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Abstract The aim of this paper is to categorify the n-th tensor power of the vector represen-
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1. Introduction

The general idea of categorification was introduced by Crane and Frenkel [4, 5]. It refers to

the process of finding category-theoretic analogues of ideas phrased in the language of set theory.

One of the simplest examples of categorificaitons is that the set N of natural numbers can be

categorified by the category of finite dimensional linear spaces, which lifts us from arithmetic in

N to linear algebra. From this simplest example, we can see that the idea of categorification is

very important. In fact, categorification has shown its power in low dimensional topology theory,

knot theory and many other fields [1, 9]. Universal enveloping algebras of simple Lie algebras

and their quantizations play an important role in various fields such as conformal field theory,

low dimensional topology, etc. Therefore, categorifications of these algebras have been studied

by many mathematicians in recent years [1, 10, 11].

Bernstein, Frenkel and Khovanov [1] investigated a categorification of the n-th tensor power of

the fundamental representation of U(sl2) via certain singular blocks and projective functors of the

BGG category of the complex Lie algebra gln. Meanwhile, they raised the more difficult problem:

categorifications of the representation theory of U(g) for arbitrary simple Lie algebra g. In the

present paper, we study a categorification of the n-th tensor power of the vector representation of

U(so(7, C)), which can be considered as a part of categorifications of the representation theory

of U(g) for the simple Lie algebra g of type B3. In other words, we categorify the image of

U(so(7, C)) under the algebra homomorphism ι : U(so(7, C))→ End(V⊗n) corresponding to the

n-th tensor power of the vector representation V of U(so(7, C)).
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The paper is organized in the following manner. In Section 2, we recall some basic concepts

of U(so(7, C)) and its vector representation, then give a brief introduction to the BGG category.

In Section 3, we obtain a categorification of the n-th tensor power of the vector representation of

U(so(7, C)). The programme is arranged as follows. To begin with, we categorify the underlying

space of the n-th tensor power V ⊗n of the vector representation V for U(so(7, C)) by using certain

singular blocks of the BGG category O(gln) (Theorem 8). Then we yield a categorification of

the U(so(7, C)) action on V ⊗n by projective functors of O(gln) (Theorem 10). Finally, we lift

all the defining relations of U(so(7, C)) to the natural isomorphisms between functors (Theorem

11).

Throughout the paper, we denote by C, N and Z the complex number field, the natural

number set and the integer number set, respectively.

2. Lie algebra so(7, C) and the BGG category

We start by reviewing some basic results about the universal enveloping algebra of Lie algebra

so(7, C) and the BGG category of the complex reductive Lie algebra.

As an associative algebra, the universal enveloping algebra U(so(7, C)) of the special orthog-

onal Lie algebra so(7, C) is generated by hi, ei, fi (1 ≤ i ≤ 3) over C which are subject to the ob-

vious relations (where [·, ·] denotes the usual commutator): [hi, hj] = 0, [ei, fj] = δi,jhi, [hi, ej ] =

ai,jej , [hi, fj ] = −ai,jfj , and the following Serre’s relations:

1−ai,j∑

k=0

(−1)k

(
1− ai,j

k

)
e
1−ai,j−k

i eje
k
i = 0 for i 6= j,

1−ai,j∑

k=0

(−1)k

(
1− ai,j

k

)
f

1−ai,j−k

i fjf
k
i = 0 for i 6= j,

where ai,j (1 ≤ i, j ≤ 3) are the entries of the Cartan matrix A = (ai,j)3×3 of so(7, C) given by




2 −1 0

−1 2 −1

0 −2 2


 .

As a coalgebra, the comultiplication ∆ of U(so(7, C)) is given by ∆(x) = x ⊗ 1 + 1 ⊗ x for

x ∈ {hi, ei, fi|i = 1, 2, 3}.

