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Abstract This paper deals with the stability analysis of the Euler-Maclaurin method for

differential equations with piecewise constant arguments of mixed type. The expression of

analytical solution is derived and the stability regions of the analytical solution are given.

The necessary and sufficient conditions under which the numerical solution is asymptotically

stable are discussed. The conditions under which the analytical stability region is contained

in the numerical stability region are obtained and some numerical examples are given.
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1. Introduction

In this paper we consider the differential equations with piecewise constant arguments

(EPCA) of mixed type with the following form:

u′(t) = au(t) + a−1u([t − 1]) + a0u([t]) + a1u([t + 1]), t ≥ 0,

u(−1) = u−1, u(0) = u0,
(1)

where a, a−1, a0, a1, u−1 and u0 are real constants and [·] denotes the greatest integer function

and a−1 6= 0, a1 6= 0.

The study of EPCA was initiated in [1, 2]. From then on, stability, oscillation and existence

of periodic solutions have been treated by several authors, see [3–5] and references therein. The

extensive applications of EPCA were discussed in [6, 7]. Studies of such equations are motivated

by the fact that they represent a hybrid of discrete and continuous dynamical systems and

combine the properties of both differential and differential-difference equations. The general

theory and basic results for EPCA have been thoroughly investigated in the book of Wiener [8].

In recent years, the numerical computation and analysis for this type of equations have

made great progress. Song [9] derived several stability conditions for EPCA of advanced type

by using the θ-methods. For the unbounded retarded EPCA, Liu [10] obtained a sufficient

condition for the equation to be asymptotically stable and the stability of Runge-Kutta methods

were discussed. In [11], the stability and oscillations of the θ-methods for EPCA of alternately

advanced and retarded type were considered. However, until now very few results dealing with the
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numerical solution of (1) have been published except for [12] in which the Runge-Kutta methods

were discussed. The main objective of this paper is to enrich the gap by considering stability

of the Euler-Maclaurin method for (1). In the present paper, we investigate the asymptotical

stability of the Euler-Maclaurin method. The necessary and sufficient conditions under which

the numerical stability region contains the analytical stability region are obtained. In the end,

the numerical examples further illustrate the theoretical results and effectiveness of the method.

2. Asymptotical stability of the analytical solution

In this section, we provide a formula for the solution of (1) and discuss the condition under

which the analytical solution is asymptotically stable.

Definition 1 ([8]) A function u : [0,∞) → R is a solution of (1) if the following conditions hold:

(a) u is continuous on [0,∞),

(b) The derivative u′ exists at each point t ∈ [0,∞), with the possible exception of the

points [t] ∈ [0,∞) where one-sided derivatives exist,

(c) (1) is satisfied on each interval [n, n + 1) ⊂ [0,∞) with integral end-points.

By using the similar methods in [8], we have

Theorem 1 The unique solution of (1) on [0,∞) is given by

u(t) = α−1({t})c[t−1] + α0({t})c[t] + α1({t})c[t+1],

where {t} is the fractional part of t and

c[t] =
λ

[t+1]
1 (u0 − λ2u−1) + (λ1u−1 − u0)λ

[t+1]
2

λ1 − λ2
,

α−1(t) = (eat − 1)a−1a−1, α0(t) = eat + (eat − 1)a−1a0, α1(t) = (eat − 1)a−1a1,

b−1 = α−1(1), b0 = α0(1), b1 = α1(1),

λ1 and λ2 are the roots of equation

(1 − b1)λ
2 − b0λ − b−1 = 0. (2)

Theorem 2 ([8]) That the solution of (1) is asymptotically stable (u(t) → 0 as t → ∞) is

equivalent to that the moduli of the roots of (2) satisfy the inequalities

|λ1| < 1, |λ2| < 1.

Lemma 1 ([13]) The moduli of the roots of equation λ2 − γλ− β = 0 are smaller than 1 if and

only if |β| < 1 and |γ| < 1 − β.

Applying Theorem 2 and Lemma 1 to (2) leads to the following theorem.
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Theorem 3 The solution of (1) is asymptotically stable as t → ∞ if and only if
{

(a1 + a−1 −
a

ea−1 )(a1 − a−1 −
a

ea−1 ) > 0,

(a + a0 + a1 + a−1)(a1 − a0 + a−1 −
a(ea+1)

ea−1 ) > 0;
if a 6= 0,

{

(a1 + a−1 − 1)(a1 − a−1 − 1) > 0,

(a0 + a1 + a−1)(a1 − a0 + a−1 − 2) > 0,
if a = 0.

Definition 2 The set of all points (a, a−1, a0, a1) at which (1) is asymptotically stable is called

the asymptotic stability region, denoted by H .

