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Abstract This paper deals with a heat system coupled via local and localized sources sub-
ject to null Dirichlet boundary conditions. Based on a complete classification for all the four
nonlinear parameters, we establish multiple blow-up rates for the system under various domi-
nations. We also determine uniform blow-up profiles for the three cases where localized source

couplings dominate the system.
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1. Introduction

In this paper, we consider the following heat system coupled via local and localized sources

up = Au + vPr + 09 (0, 1),
vy = Av 4+ uP? +u2(0,1),

u=v=0,

u(z,0) = uo(x), v(z,0) = vo(x),

(x,t) € 2 x (0,7),
(x,t) € 2 x (0,7),
(x,t) € 092 x (0,T),

x € Q,

where Q = B = {z € RN : |z| < 1}, p1,p2 > 1, q1,q2 > 0; ug,vo € C?(2) N C(Q) are radial and

satisfy

up = uo(r),vo = vo(r), uo,vo > 0, u(0),v0(0) > 1;

uo(1) = wvo(1) =0, woy,vor <0 for r € (0,1],

Aug + B + 08 (0) > npo (v + 08 (0), € B;

Avg + uf? + ud?(0) > npo(ub? + ud?(0)), =€ B,
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where 71 € (0, 3], po € C*(B) N C(B) is the first eigenfunction of
Ap+Xdp=0in B, ¢ =0o0ndB, (1.2)

with the first eigenvalue Ao, normalized by ¢o > 0 in B and ||¢gllec = 1. It is easy to see that
¢ is a radially symmetric with ¢} < 0 for r € (0,1]. Such up and vy do exist indeed [7,14].
It is well known that there exists a unique local solution to (1.1), which blows up in finite
time for large initial data [1-3]. Denote by T the maximum existence time of the solution.
System (1.1) can be viewed as a combination of the following two coupled problems: the

system with local coupling
up = Au 40P, vy = Av+uP?,  (x,t) € 2 x (0,7), (1.3)
and the system with localized coupling
= Au+v%(0,t), v = Av+u®(0,t), (x,t) € Qx(0,T), (1.4)

subject to null Dirichlet boundary conditions. It was known that the blow-up solutions of (1.3)
with p1p2 > 1 must be single point blow-up [3,8]. While for (1.4) with g1g2 > 1, the blow-up
occurs everywhere in = B (see [6]), where the uniform blow-up profile was observed. It is
easy to understand the system (1.1) may admit both single point blow-up and uniform blow-up
profiles.

In this paper, we will study the multiple blow-up rates for (1.1), by using the scaling
technique [5], under various dominations. To get a complete classification for the discussion,

introduce the following characteristic algebraic system [12,15] associate with (1.1):

Y I

with 61,605 € {0,1}, namely,

1 1
alvﬁl :(p1+ ) P2t ) f0r91:1, 92:17
pip2 —1 pipa —1
1 1
(g, B2) :(P1+ - q2 + 1) for 0 = 1, 6 = 0
p1g2 — 1 p1g2 —
(a,8) = a1l pail (1.6)
053763 :( B ) fOI' 91:07 92:17
p2q1 — 1 pagn — 1
1 1
(O‘4764) = ( q1+ ) q2+ ) for 91 :O, 92 =0.
g2 — 1 quq2 — 1

It will be shown that all possible blow-up rates can be described via such (o, 5;), i =1,...,4.

We need the auxiliary function ¢ solving heat equation

¢t =A¢in Bx R, ¢=0o0ndB, ¢, 0)=py(z)onB. (1.7)
The maximum principle yields
sup |¢| < 1. (1.8)
BxR*

Next, we will deal with the multiple blow-up rates in Section 2, and then consider the

uniform blow-up profiles in Section 3.
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2. Multiple blow-up rates

The maximum principle with the assumptions (A) and (B) implies that u, v are radial, and
maxpo,qj u(-,t) = u(0,t), maxyg 1) v(-,t) = v(0,t) for t € (0,7), us,vy > 0 for (v,t) € B x [0,T).