Let V = ⊕0≤i≤6Cvi be a 7 dimensional vector space over C. Then V is the vector represen-

tation of U(so(7, C)) under the algebra homomorphism ι : U(so(7, C)) → EndC(V) ∼= M7×7(C)

with

ι(e1) = E01 + E56, ι(e2) = E12 + E45, ι(e3) = 2E23 + E34,

ι(f1) = E10 + E65, ι(f2) = E21 + E54, ι(f3) = E32 + 2E43,

ι(h1) = E00 − E11 + E55 − E66, ι(h2) = E11 − E22 + E44 − E55, ι(h3) = 2(E22 − E44),

where Eij (0 ≤ i, j ≤ 6) denote the 7× 7 elementary matrices having 1 at the (i + 1, j + 1)-entry

and 0 elsewhere.
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For convenience, we fix some notations we will use in the sequel.

All Lie algebras and their representations are defined over C. The U(g) is the universal

enveloping algebra of a finite dimensional reductive Lie algebra g. The notation Mod-U(g)

denotes the category of all U(g)-modules. Let g = n+ ⊕ h ⊕ n− be a triangular decomposition

of g and ( , ) : g × g → g the Killing form of g. Denote by W the Weyl group of g. Let R be

the set of roots of g and R+ the set of its positive roots. Let ρ be the half-sum of positive roots.

For λ ∈ h∗, M(λ) and L(λ) denote the Verma module and irreducible module with the highest

weight λ, respectively.

Now let us recall some concepts and properties of the BGG category for a reductive Lie

algebra g. The definition of the BGG category is stated as follows [8, pp. 13–14].

Definition 1 The BGG category O(g) is defined to be the full subcategory of U(g)-Mod whose

objects are the modules satisfying the following three conditions.

(1) M is a finitely generated U(g)-module.

(2) M is h-diagonalizable, that is, M is a weight module : M = ⊕λ∈h∗Mλ.

(3) M is locally U(n+)-finite: for each v ∈M , the subspace U(n+) · v is finite dimensional.

Denote by

Θ = {θ : Z(U(g))→ C | θ is an algebra homomorphism}

the central character set. We can naturally identify Θ with the quotient of the weight space h∗

by the map η : h∗ → Θ with η(λ)(z) = θλ(z) = λ(ξ(z)) = λ(pr(z)), where pr : U(g) → U(h) is

the projection onto the subspace by setting all other monomials equal to 0 and ξ is the Harish-

Chandra homomorphism, that is, ξ is the map from Z(U(g)) to U(h) with ξ(z) = pr(z). The

above identification can be seen from the following proposition [8, p. 26].

Proposition 2 (1) Every central character θ : Z(U(g))→ C is of the form θλ for some λ ∈ h∗.

(2) For all λ, µ ∈ h∗, we have θλ = θµ if and only if µ = w · λ for some w ∈ W , where

w · λ = w(λ + ρ)− ρ.

For any θ ∈ Θ, denote by Oθ(g) the full subcategory of O(g) whose objects are the modules

M where

M = {m ∈M |(z − θ(z))n ·m = 0 for some n ∈ N for each z ∈ Z(U(g))}.

If A is an additive category, denote by K(A ) the Grothendieck group of A . Denote by [M ] the

image of an object M ∈ Ob(A ) in the Grothendieck group of A .

The following proposition can be referred to [2, 3] and [8].

Proposition 3 The BGG category O(g) has the following properties.

(1) The BGG category O(g) is both artinian and noetherian, i.e., each M ∈ Ob(O(g)) is

both artinian and noetherian.

(2) The BGG category O(g) is the direct sum of the subcategories Oθ(g) as θ ranges over the

central characters, i.e., each M ∈ Ob(O(g)) decomposes into a finite sum M = ⊕θ∈ΘM(θ), where

M(θ) ∈ Ob(Oθ(g)), and for θ1 6= θ2 ∈ Θ, Hom(M1, M2) = 0 for any M1 ∈ Ob(Oθ1(g)), M2 ∈

Ob(Oθ2(g)).
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(3) Fix a central charater θ and let {V (λ)} be a collection of modules in Oθ(g) indexed by

the weights λ for which θ = θλ, satisfying: (i) dimV
(λ)
λ = 1; (ii) µ ≤ λ for all weights µ of

V (λ). Then {[V (λ)]|θ = θλ} forms a Z-basis of the Grothendieck group K(Oθ(g)). In particular,

{[M(λ)]|θ = θλ} and {[L(λ)]|θ = θλ} form two Z-basis of the Grothendieck group K(Oθ(g)).

Now we give a brief introduction to projective functors.

