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Abstract In this paper, we investigate the exponential stability in pth moment as well as the

almost surely exponential stability of solutions of stochastic Volterra-Levin equations (SVLEs

in short) by the use of fixed point theorem for p ≥ 2. Our results extend and improve the

corresponding results obtained in [3, 12], and the result in [12] is a special case of our results.
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1. Introduction

Mathematical model plays an important role in many branches of science and industry. For

example, deterministic/stochastic differential equations and functional differential equations have

been extensively used to model many of the phenomena arising in lots of areas such as finance,

economics, biology, physics, medicine and so on. The existence and uniqueness of solutions for

such equations have been extensively considered in many papers. Meanwhile, many papers have

studied the properties of the solutions by the use of various methods [1–10, 12–19].

Lyapunov’s direct method has been used to deal with those problems above for more than

one hundred years, and many excellent results were obtained [4, 5, 14, 15]. However, numerous

difficulties are encountered in the study of some special equations by utilizing Lyapunov’s direct

method, which has been a powerful tool in dealing with deterministic/stochastic differential

equations and functional differential equations.

Recently, Becker [1], Burton [2], Furumochi [6], Raffoul [16] and Zhang [19] et. al. have

overcome those difficulties to consider those differential equations by using fixed point theorem.

On the other hand, Satio [17] and Serban [18] have investigated the stability of differential

equations by the use of the fixed point theorem. To our best knowledge, there are few papers to

study the stochastic differential equations by the use of the fixed point theorem [10, 13].
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More recently, some researchers have been interested in the study of stochastic Volterra-

Levin equation

dx(t) = −
(

∫ t

t−L

h(s− t)g(x(s))ds
)

dt+ σ(t)dB(t), t ≥ 0 (1.1)

with the initial condition

x(t) = ψ(t) ∈ C([−L, 0]; R), −L ≤ t ≤ 0, (1.2)

where σ ∈ C([0,∞); R), h ∈ C([−L, 0]; R) and g ∈ C(R; R).

In [3], Burton showed that the stochastic Volterra-Levin equation (1.1) has a unique con-

tinuous solution and the solution is almost surely stable under some additional conditions. In

2010, Luo [12] gave some conditions to ensure the exponential stability in mean square and the

almost surely exponential stability of the stochastic Volterra-Levin equation (1.1) by using the

fixed point theorem, which generalize the results in [3].

Motivated by the above papers, we investigate the exponential stability and the almost

surely exponential stability of solutions in pth moment of the stochastic Volterra-Levin equation

(1.1) by the use of the fixed point theorem for p ≥ 2. As we will see, our results extend

and improve the corresponding results in [3, 12] in two aspects: (1) We extend the exponential

stability in mean square of the stochastic Volterra-Levin equation (1.1) to exponential stability

in pth (p ≥ 2) moment, that is, the result in [12] is a special case in our results; (2) We obtain

the almost surely exponential stability of the stochastic Volterra-Levin equation (1.1) from the

exponential stability in pth (p ≥ 2) moment.

The paper is organized as follows: In Section 2, we give some lemmas, which will be required

in the proof of our main theorems; In Section 3, we give two theorems to show that the stochastic

Volterra-Levin equation (1.1) is exponentially stable in pth (p ≥ 2) moment and almost surely

exponentially stable in pth (p ≥ 2) moment. Meanwhile, three examples are also given to

illustrate our results.

2. Preliminaries

Throughout this paper, let (Ω,F , P ) be a complete probability space with a filtration

{Ft}t≥0 satisfying the usual conditions (that is, it is right continuous and F0 contains all P -

null sets), in which a standard Brownian motion {B(t), t ≥ 0} is defined. Let L > 0 and

C([−L, 0]; R) denote the all continuous functions ϕ from [−L, 0] to R with the supremum norm

‖ϕ‖ = sup−L≤θ≤0 |ϕ(θ)|. For an arbitrary interval [a, b] of R, we denote all continuous functions

ϕ : [a, b] → R by C([a, b]; R). For p > 0 and t ≥ 0, let Lp
Ft

([−L, 0]; R) denote the family of all

Ft-measurable function φ(θ) ∈ C([−L, 0]; R) such that sup−L≤θ≤0E|φ(θ)|p <∞.

Lemma 2.1 ([7]) The following inequalities hold:

(i) (x + y)p ≤ (1 + ǫ)p−1(xp + ǫ1−pyp), ǫ > 0.