We have furthermore:

Lemma 2.1 The solution (u,v) of (1.1) satisfies
ug > [Pt +v?(0,1)], vi > no[uP? +u®(0,t)], (x,t) € Bx[0,T) (2.1)
with 5 < 1/2.
Proof Introduce auxiliary functions
I(a,t) = up = ng[v” +07(0,8)], J(z,t) = vr — ng[u” +u®(0,1)]
with ¢ defined by (1.7). A simple computation shows
I — AT — p1oP =17 >0, qo®710,8)v:(0,2)(1 — ng) + 2np1oP ~ Vo - V.

Notice that Vv-V¢ > 0, since both v and ¢ are radially symmetric and monotonically decreasing
with respect to r = |z|, and v4(0,t) > 0. We have

I — AT —pvP =t >0, (x,t) € B x(0,7), (2.2)
and similarly,
Jp — AJ —pouP* 1 >0, (x,t) € B x (0,7). (2.3)
On the other hand,
I=J=00ndBx[0,T) (2.4)

due to g =u=v=0o0n 9B x [0,T). The assumption (B) yields
1(2,0) = Auo + o8 (2) + 0§ (0) — mpolef (2) + 0§ (0)] 2 0, € B, (25)
J(x,0) = Avg + ub?(z) + ul?(0) — npolub?(z) + ud?(0)] >0, z€ B. (2.6)
The maximum principle with (2.2)-(2.6) concludes that I,.J >0 on B x [0,T). O

Lemma 2.2 Let (u,v) be a blow-up solution of (1.1). Then
c<u (0, (0,t) < C, te(0,T) (2.7)

where (a, 8) = (a;, 3:), i = 1,...,4, are defined by (1.6), and ¢ and C denote positive constants
independent of t, which may be different from line to line throughout the paper.

Proof Notice that u(0,t),v(0,t) are nondecreasing in (0,7) and any blow-up in (1.1) must be
simultaneous. Thus, ||u(-,t)]|c = ©(0,1), ||v(-,t)]lcc = v(0,t) tend to infinity monotonously as
t—T7.

We follow the technique in [4,13]. If the lower bound estimate in (2.7) does not hold, then

there exists a sequence t; — T~ as j — 400 such that

u‘i(o,t)vﬁ(o,t) — 0 as j — +oo.
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Let A\; = u2a(0,t;). Since a > 0, u(0,t;) diverges as j — oo, it follows that \; =
w2 (0,1;) — 0 as j — +00. Scale (u,v) to (7,1 as

¢ (y,5) = ANy, A2s + ), ¥V (y,5) = Ao (N, Ads + t;) (2.8)
for (y,s) € By, x (=t;/A3, (T — t;)/A3) with By, = {y € RN : \;y € B}.

For s € (—t;/A2,0], we have 0 < * <1, ¢%(0,0) = 1,
0 < 9N < (u(0,t;)) 5v(0,;) = 0, j — +oo. (2.9)

Moreover, (¢*i,1?7) solves

ps = D + N2 yp g \3H2e=2alya (g, 5),
(2.10)
djs _ Aw + )\?"'23_2172‘1%0172 + )\5"'26_21120‘%0112 (O,S)

If p1 > q1, p2 > go, then 61 = 65 = 1, ie., (@, 8) = (o1, B1) = (25, 225, and thus for