Denote by projθ the functor fromO(g) toOθ(g) that, to a module M = ⊕θ∈ΘM(θ), associates

the θ-component summand M(θ) of M . Let FV be the functor of tensoring with a finite-

dimensional g-module V. The following definition can be found in [1] (see also [2] or [8], p. 214).

Definition 4 F : O(g) → O(g) is a projective functor if it is isomorphic to a direct summand

of the functor FV for some finite dimensional module V.

Remarks (1) The functor projθ is an example of a projective functor, since it is a direct

summand of the functor of tensoring with the one-dimensional representation. We have an

isomorphism of functors

FV
∼= ⊕

θ1,θ2∈Θ
(projθ1

◦ FV ◦ projθ2
).

(2) Any projective functor takes projective objects in O(g) to projective objects. The

composition of projective functors is again a projective functor. Each projective functor splits

as a direct sum of indecomposable projective functors.

(3) Projective functors are exact. Therefore, they induce endomorphisms of the Grothendieck

group of the category O(g).

Definition 5 A weight λ ∈ h∗ is called integral if 〈λ, α∨〉 ∈ Z for all α ∈ R; a weight λ ∈ h∗

is called dominant if 〈λ + ρ, α∨〉 /∈ Z<0 for any coroot α∨ of α ∈ R+, where 〈λ, α∨〉 = 2(λ,α)
(α,α) for

any λ ∈ h∗ and α ∈ R.

The following result can be found in [2].

Proposition 6 Let λ be a dominant integral weight, θ = η(λ) and F, G projective functors

from Oθ(g) to O(g). Then

(1) Functors F and G are isomorphic if and only if the endomorphisms of K(O(g)) induced

by F and G are equal.

(2) Functors F and G are isomorphic if and only if modules FM(λ) and GM(λ) are isomor-

phic.

We are going to compute the action of projective functors on Grothendieck groups of certain

subcategories of the BGG category. By Proposition 3 (3), the simplest basis in the Grothendieck

group of O(g) is given by images of Verma modules. The following proposition shows that this

basis is also handy for writing the action of projective functors on the Grothendieck group of

O(g) (see [1, 2]).

Proposition 7 Let V be a finite-dimensional g-module, µ1, . . . , µm a multiset of weights of V ,

i.e., there is a basis v1, v2, . . . , vm of V such that the weight of the vector vi equals µi, M(λ− ρ)

the Verma module with the highest weight λ− ρ. Then
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(1) The module V ⊗M(λ − ρ) admits a filtration with successive quotients isomorphic to

Verma modules M(λ + µ1 − ρ), . . . , M(λ + µm − ρ) (in some order).

(2) In the Grothendieck group K(O(g)) we have [V ⊗M(λ− ρ)] =
∑m

i=1[M(λ + µi − ρ)].

3. Categorification of the vector representation of U(so(7, C))

The purpose of this section is to obtain a categorification of the n-th tensor power V ⊗n of

the vector representation V for U(so(7, C)). We will go along the following three steps.

(1) Categorifying the underlying space of the n-th tensor power V ⊗n of the vector represen-

tation V of U(so(7, C)) by using certain singular blocks of the BGG category O(gln).

(2) Yielding a categorification of the U(so(7, C)) action on V ⊗n by projective functors of

O(gln).

(3) Lifting all the defining relations of U(so(7, C)) to the natural isomorphisms between

functors.

The categorifications we proceed in the above three steps are really about the image Im ι of

U(so(7, C)) under the algebra homomorphism ι : U(so(7, C))→ End(V⊗n) corresponding to the

n-th tensor power of the vector representation V of U(so(7, C)).

We fix once and for all a triangular decomposition n+ ⊕ h ⊕ n− of the Lie algebra gln. The

Weyl group of gln is isomorphic to the symmetric group Sn. Choose a standard orthogonal basis

ε1, . . . , εn in the Euclidean space Rn and identify the complexification C⊗RRn with the dual h∗

of Cartan subalgebra so that R+ = {εi − εj |1 ≤ i < j ≤ n} is the set of positive roots and

βi = εi − εi+1, 1 ≤ i ≤ n− 1 are simple roots. The generator si of the Weyl group W = Sn acts

on h∗ by permuting εi and εi+1. Denote by ρ the half-sum of positive roots

ρ =
n− 1

2
ε1 +

n− 3

2
ε2 + · · ·+

1− n

2
εn.