Therefore, we have

H∗ =

{

(a, a−1, a0, a1) :
(a1 + a−1 −

a
ea−1 )(a1 − a−1 −

a
ea−1 ) > 0

(a + a0 + a1 + a−1)(a1 − a0 + a−1 −
a(ea+1)

ea−1 ) > 0

}

,

H0 =

{

(a, a−1, a0, a1) :
(a1 + a−1 − 1)(a1 − a−1 − 1) > 0

(a0 + a1 + a−1)(a1 − a0 + a−1 − 2) > 0

}

,

for a 6= 0 and a = 0, respectively. For the first case, we also introduce the following two regions

H1 =











(a, a−1, a0, a1) :

a + a−1 + a0 + a1 > 0

a1 −
a

ea−1 > a−1 > −(a1 −
a

ea−1 )

a0 < a1 + a−1 −
a(ea+1)

ea−1











, (3)

H2 =











(a, a−1, a0, a1) :

a + a−1 + a0 + a1 < 0

a1 −
a

ea−1 < a−1 < −(a1 −
a

ea−1 )

a0 > a1 + a−1 −
a(ea+1)

ea−1











. (4)

3. Euler-Maclaurin method

3.1. Bernoulli’s numbers and Bernoulli’s polynomial

It is known to us that
z

ez − 1
=

∞
∑

j=0

Bj

j!
zj, |z| < 2π,

zexz

ez − 1
=

∞
∑

j=0

Bj(x)

j!
zj, |z| < 2π,

where Bj and Bj(x) are called Bernoulli’s number and Bernoulli’s polynomial, respectively.

Lemma 2 ([14]) Bj satisfies the following properties:

(a) B0 = 1, B1 = − 1
2 ,

(b) B2j = 2(−1)j+1(2j)!
∑∞

k=1(2kπ)−2j , B2j+1 = 0, j ≥ 1,

(c)
B2(2i−1)

(2(2i−1))! +
B2(2i)

(2(2i))! > 0, i = 1, 2, . . .,

(d)
B2(2i+1)

(2(2i+1))! +
B2(2i)

(2(2i))! < 0, i = 1, 2, . . ..

Lemma 3 ([14]) Bj(x) satisfies the following properties:
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(a) B0(x) = 1, B1(x) = x − 1
2 , Bk(x) =

∑k

j=0 Cj
kBjx

k−j ,

(b) B2k+1(1) = B2k+1(0) = B2k+1 = 0,

(c) B2k(1) = B2k(0) = B2k,

(d) Bk(x) = 1
k+1B′

k+1(x), k = 1, 2, . . ..

3.2. The numerical scheme

Let step size h = 1/m with integer m ≥ 1 and the grid points ti be defined by ti = ih (i =

0, 1, 2, . . .), and let i = km + l (l = 0, 1, . . . , m − 1). Applying the Euler-Maclaurin formula to

(1), we have

ui+1 =ui +
ha

2
(ui+1 + ui) −

n
∑

j=1

B2j(ha)2j

(2j)!
(ui+1 − ui) + ha−1u(k−1)m+

ha0ukm + ha1u(k+1)m.

(5)

Lemma 4 ([15]) Assume that f(x) has 2n + 3rd continuous derivative on the interval [ti, ti+1],

then we have
∣

∣

∣

∫ ti+1

ti

f(t)dt −
h

2
(f(ti+1) + f(ti)) +

n
∑

j=1

B2jh
2j

(2j)!
(f (2j−1)(ti+1) − f (2j−1)(ti))

∣

∣

∣

= O(h2n+3).

(6)

Then from Lemma 4 and (5), we know that the following convergence theorem is true.

Theorem 4 For any given n ∈ N, the Euler-Maclaurin method is of order 2n + 2.

4. Numerical stability

(5) reduces to the following recurrence relation

ukm+l+1 =R(x)ukm+l +
a−1

a
(R(x) − 1)u(k−1)m+

a0

a
(R(x) − 1)ukm +

a1

a
(R(x) − 1)u(k+1)m if a 6= 0,

ukm+l+1 =ukm+l + ha−1u(k−1)m + ha0ukm + ha1u(k+1)m if a = 0,

(7)

where

x = ha, R(x) = 1 +
x

φ(x)
, φ(x) = 1 −

x

2
+

n
∑

j=1

B2jx
2j

(2j)!
.