(ii) (
∑n

i=1 xi)
p ≤ Cp

∑n

i=1 x
p
i , Cp = 1 when 0 < p ≤ 1, Cp = n(p−1) when p ≥ 1.
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Lemma 2.2 ([11]) If the functions f(x) and g(x) are nonnegative and continuous, then for any

p > 1 and q > 1 with 1
p

+ 1
q

= 1, the following inequality holds:

∫ b

a

f(x)g(x)dx ≤
(

∫ b

a

fp(x)dx
)

1
p
(

∫ b

a

gq(x)dx
)

1
q

.

Lemma 2.3 ([14]) Let M2((−∞, 0]; Rd) denote the family of the process {ξ(t)}t≤0 in Lp((−∞, 0]; Rd)

such that E
∫ 0

−∞
|ξ(t)|2 <∞ a.s. If p > 2, g ∈ M2([t0, T ]; Rd×m) such that E

∫ T

t0
|g(s)|pds <∞,

then

E
∣

∣

∣

∫ T

t0

g(s)dB(s)
∣

∣

∣

p

≤ (
p(p− 1)

2
)

p
2 T

p−2

2 E

∫ T

t0

|g(s)|pds.

Remark 2.1 If p = 2, then the Itô isometry in [8] reduces to

E
∣

∣

∣

∫ T

t0

g(s)dB(s)
∣

∣

∣

2

= E
[

∫ T

t0

g2(s)ds
]

.

Hence, Lemma 2.3 is satisfied for p ≥ 2.

Lemma 2.4 ([9]) Suppose constants p ≥ 1 and λ > 0. Let X(t) =
∫ t

0
g(s)dB(s). Then

P
(

max
0≤u≤t

|X(u)| ≥ λ
)

≤
E|X(t)|p

λp
,

for all t ≥ 0.

Definition 2.1 ([7]) The solution of the stochastic Volterra-Levin equation (1.1) with the initial

condition (1.2) is said to be exponentially stable in pth moment if

lim sup
t→∞

1

t
ln(E|x(t)|p) < 0, for all t ≥ 0.

Definition 2.2 ([12]) The solution of the stochastic Volterra-Levin equation (1.1) is said to be

almost surely exponentially stable if there exist a constant λ > 0 and a finite random variable β

such that

|x(t)| ≤ βe−λt a.s.

for all t ≥ 0, or equivalently if

lim sup
t→∞

1

t
ln |x(t)| ≤ −λ a.s.

3. Main results

Theorem 3.1 Suppose that the following conditions hold:

(1) There exists a continuous function g(x) such that

xg(x) ≥ 0, g(0) = 0 and γ := lim
x→0

g(x)

x
exists; (3.1)

(2) There exists a constant α > 0 such that

g(x)

x
≥ 2α; (3.2)
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(3) There exists a constant K > 0 such that |g(x) − g(y)| ≤ K|x− y| for all x, y ∈ R, and

there exists a continuous function h(t) such that

2K

∫ 0

−L

|h(s)s|ds < 1 and

∫ 0

−L

h(s)ds = 1; (3.3)

(4) One of the following two conditions holds:
∫ t

0

e2pαs|σ(s)|pds <∞, for all t ≥ 0, p ≥ 2; (3.4)

or
∫ ∞

0

e2pαs|σ(s)|pds = ∞ and eαt|σ(t)|p → 0 as t→ ∞, p ≥ 2. (3.5)

Then the solution of the stochastic Volterra-Levin equation (1.1) with the initial condition (1.2)

is exponentially stable in pth moment and the convergence rate is α.

Proof Define a continuous function a : [0,∞) → [0,∞) by

a(t) :=







g(x(t))

x(t)
, if x(t) 6= 0,

γ, if x(t) = 0.

The stochastic Volterra-Levin equation (1.1) can be written as

dx(t) = −a(t)x(t)dt+ d
(

∫ 0

−L

h(s)

∫ t

t+s

g(x(u))duds
)

+ σ(t)dB(t), (3.6)

for t ≥ 0. Multiplying e
∫

t

0
a(u)du in both sides of (3.6) and integrating from 0 to t > 0, we get

x(t) =e−
∫

t

0
a(u)du

(

ψ(0) −

∫ 0

−L

h(ω)

∫ 0

ω

g(ψ(u))dudω
)

+

∫ 0

−L

h(ω)

∫ t

t+ω

g(x(u))dudω−

∫ t

0

e−
∫

t

s
a(u)dua(s)

∫ 0

−L

h(ω)

∫ s

s+ω

g(x(u))dudωds+

∫ t

0

e−
∫

t

s
a(u)duσ(s)dB(s) (3.7)

for any t ≥ 0. It is easy to verify that (3.6) is equivalent to (3.7).