We denote by [0, 6] the integers 0 ≤ k ≤ 6. For a sequence (a1, . . . , an) ∈ [0, 6]n we denote

by M(a1, . . . , an) the Verma module with the highest weight a1ε1 + · · ·+ anεn − ρ. Accordingly,

L(a1, . . . , an) denotes the simple quotient of M(a1, . . . , an).

Let D be the set of all 7-tuples of natural numbers d = (d0, d1, d2, d3, d4, d5, d6) such that∑6
k=0 dk = n. We define the following equivalent relation ∼ on D:

d ∼ d′ ⇔





d0 − d1 + d5 − d6 = d′0 − d′1 + d′5 − d′6,

d1 − d2 + d4 − d5 = d′1 − d′2 + d′4 − d′5,

d2 − d4 = d′2 − d′4,

⇔





d0 − d6 = d′0 − d′6,

d1 − d5 = d′1 − d′5,

d2 − d4 = d′2 − d′4,

for any d = (d0, d1, d2, d3, d4, d5, d6),d
′ = (d′0, d

′
1, d
′
2, d
′
3, d
′
4, d
′
5, d
′
6) ∈ D. In the following [d] and

D̃ represent the equivalent class of d and the set of all the the equivalent classes respectively.

For each d ∈ D, set

λd =
6∑

i=0

di∑

j=1

(6− i)εd0+···+di−1+j .

Denote by θd = η(λd − ρ) the corresponding central character of gln under the map η : h∗ → Θ.
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We denote the category Oθd
(gln) by Od and set

O[d] = ⊕
d′∈[d]

Od′ , On = ⊕
[d]∈D̃

O[d].

From now on, we always view V and V ⊗n as U(so(7, C))-modules over Z. As is known, V

has the weight space decomposition: V = ⊕6
k=0Vk, where Vk = Zvk (0 ≤ k ≤ 6). It follows

that V ⊗n has the weight space decomposition: V ⊗n = ⊕[d]∈D̃(V ⊗n)[d], where (V ⊗n)[d] is the

Z-module spanned by {va1 ⊗ va2 ⊗ · · · ⊗ van
|(a1, . . . , an) ∈ [0, 6]n satisfying ∃ d′ ∈ [d] such that

♯ {am|am = k, 1 ≤ m ≤ n} = d′k for 0 ≤ k ≤ 6}.

Now we are prepared to realize V ⊗n and its weight space (V ⊗n)[d] for any [d] ∈ D̃ as the

Grothendieck groups of the categories On and O[d], respectively. Indeed, we have the following

result.

Theorem 8 There exists an isomorphism of abelian groups γn : K(On)→ V ⊗n given by

γn([M(a1, . . . , an)]) = va1 ⊗ va2 ⊗ · · · ⊗ van
,

for any sequence (a1, . . . , an) ∈ [0, 6]n. Moreover, the restriction of γn on K(O[d]) is an abelian

group isomorphism between K(O[d]) and (V ⊗n)[d] for any [d] ∈ D̃.

Proof To prove the theorem, it suffices to prove that γn : K(O[d]) → (V ⊗n)[d] is an abelian

group isomorphism for any [d] ∈ D̃. Indeed, the above abelian group isomorphism will be obvious

if we note the following facts.

For any [d] ∈ D̃ and d′ ∈ [d], on one hand, by Proposition 2 and 3 (3) we know that the set

of all the symbols [M(a1, . . . , an)] satisfying

♯ { am | am = k, 1 ≤ m ≤ n} = d′k for 0 ≤ k ≤ 6, (1)

is a Z-basis of the Grothendieck group K(Od′). We denote this Z-basis by Bd′ . It follows that

B[d] = ∪
d′∈[d]

Bd′ is a Z-basis of the Grothendieck group K(O[d]). On the other hand, if we denote

by B′
d′ the set of va1 ⊗ va2 ⊗ · · · ⊗ van

such that the sequence (a1, . . . , an) ∈ [0, 6]n satisfies (1),

then B′[d] = ∪d′∈[d]B
′
d′ is a Z-basis of the weight space (V ⊗n)[d]. 2

To categorify the action of U(so(7, C)) on V ⊗n, we introduce a series of projective functors

of O(gln).