It is easy to see that (7) is equivalent to

u(k+1)m =
R(x)m + a0

a
(R(x)m − 1)

1 − a1

a
(R(x)m − 1)

ukm +
a
−1

a
(R(x)m − 1)

1 − a1

a
(R(x)m − 1)

u(k−1)m if a 6= 0,

ukm+l+1 =[R(x)l+1 +
a0

a
(R(x)l+1 − 1)]ukm +

a−1

a
(R(x)l+1 − 1)u(k−1)m+

a1

a
(R(x)l+1 − 1)u(k+1)m if a 6= 0,

u(k+1)m =
1 + a0

1 − a1
ukm +

a−1

1 − a1
u(k−1)m if a = 0,

ukm+l+1 =[1 + (l + 1)ha0]ukm + (l + 1)ha−1u(k−1)m + (l + 1)ha1u(k+1)m if a = 0,

(8)
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where 0 ≤ l ≤ m−2. To guarantee the process (8) can be going on, we require that 1−(R(x)m−

1)a1/a 6= 0.

Definition 3 Process (5) for (1) is called asymptotically stable at (a, a−1, a0, a1) if un → 0 as

n → ∞ for all m ≥ M and h = 1/m.

Definition 4 The set of all points (a, a−1, a0, a1) at which the Euler-Maclaurin method is

asymptotically stable is called the asymptotical stability region, denoted by S.

By (8), the following lemma is obtained.

Lemma 5 Assume that 1− (R(x)m − 1)a1/a 6= 0, then for all k and 0 ≤ l ≤ m− 2, there exists

a constant C > 0 independent of k and l such that

|ukm+l+1| ≤ C(|ukm| + |u(k−1)m| + |u(k+1)m|) (9)

where

C = max
0≤l≤m−2

{|R(x)l+1 +
a0

a
(R(x)l+1 − 1)|, |

a−1

a
(R(x)l+1 − 1)|, |

a1

a
(R(x)l+1 − 1)|}

and

C = 1 + |a−1| + |a0| + |a1|

for a 6= 0 and a = 0, respectively.

It follows from Lemma 5 that un → 0 as n → ∞ if and only if ukm → 0 as k → ∞, and it

is well known by (8) that ukm → 0 as k → ∞ if and only if the roots of the equations

λ2 −
R(x)m + a0

a
(R(x)m − 1)

1 − a1

a
(R(x)m − 1)

λ −
a
−1

a
(R(x)m − 1)

1 − a1

a
(R(x)m − 1)

= 0 if a 6= 0,

λ2 −
1 + a0

1 − a1
λ −

a−1

1 − a1
= 0 if a = 0

(10)

are inside the unit disk of the complex plane. To simplify the notation, define

f1(a, a−1, a0, a1) =

{

a+a
−1+a0+a1

a
(R(x)m − 1) if a 6= 0,

a0 + a1 + a−1 if a = 0,

f2(a, a−1, a0, a1) =

{

a
−1+a1

a
(R(x)m − 1) − 1 if a 6= 0,

a1 + a−1 − 1 if a = 0,

g1(a, a−1, a0, a1) =

{

a
−1−a0+a1−a

a
(R(x)m − 1) − 2 if a 6= 0,

a1 + a−1 − a0 − 2 if a = 0,

g2(a, a−1, a0, a1) =

{

a1−a
−1

a
(R(x)m − 1) − 1 if a 6= 0,

a1 − a−1 − 1 if a = 0,

and

Fi = sign(1 −
a1

a
(R(x)m − 1))fi,

Gi = sign(1 −
a1

a
(R(x)m − 1))gi.

Then by Lemma 1, we have
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Theorem 5 (a, a−1, a0, a1) ∈ S if and only if Fi(a, a−1, a0, a1) < 0 and Gi(a, a−1, a0, a1) <

0 (i = 1, 2).

In the rest of this section, we assume M > |a|, which implies that |x| < 1 for h = 1/m with

m ≥ M . Now we give two useful lemmas in the proofs of our main results.

Lemma 6 ([14]) If |x| ≤ 1, then φ(x) ≥ 1/2 for x > 0 and φ(x) ≥ 1 for x ≤ 0.

Lemma 7 ([14]) If |x| ≤ 1, then

φ(x) ≤
x

ex − 1

and

φ(x) ≥
x

ex − 1

for even and odd n, respectively.

In order to analyze the stability, we simplify the conditions (3) and (4). In H1, the condition
{

−(a1 −
a

ea−1 ) < a−1 < a1 −
a

ea−1 ,

a0 < a−1 + a1 −
a(ea+1)

ea−1 ,

can be reduced to
{

a1 − a−1 > a
ea−1 ,

a−1 − a0 + a1 − a > 2a
ea−1 .