Jj— o0,
p1=2+2a—2p18=0, e1=MN"=1
p2 =2+ 2a—2q.8 >0, g2 = \i? €{0,1};
ps =2+ 20— 2psa =0, g3 =N =1,
e =2+ 208 —2¢a > 0, eq = Nj* €{0,1}.
prl 2 q1, P2 S q2, then 91 = 1792 = 07 i'e'7 (auﬁ) = (a27ﬁ2)7 and
pr=ps =0, e1=e4=1; po,u3 >0, 2,63 € {0,1}.
If pr < q1, p2 > q2, then 0, = 0,62 =1, ie., (o, 8) = (a3, 03), and
po=p3 =0, ea=e3=1; p1,p4 >0, €1,64 € {0,1}.
prl S q1, P2 S q2, then 91 = 0792 = 07 i'e'7 (auﬁ) = (a47ﬁ4)7 and
M2:M4:07 82284:1; M17N3207 817536{071}'

The general parabolic estimates yield a subsequence converging uniformly on compact sub-

sets of RV x (—00,0] to (p,1) such that

@S = A@"’Sligpl +52Jq1 (055)5 (y,S) € RN X (_0070]7

Vs = A + £33 +e45%(0,5),  (y,8) € RN x (—00,0]
withe; =0o0r 1 (i =1,2,3,4), and there always exist i € {1,2},5 € {3,4} such that ¢; = ¢; = 1.
On the other hand, ¢ = 0 by (2.9). This contradicts the second equation with &(0,0) = 1.

If the upper bound estimate in (2.7) does not hold, then there exists a sequence t; — T~

as j — +oo such that
1

u” 2 (O,t)vﬁ((),t) — 400 as j — +o0.

Let \; = v_%(o,tj), and define (o 1) as (2.8). Then (¢*7,9™) is the solution of (2.10),
such that

0 <y <1, P(0,0) =1, 0< ™ <u(0,t;)(v(0,t;))"F — 0, j — +o0.
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Proceeding as before, we will get a contradiction. Thus (2.7) is established. O

Next, we study blow-up rates of maximum point for solutions to (1.1), which would be
helpful for the further study on uniform blow-up profiles of solutions. The sources for u (v) in
the model consist of vP* and v?(0,t) (uP? and u?(0,t)). There are four different dominations
of the sources, corresponding to four possible simultaneous blow-up rates of solutions. All these
are clearly described via the characteristic algebraic system (1.6). In the sequel, always denote
by T the blow-up time for (1.1).

Theorem 2.1 Let (u,v) be a blow-up solution of (1.1). Then there are positive constants ¢, C
such that

c<u(0,t) (T —1)*<C, c<v(0,t)(T -t <C, te(0,T), (2.11)
where (a, 8) = (a;, 3:), i = 1,...,4, are defined by (1.6).

Proof Without loss of generality, we only consider the case with v?*, uP?2 dominating the system,
ie, p1 > ¢, p2 > g2. Thus, (o, ) = (a1,61), defined by (1.6). For the component u, notice
that maxg u(-,t) = u(0,¢) implies Au(0,t) < 0 and u(0,¢) blows up as t — T. We have from the
first equation of (1.1) that

ut(0,t) < 0P (0,t) + 09 (0,t) < 20P1(0, ).

B +1
By Lemma 2.2 and the assumption of the theorem, we know v(0,t) < Cust (0,t) = Curiit , and
thus
p1(potl)
P11 (

ut(0,t) < Cu 0,t)ast — T. (2.12)

It follows from (2.12) that
p1+1
u(0,t) > (T — t)_PMlJrl ast — T.
On the other hand, Lemma 2.1 says

u(0,1) > 16(0, [P + v (0, 1)]
> 16(0, )0 (0,8) > nd(0, t)eu” i1 (0,8),

+1

and so u(0,t) < C(T—1t)~ pipe-T = C(T —t)~* is true. For the component v, similarly to above,

we also have

c<v(0,t)(T-t)* <C. O

3. Uniform blow-up profiles

This section considers uniform blow-up profiles of solutions to (1.1). We will use the tech-
nique in [9-11] with Theorem 2.1 to establish the uniform blow-up profiles of solutions. There
are three cases to be considered: (a) p1 > q1, p2 < ¢2; (b) p1 < q1, P2 > ¢2; (¢) p1 < @1, P2 < Go.