Let Ln be the n-dimensional fundamental representation of gln with weights ε1, ε2, . . . , εn

and the corresponding weight vectors u1, u2, . . . , un. Then its dual representation L∗n has weights

−ε1,−ε2, . . . ,−εn. In the following, we define Od to be the trivial subcategory of O(gln) for

d /∈ D. For d ∈ D let di denote the fact that one subtracts 1 from the coefficient at place i,

and di the fact that one adds 1 to the coefficient at place i. Then d
j
i means that one subtracts

1 from the coefficient at place i and adds 1 to the coefficient at place j.

For d = (d0, d1, d2, d3, d4, d5, d6) ∈ D, define

c1(d) := d0 − d1 + d5 − d6,

c2(d) := d1 − d2 + d4 − d5,

c3(d) := 2(d2 − d4),
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and for 1 ≤ i ≤ 3, denote by sgn(ci(d)) the sign function of ci(d), i.e.,

sgn(ci(d)) =





1, if ci(d) > 0,

0, if ci(d) = 0,

−1, if ci(d) < 0.

Then set

H
sgn(ci(d))
i ([d]) = (IdO[d]

)⊕sgn(ci(d))ci(d) : O[d] → O[d],

where IdO[d]
is the identity functor of O[d]. From the definition of the equivalent relation ∼ on

D it is easy to see that the functors H
sgn(ci(d))
i ([d]) (1 ≤ i ≤ 3) are independent of the choice of

the representative d of [d].

For d ∈ D and the finite dimensional representation L = Ln or L∗n of gln, we define the

following projective functor

ϕ(dj
i , L) = (projθ

d
j
i

) ◦ FL : Od → Od
j

i

given by tensoring with L and then taking the largest submodule of this tensor product that lies

in O
d

j

i
. For any [M(a1, . . . , an)] ∈ Bd, by Proposition 7 we deduce

[ϕ(dj
i , Ln)]([M(a1, . . . , an)]) =

n∑

m=1,

am=i

[M(a1, . . . , am−1, am + 1, am+1, . . . , an)], (2)

[ϕ(dj
i , L
∗
n)]([M(a1, . . . , an)]) =

n∑

m=1,

am=i

[M(a1, . . . , am−1, am − 1, am+1, . . . , an)]. (3)

For any [d] ∈ D̃, we set

E1([d]) = ⊕
d′∈[d]

(ϕ(d′
0
1, L
∗
n)⊕ ϕ(d′

5
6, L
∗
n)) : O[d] → O[

←−
d1]

,

E2([d]) = ⊕
d′∈[d]

(ϕ(d′
1
2, L
∗
n)⊕ ϕ(d′

4
5, L
∗
n)) : O[d] → O[

←−
d2]

,

E3([d]) = ⊕
d′∈[d]

(ϕ(d′
2
3, L
∗
n)⊕2 ⊕ ϕ(d′

3
4, L
∗
n)) : O[d] → O[

←−
d3]

,

F1([d]) = ⊕
d′∈[d]

(ϕ(d′
1
0, Ln)⊕ ϕ(d′

6
5, Ln)) : O[d] → O[

−→
d1]

,

F2([d]) = ⊕
d′∈[d]

(ϕ(d′
2
1, Ln)⊕ ϕ(d′

5
4, Ln)) : O[d] → O[

−→
d2]

,

F3([d]) = ⊕
d′∈[d]

(ϕ(d′
3
2, Ln)⊕ ϕ(d′

4
3, Ln)⊕2) : O[d] → O[

−→
d3]

,

where [
←−
d1] = [d0

1] = [d5
6], [
←−
d2] = [d1

2] = [d4
5], [
←−
d3] = [d2

3] = [d3
4], [
−→
d1] = [d1

0] = [d6
5], [
−→
d2] = [d2

1] =

[d5
4], and [

−→
d1] = [d3

2] = [d4
3].

Now a categorification of the action of U(so(7, C)) on the n-th tensor power of its vector

representation can be obtained as follows.