Let (B, ‖ · ‖) be the Banach space of all bounded and continuous pth F0-adapted process

φ(t, ω) : [−L,∞) × Ω → R with the supremum norm ‖φ‖B := supt≥0E|φ(t)|p for φ ∈ B. Define

a complete metric space (S, ρ) by

S := {φ : [−L,∞) × Ω → R | φ ∈ B, φ(t) = ψ(t), for t ∈ [−L, 0], eαtE|φ(t, ω)|p → 0 as t→ ∞},

where ρ denotes the supremum metric: for φ1, φ2 ∈ S, ρ(φ1, φ2) = ‖φ1 − φ2‖.

For a given continuous function ψ : [−L, 0] × Ω → R and x ∈ S, we define an operator

T : S → S by

(Tx)(t) := ψ(t) for t ∈ [−L, 0];
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and for t > 0,

(Tx)(t) :=e−
∫

t

0
a(u)du

(

ψ(0) −

∫ 0

−L

h(ω)

∫ 0

ω

g(ψ(u))dudω
)

+

∫ 0

−L

h(ω)

∫ t

t+ω

g(x(u))dudω−

∫ t

0

e−
∫

t

s
a(u)dua(s)

∫ 0

−L

h(ω)

∫ s

s+ω

g(x(u))dudωds+

∫ t

0

e−
∫

t

s
a(u)duσ(s)dB(s) =

4
∑

i=1

µi(t), (3.8)

where

µ1(t) := e−
∫

t

0
a(u)du

(

ψ(0) −

∫ 0

−L

(ω)

∫ 0

ω

g(ψ(u))dudω
)

,

µ2(t) :=

∫ 0

−L

h(ω)

∫ t

t+ω

g(x(u))dudω,

µ3(t) := −

∫ t

0

e−
∫

t

s
a(u)dua(s)

∫ 0

−L

h(ω)

∫ s

s+ω

g(x(u))dudωds,

µ4(t) :=

∫ t

0

e−
∫

t

s
a(u)duσ(s)dB(s).

Next, we divide the proof into three steps.

Step 1. We show that the operator T is pth continuous on [0,∞).

Let x ∈ S, t1 ≥ 0 and |ξ| be sufficiently small. Then from Lemma 2.1 and (3.8), we get that

E|(Tx)(t1 + ξ) − (Tx)(t1)|
p ≤ 4(p−1)

4
∑

i=1

E|µi(t1 + ξ) − µi(t1)|
p.

Clearly, it is easy to verify that E|µi(t1 + ξ) − µi(t1)|
p → 0 as ξ → 0 (i = 1, 2, 3).

On the other hand, Lemmas 2.1 and 2.3 imply

E|µ4(t1 + ξ) − µ4(t1)|
p ≤2(p−1)E

∣

∣

∣

∫ t1

0

e−
∫

t1
s

a(u)du
(

e−
∫ t1+ξ

t1
a(u)du − 1

)

σ(s)dB(s)
∣

∣

∣

p

+

2(p−1)E
∣

∣

∣

∫ t1+ξ

t1

e−
∫

t1+ξ

s
a(u)duσ(s)dB(s)

∣

∣

∣

p

≤2
p
2
−1(p2 − p)

p
2 t

p−2

2

1 E

∫ t1

0

e−p
∫

t1
s

a(u)du
∣

∣

∣
e−

∫ t1+ξ

t1
a(u)du − 1

∣

∣

∣

p

|σ(s)|pds+

2
p
2
−1(p2 − p)

p
2 (t1 + ξ)

p−2

2 E

∫ t1+ξ

t1

e−p
∫

t1+ξ

s
a(u)du|σ(s)|pds

→0 as ξ → 0.

Therefore, the operator T is pth continuous on [0,∞).

Step 2. We claim that T (S) ⊂ S.

In fact, we only show that eαtE|µi(t)|
p → 0 as t → ∞ (i = 1, 2, 3, 4). Obviously, it is easy

to see that eαtE|µi(t)|
p → 0 as t→ ∞ (i = 1, 2).
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From Lemma 2.2, we have

eαtE|µ3(t)|
p ≤ eαt

(

∫ t

0

e−
∫

t

s
a(u)dua(s)ds

)

p
q

E

∫ t

0

e−
∫

t

s
a(u)dua(s)

∣

∣

∣

∫ 0

−L

h(ω)

∫ s

s+ω

g(x(u))dudω
∣

∣

∣

p

ds

≤ eαt
(

∫ 0

−L

|h(ω)|qdω
)

p
q

E

∫ t

0

e−
∫

t

s
a(u)dua(s)

∫ 0

−L

∣

∣

∣

∫ s

s+ω

g(x(u))dudω
∣

∣

∣

p

ds

≤ eαt
(

∫ 0

−L

|h(ω)|qdω
)

p
q

E

∫ t

0

e−
∫

t

s
a(u)dua(s)

∫ 0

−L

(−ω)
p
q

∫ s

s+ω

|g(x(u))|pdudωds

≤ eαt (KL)p

p

(

∫ 0

−L

|h(ω)|qdω
)

p
q

∫ t

0

e−
∫

t

s
a(u)dua(s)

∫ s

s−L

E|x(u)|pduds.