Let us first treat the case (a) with p1 > q1, p2 < g2, where vP* and u% (0, t) play a dominance

role:
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Theorem 3.1 (i) If p1 > q1, p2 < g2, then

Pl r1+1

p1+1 1 = 1 =
lim(T—t)Plé2*1u(x,t) _ (q2+ )P1Q2 1 (i) P1492 1, (31)
=T p1+1 p1g2 — 1
dg+1 1 q27 1 Q2+i
lim (T — t)ipl?;sz)(x, t) = (pl + ) praz—1 (ﬂ) praz—1 (3.2)
=T 2+1 p1g2 — 1
uniformly on compact subsets of €).
(i) Ifp1 = q1, p2 < g2, then
pytl 1 1 P17 1 P1+j
lim(T_t)pil)tlj2flu(x7t) —9 plqlz,l((ﬁ‘f' )PIQQ 1(%) Praz 17 (3.3)
t=T p1+1 p1g2 — 1
_ap+1_ _ INT= 1\ 5z
lim (T _ t)p(112q2flv(x,t) =92 pl;’j,l (pl + )P1Q2 T (&) praz—1 (3'4)
=T g2 +1 p1g2 — 1

uniformly on compact subsets of ().
Proof (i) By Theorem 2.1 with p; > ¢1 and ps < ¢o,
¢ <u(0,)(T — )22 < C, ¢ <v(0,t)(T —t)* <C, te(0,T).
Set

Flt) = /O o (0, 7)dr, G(t) = /0 (0, 7)dr, (3.5)

and hence F(t),G(t) — oo, as t — T~. Since Av(0,t) < 0 by v(0,t) = maxg u(-,t), it follows
that
ve(0,t) < uP?(0,t) +u?2(0,t), 0<t<T. (3.6)

Integrate (3.6) over (0,t) to get
t t
v(0,t) — v9(0) < / uP2(0, s)ds +/ u®(0,s)ds, 0<t<T,
0 0

which implies

) v(0,t)
lim sup —; <1
t—1 [y ur2(0,s)ds + G(t)

Since pa < g2, we have

So, there holds

<1 (3.7)

Let Ao and vy be the first eigenvalue and eigenfunction of —A with the null Dirichlet
boundary condition, normalized by [, 1 (z)dz = 1. Multiplying the second equation of (1.1) by
1o, and then integrating over Q; = Q x (0,¢) for 0 < ¢t < T, we obtain

/Q vodz — /Q vothodz = — o / / vippdzds + / / uP*odads + G(t). (3.8)
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go+1
By (i), we know v(0,t) > cuﬁ(o, t), and thus

viodads "0(0, 5)d
O<limfot 0 _1mfO (,3)5207
t—T G(t) t—T t)
uP2ppdads
0 < lim M <
t—T G(t)
Combining (3.8) gives
... 0(0,¢) fQ vippdw
> = .
it oy =i T 7! (3.9)
Due to (3.7) and (3.9), we conclude
v(0,t)
3.10
t—T G(t) ’ ( )
namely,
v(0,t) ~ G(t), t—T. (3.11)
On the other hand, by (3.9) and (3.10),
d
lim J20%0dE _ |
t—T  v(0,t)
and hence (1)
v(z,t)
Hm, 00.1) 1 for a.e. z € Q)
due to fQ Yodx = 1. Since u, < 0, we have furthermore
v(z,t) ~v(0,t) ~G(t), x€Q, t—T. (3.12)
Similarly to (3.7), we have
. u(0,1)
lim su <1. 3.13
P Ty < (3.13)

Multiplying the first equation of (1.1) by %, and then integrating over Q; = Q x (0,t) for
t € (0,T), we obtain

/Q uhodz — /Q uoodz = —Xo / / uthodrds + / / ’vplwodxder / /Q ’vql (0,t)odzds. (3.14)