Proposition 9 (1) For any 1 ≤ i ≤ 3 and [d] ∈ D̃, the action of hi on (V ⊗n)[d] can be

categorified by the exact functor H
sgn(ci(d))
i ([d]), which means that the following diagram is
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commutative:

K(O[d])
γn

−−−−−→ (V ⊗n)[d]y[H
sgn(ci(d))
i ([d])]

ysgn(ci(d))hi

K(O[d])
γn

−−−−−→ (V ⊗n)[d].

(2) For any 1 ≤ i ≤ 3 and [d] ∈ D̃, the restriction of ei from (V ⊗n)[d] to (V ⊗n)
[
←−
di]

can be

categorified by the exact functor Ei([d]), which means that the following diagram is commutative:

K(O[d])
γn
−→ (V ⊗n)[d]y[Ei([d])]

yei

K(O
[
←−
di]

)
γn
−→ (V ⊗n)

[
←−
di]

.

(3) For any 1 ≤ i ≤ 3 and [d] ∈ D̃, the restriction of fi from (V ⊗n)[d] to (V ⊗n)
[
−→
di]

can be

categorified by the exact functor Fi([d]), which means that the following diagram is commutative:

K(O[d])
γn
−→ (V ⊗n)[d]y[Fi([d])]

yfi

K(O
[
−→
di]

)
γn
−→ (V ⊗n)

[
−→
di]

.

Proof Here we only check some cases in (1) and (2). Other cases can be verified similarly.

(1) To check γn ◦ [H
sgn(ci(d))
i ([d])] = sgn(ci(d))hi ◦ γn is equivalent to checking

γn ◦ [H
sgn(ci(d))
i ([d])]([M(a1, . . . , an)]) = sgn(ci(d))hi ◦ γn([M(a1, . . . , an)])

for any [M(a1, . . . , an)] ∈ B[d] = ∪d′∈[d]Bd′ . In fact, we have

γn ◦ [H
sgn(ci(d))
i ([d])]([M(a1, . . . , an)]) = |ci(d)|γn([M(a1, . . . , an)])

= |ci(d)|(va1 ⊗ va2 ⊗ · · · ⊗ van
)

= sgn(ci(d))ci(d)(va1 ⊗ va2 ⊗ · · · ⊗ van
)

= sgn(ci(d))hi ◦ γn([M(a1, . . . , an)]).

(2) We give the proof of the case i = 3.

To verify the commutativity of the diagram in this case, it suffices to check γn◦[E3([d])] = e3◦

γn. Indeed, for any [d] ∈ D̃ and [M(a1, . . . , an)] ∈ B[d] = ∪d′∈[d]Bd′ , we assume [M(a1, . . . , an)] ∈

Bd0 for some d0 ∈ [d], by (17)–(20), then one has

[E3([d])]([M(a1, . . . , an)]) =[ ⊕
d′∈[d]

(ϕ(d′
2
3, L
∗
n)⊕2 ⊕ ϕ(d′

3
4, L
∗
n))]([M(a1, . . . , an)])

=[(ϕ(d0
2
3, L
∗
n)⊕2 ⊕ ϕ(d0

3
4, L
∗
n))M(a1, . . . , an)]

=[ϕ(d0
2
3, L
∗
n)⊕2M(a1, . . . , an)] + [ϕ(d0

3
4, L
∗
n)M(a1, . . . , an)]

=

n∑

m=1,

am=3

2[M(a1, . . . , am−1, am − 1, am+1, . . . , an)]+

n∑

m=1,

am=4

[M(a1, · · · , am−1, am − 1, am+1, . . . , an)].



Categorification of U(so(7, C)) 87

It follows that

γn ◦ [E3([d])]([M(a1, . . . , an)]) =γn(

n∑

m=1,

am=3

2[M(a1, . . . , am−1, am − 1, am+1, . . . , an)])+

γn(

n∑

m=1,

am=4

[M(a1, . . . , am−1, am − 1, am+1, . . . , an)])

=2

n∑

m=1,

am=3

(va1 ⊗ · · · ⊗ vam−1 ⊗ vam−1 ⊗ vam+1 ⊗ · · · ⊗ van
)+

n∑

m=1,

am=4

(va1 ⊗ · · · ⊗ vam−1 ⊗ vam−1 ⊗ vam+1 ⊗ · · · ⊗ van
).