(11)

Similarly, the condition
{

−(a1 −
a

ea−1 ) > a−1 > a1 −
a

ea−1 ,

a0 > a−1 + a1 −
a(ea+1)

ea−1 ,

in H2 becomes
{

a1 − a−1 < a
ea−1 ,

a−1 − a0 + a1 − a < 2a
ea−1 .

(12)

Case I 1 − a1

a
(R(x)m − 1) > 0.

Lemma 8 If (a, a−1, a0, a1) ∈ H2, then f1(a, a−1, a0, a1) < 0 is equivalent to
{

R(x)m > 1 if a > 0,

R(x)m < 1 if a < 0.
(13)

It is not difficult to derive the following formula by means of the notations of fi, gi (i = 1, 2)

2f2(a, a−1, a0, a1) = f1(a, a−1, a0, a1) + g1(a, a−1, a0, a1),

so we only consider the following inequalities hold for all m ≥ M

f1(a, a−1, a0, a1) < 0, g1(a, a−1, a0, a1) < 0, g2(a, a−1, a0, a1) < 0.

Then the first main theorem of this paper is obtained.

Theorem 6 For the Euler-Maclaurin method, H2 ⊆ S if and only if n is odd.
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Proof Let (a, a−1, a0, a1) ∈ H2. Then a + a−1 + a0 + a1 < 0. If a > 0, it follows from Theorem

5 and Lemma 8 that R(x)m > 1, thus,

R(x)m − 1

a
> 0.

In view of (12) and Theorem 5, we know that for any given a > 0

sup
(a,a

−1,a0,a1)∈H2

g1(a, a−1, a0, a1) = 2(
R(x)m − 1

ea − 1
− 1) < 0,

sup
(a,a

−1,a0,a1)∈H2

g2(a, a−1, a0, a1) =
R(x)m − 1

ea − 1
− 1 < 0,

which is equivalent to R(x)m < ea. So we have

R(x) < ex, 0 < x ≤ 1,

that is

φ(x) >
x

ex − 1
, 0 < x ≤ 1.

As the consequence of Lemma 7, we have that n is odd. If a < 0, we get the result by using the

same proof as mentioned above. This completes the proof. �

Case II 1 − a1

a
(R(x)m − 1) < 0.

Lemma 9 If (a, a−1, a0, a1) ∈ H1, then f1(a, a−1, a0, a1) > 0 is equivalent to
{

R(x)m > 1 if a > 0,

R(x)m < 1 if a < 0.
(14)

Theorem 7 For the Euler-Maclaurin method, H1 ⊆ S if and only if n is even.

Theorem 8 For all Euler-Maclaurin methods, we have H0 ⊆ S.

5. Numerical examples

We consider the following two problems:

u′
1(t) = u1(t) + 0.5u1([t − 1]) − 0.2u1([t]) + 3u1([t + 1]), t ≥ 0,

u1(−1) = 1, u1(0) = 1,
(15)

u′
2(t) = −2u2(t) − u2([t − 1]) + 0.9u2([t]) + u2([t + 1]), t ≥ 0,

u2(−1) = 1, u2(0) = 1.
(16)

According to (3) and (4), it is not difficult to see that (1, 0.5,−0.2, 3) ∈ H1 and (−2,−1, 0.9, 1) ∈

H2 by direct calculations. We shall use the Euler-Maclaurin method with step size h = 1/m

and n = 2 to get the numerical solution at t = 10, where the exact solutions are u1(10) ≈

−7.1587× 10−5, u2(10) ≈ −0.1278. In Table 1 we have listed the absolute errors (AE) and the

relative errors (RE) at t = 10 and the ratio of the errors of the case m = 20 over that of m = 40.

We can see from this table that the Euler-Maclaurin method with n = 2 is of order 6, that is,

the method preserves its order of convergence.
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(15) (16)

AE RE AE RE

m = 2 2.4192E-9 3.3794E-5 7.3798E-6 5.7724E-5

m = 3 2.1067E-10 2.9429E-6 6.2728E-7 4.9065E-6

m = 5 9.7885E-12 1.3674E-7 2.8786E-8 2.2516E-7

m = 10 1.5268E-13 2.1327E-9 4.4665E-10 3.4936E-9

m = 20 2.3850E-15 3.3316E-11 6.9664E-12 5.4491E-11

m = 40 4.1715E-17 5.8271E-13 1.0911E-13 8.5343E-13

Ratio 57.1737 57.1742 63.8475 63.8494

Table 1 Errors of the Euler-Maclaurin method with n = 2

In Figures 1 and 2, we draw the numerical solutions of the Euler-Maclaurin method with

m = 2 and m = 15 for (15) and (16), respectively. It is easy to see that the numerical solutions

are asymptotically stable.

All above numerical examples are in agreement with the main results in the paper.
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