Due to u(0,t) > cv%(o, t) by (i), we have
fot upodads

We know from (3.12) that fot vP1(z, s)ds ~ fot uP1(0, s)ds uniformly on compact subsets of Q2 =
By. Denoting 2, = By_1/,, we have

Sl v dodeds _JyoPi (@, s)ds
I LA ) i Ty Vede =t (3.16)
It follows from (3.14)—(3.16) that
d
i 400 5y, Jowodz (3.17)

t—T F(t) t—T F(t)
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Combining (3.13) with (3.17), we conclude
u(0,t) ~ F(t), t—T.

Similarly to above, we have
u(zx,t)
t—T U(O, t)

=1 for a.e. x € Q),

and thus
u(x,t) ~u(0,t) ~ F(t), z€Q, t—>T

due to u,(r,t) < 0. In summary of (3.11), (3.18) and (3.5),

F'(t) ~GP (1), G'(t) ~ F2(t), t—T.

+1
It follows from (3.20) that G(t) ~ (Z’;ﬁ)rlﬂ FEF () (t — T), and consequently,
lim(T—t)pféi«;llF(t) = (‘JQ + 1)$( p1+1 )pf}]—ﬁl
T pt1 p1g2 — 1 ’
lim (T — )71 G(¢) = (& + 1)—“;;;,1 (-2 +1 )—t
t—T g2 + 1 Piga — 1 .

Combined with (3.12) and (3.19), the required uniform blow-up profiles are proved.

(ii) Similarly to (3.12),
v(z,t) ~v(0,t) ~G(t), 2€Q, t—T.

By (3.6), we get

t
lim sup u(©,t)

< 2.
-1 F(t) ~

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

On the other hand, multiplying the first equation of (1.1) by vy, and then integrating over

Q: = Q% (0,t) for ¢t € (0,T), we have

/Q uhodz — /Q uoodz = —Xo / / uthodrds + / / ’vplwodxder / / ’vql (0, t)odzds. (3.23)

Repeating the argument for (i), we can get

- u(0,) . fssz}odx
s J T
it T = 5% " Fe

Combining (3.22) with (3.24) gives

=2

u(0,t) ~2F(t), t—T.
Similarly to (3.10),
u(z,t) ~u(0,t) ~2F(t), x€Q, t—-T
due to u,(r,t) < 0. In summary of (3.21), (3.25) and (3.5),

F'(t) ~ G (t), G'(t) ~ (2F)®(t), t—T.

(3.24)

(3.25)

(3.26)

(3.27)
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qa+1

Clearly, (3.27) implies that G(t) ~ 2%(2’;—3)ﬁFW(t) (t — T). Combining with (3.21)
and (3.26), we obtain

P1 p1t+1

lim (7" — t)pftlz—;—llu(:c,t) — 0 eI (q2 + 1)“"2’1 ( ptl )“‘72’17
t—=T p1+1 p1g2 — 1
lim (T — ¢)FnTo(z, t) = 2~ o= (pl + 1) it (L +1 )’)fiﬁl.
t—T g2 +1 p1g2 — 1

This completes the proof.

The case (b) with p1 < g1, p2 > g2 can be treated by exchanging the roles of v and v in
Theorem 3.1.

Finally we consider the third situation with v9(0,¢) and u?(0,t) dominating the system.

That is the following theorem. The proof is similar to (i) of Theorem 3.1, and omitted here.

Theorem 3.2 Assume p; < g1, p2 < g2. Then there holds

a1 a1+1
lim (T — t)qféiztllu(x,t) _ (QQ + 1) a1az—1 ( q+1 ) qmrl’
T @ +1 Q1g2 —1

_ a2 aa+1
lim (T — t)qf?ziztllv(x’t) _ (Q1 + 1) araz—1 ( g2 +1 ) Tiaa—T
T @2 +1 q1g2 — 1

uniformly on all compact subsets of ). [J
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