Moreover, we have

(e3 ◦ γn)([M(a1, . . . , an)]) =e3(va1 ⊗ · · · ⊗ vam−1 ⊗ vam
⊗ vam+1 ⊗ · · · ⊗ van

)

=

n∑

m=1

(va1 ⊗ · · · ⊗ vam−1 ⊗ e3vam
⊗ vam+1 ⊗ · · · ⊗ van

)

=2
n∑

m=1,

am=3

(va1 ⊗ · · · ⊗ vam−1 ⊗ vam−1 ⊗ vam+1 ⊗ · · · ⊗ van
)+

n∑

m=1,

am=4

(va1 ⊗ · · · ⊗ vam−1 ⊗ vam−1 ⊗ vam+1 ⊗ · · · ⊗ van
).

Hence, the diagram is commutative. 2

Theorem 10 For any 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3, let

H+
i = ⊕

[d]∈D̃,

sgn(ci(d))=1 or 0

H
sgn(ci(d))
i ([d]) : On → On, H−i = ⊕

[d]∈D̃,

sgn(ci(d))=−1

H
sgn(ci(d))
i ([d]) : On → On,

Ej = ⊕
[d]∈D̃

Ej([d]) : On → On, Fj = ⊕
[d]∈D̃

Fj([d]) : On → On.

Then we have the following results.

(1) For any 1 ≤ i ≤ 3, the action of hi on V ⊗n can be categorified by a pair of exact functors

(H+
i ,H−i ), which means that the following diagram is commutative:

K(On)
γn

−−−−−→ V ⊗n

y[H+
i ]− [H−i ]

yhi

K(On)
γn

−−−−−→ V ⊗n.

(2) For any 1 ≤ i ≤ 3, the action of ei on V ⊗n can be categorified by the exact functor Ei,

which means that the following diagram is commutative:

K(On)
γn
−→ V ⊗n

y[Ei]
yei

K(On)
γn
−→ V ⊗n.



88 Yongjun XU and Shilin YANG

(3) For any 1 ≤ i ≤ 3, the action of fi on V ⊗n can be categorified by the exact functor Fi,

which means that the following diagram is commutative:

K(On)
γn
−→ V ⊗n

y[Fi]
yfi

K(On)
γn
−→ V ⊗n.

Proof It is not difficult to check the diagrams are commutative by Proposition 9. 2

Now we categorify all the defining relations of U(so(7, C)) as the natural isomorphisms be-

tween some projective functors of O(gln). In fact, we have the following result.

Theorem 11 (1) H+
i ◦ H

+
j ⊕H

−
i ◦ H

−
j ⊕H

+
j ◦ H

−
i ⊕H

−
j ◦ H

+
i
∼= H+

i ◦ H
−
j ⊕H

−
i ◦ H

+
j ⊕H

+
j ◦

H+
i ⊕H

−
j ◦ H

−
i for 1 ≤ i, j ≤ 3.

(2) Ei ◦ Fj ⊕ δi,jH
−
i
∼= Fj ◦ Ei ⊕ δi,jH

+
i for 1 ≤ i, j ≤ 3.

(3) (a) H+
i ◦ Ei ⊕ Ei ◦ H

−
i
∼= H−i ◦ Ei ⊕ Ei ◦ H

+
i ⊕ E

⊕2
i for i = 1, 2, 3;

(b) H+
i ◦ Ej ⊕ Ej ◦ H

−
i ⊕ (Ej)

⊕(−ai,j) ∼= H−i ◦ Ej ⊕ Ej ◦ H
+
i for 1 ≤ i 6= j ≤ 3.

(4) (a) H+
i ◦ Fi ⊕Fi ◦ H

−
i ⊕F

⊕2
i
∼= H−i ◦ Fi ⊕Fi ◦ H

+
i for i = 1, 2, 3;

(b) H+
i ◦ Fj ⊕Fj ◦ H

−
i
∼= H−i ◦ Fj ⊕Fj ◦ H

+
i ⊕ (Fj)

⊕(−ai,j) for 1 ≤ i 6= j ≤ 3.

