematician. Second edition. Springer-Verlag, New York, 1998.
[16] Yuan CHEN. Module-relative-Hochschild (co)homology under stable equivalences of Morita type. Sci. Sin. Math., 2011, 41(12): 1043-1060. (in Chinese)