(5)
1−ai,j∑

k=0,

even

(E
(1−ai,j−k)
i ◦ Ej ◦ Ek

i )

⊕

( 1− ai,j

k

)

∼=
1−ai,j∑

k=0,

odd

(E
(1−ai,j−k)
i ◦ Ej ◦ Ek

i )

⊕

( 1− ai,j

k

)

for 1 ≤ i 6= j ≤ 3.

(6)
1−ai,j∑

k=0,

even

(F
(1−ai,j−k)
i ◦ Fj ◦ F k

i )

⊕

( 1− ai,j

k

)

∼=
1−ai,j∑

k=0,

odd

(F
(1−ai,j−k)
i ◦ Fj ◦ F k

i )

⊕

( 1− ai,j

k

)

for 1 ≤ i 6= j ≤ 3.

Proof Note that On = ⊕[d]∈D̃O[d], O[d] = ⊕d′∈[d]Od′ , Od = Oθd
(gln), θd = η(λd − ρ), and for

any α ∈ R+, 〈λd − ρ + ρ, α∨〉 = 〈λd, α∨〉 ∈ Z≥0, this means that the weight λd − ρ is integral

and dominant.

By Proposition 6 (1), to check the natural isomorphisms in Theorem 11 is equivalent to

checking the equalities among the abelian group homomorphisms [H+
i ] and [H−i ] (1 ≤ i ≤ 3),

[Ej ] and [Fj ] (1 ≤ j ≤ 3) on the Grothendieck group K(On). In the following, we will check

some cases, while the other cases can be similarly verified.

(1) By Proposition 6 (1), we only need to check that

[H+
i ] ◦ [H+

j ] + [H−i ] ◦ [H−j ] + [H+
j ] ◦ [H−i ] + [H−j ] ◦ [H+

i ]

= [H+
i ] ◦ [H−j ] + [H−i ] ◦ [H+

j ] + [H+
j ] ◦ [H+

i ] + [H−j ] ◦ [H−i ]. (4)

Indeed, it is easy to see that hihjγn = hjhiγn. By Theorem 10 (1), we have

hihjγn = γn ◦ ([H+
i ]− [H−i ]) ◦ ([H+

j ]− [H−j ]),

hjhiγn = γn ◦ ([H+
j ]− [H−j ]) ◦ ([H+

i ]− [H−i ]).
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Therefore,

([H+
i ]− [H−i ]) ◦ ([H+

j ]− [H−j ]) = ([H+
j ]− [H−j ]) ◦ ([H+

i ]− [H−i ]). (5)

Immediately we get (4) by expanding (5).

(6) We only check the case i = 3, j = 2 and the remaining cases in (6) can be verified

similarly. By Proposition 6 (1), it is equivalent to checking

[F3]◦ [F3]◦ [F3]◦ [F2]+3[F3]◦ [F2]◦ [F3]◦ [F3] = 3[F3]◦ [F3]◦ [F2]◦ [F3]+ [F2]◦ [F3]◦ [F3]◦ [F3].

By Theorem 10 (3), we have

γn ◦ ([F3] ◦ [F3] ◦ [F3] ◦ [F2] + 3[F3] ◦ [F2] ◦ [F3] ◦ [F3])

= (f3
3 f2 + 3f3f2f

2
3 ) ◦ γn = (3f2

3 f2f3 + f2f
3
3 ) ◦ γn

= γn ◦ (3[F3] ◦ [F3] ◦ [F2] ◦ [F3] + [F2] ◦ [F3] ◦ [F3] ◦ [F3]).

Hence,

γn ◦ ([F3] ◦ [F3] ◦ [F3] ◦ [F2] + 3[F3] ◦ [F2] ◦ [F3] ◦ [F3])

= γn ◦ (3[F3] ◦ [F3] ◦ [F2] ◦ [F3] + [F2] ◦ [F3] ◦ [F3] ◦ [F3]).

Therefore, F3 ◦ F3 ◦ F3 ◦ F2 ⊕ (F3 ◦ F2 ◦ F3 ◦ F3)
⊕3 ∼= (F3 ◦ F3 ◦ F2 ◦ F3)

⊕3 ⊕F2 ◦ F3 ◦ F3 ◦ F3.

The proof of the theorem is finished. 2
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