Since x ∈ S, there exists a constant T1 > 0 such that eαsE|x(s)|p < ǫ for any ǫ > 0 and

s ≥ T1 − L. Set M := (KL)p

p
(
∫ 0

−L
|h(ω)|qdω)

p
q , then we find

eαtE|µ3(t)|
p ≤Meαt

{

∫ T1

0

e−
∫

t

s
a(u)dua(s)

∫ s

s−L

E|x(u)|pduds+

∫ t

T1

e−
∫

t

s
a(u)dua(s)

∫ s

s−L

e−αueαuE|x(u)|pduds
}

≤Meαt
{

LE
(

sup
−L≤s≤T1

|x(s)|p
)

∫ T1

0

e−2α(t−s)a(s)ds+

ǫ

∫ t

T1

e−α(t−s)e−
1
2

∫

t

s
a(u)dua(s)

(eαL − 1)e−αs

α
ds

}

=M
{

e−αtLE
(

sup
−L≤s≤T1

|x(s)|p
)

∫ T1

0

e2αsa(s)ds+
2(eαL−1)

α
ǫ
}

→0 as t→ ∞. (3.9)

On the other hand, condition (3.4) or (3.5) implies

eαtE|µ4(t)|
p ≤eαt

(p(p− 1)

2

)

p
2 t

p−2

2

∫ t

0

e−p
∫

t

s
a(u)du|σ(s)|pds

≤
(p(p− 1)

2

)

p
2
t

p−2

2

eαt
e−(2p−2)αt

∫ t

0

e2pαs|σ(s)|pds

→0 as t→ ∞. (3.10)

Consequently, (3.9) and (3.10) imply T (S) ⊂ S.

Step 3. We show that T is a contractive mapping.

For any x, y ∈ S, we have

E sup
s∈[0,t]

|(Tx)(s) − (Ty)(s)|p

≤ E sup
s∈[0,t]

{

∫ 0

−L

|h(v)|

∫ s

s+v

|g(x(u)) − g(y(u))|dudv+

∫ s

0

e−
∫

s

v
a(τ)dτa(v)

∫ 0

−L

|h(τ)|

∫ v

v+τ

|g(x(u)) − g(y(u))|dudτdv
}p

≤ E sup
s∈[0,t]

{

K

∫ 0

−L

|h(v)|

∫ s

s+v

|x(u) − y(u)|dudv+
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K

∫ s

0

e−
∫

s

v
a(τ)dτa(v)

∫ 0

−L

|h(τ)|

∫ v

v+τ

|x(u) − y(u)|dudτdv
}p

≤ E sup
s∈[0,t]

|x(s) − y(s)|p
(

2K

∫ 0

−L

|h(s)s|ds
)p

.

Together with (3.3), we conclude that T is a contractive mapping. Hence, from the Banach fixed

point theorem, we get that there is a unique fixed point x(t) which is the solution of the stochastic

Volterra-Levin equation (1.1) with the initial condition (1.2) in S and eαtE|x(t)|p → 0 as t→ ∞.

We conclude that the stochastic Volterra-Levin equation (1.1) with the initial condition (1.2) is

exponentially stable in pth moment and the convergence rate is α. This completes the proof. �

Theorem 3.2 Suppose that the same assumptions as in Theorem 3.1 hold. Then the solution

of the stochastic Volterra-Levin equation (1.1) with the initial condition (1.2) is almost surely

exponentially stable.

Proof Let N be a sufficiently large positive integer. We get that for N ≤ t ≤ N + 1,

x(t) =e−
∫

t

N
a(u)du

(

x(N) −

∫ 0

−L

h(ω)

∫ N

N+ω

g(x(u))dudω
)

+

∫ 0

−L

h(ω)

∫ t

t+ω

g(x(u))dudω−

∫ t

N

e−
∫

t

s
a(u)dua(s)

∫ 0

−L

h(ω)

∫ s

s+ω

g(x(u))dudωds+

∫ t

N

e−
∫

t

s
a(u)duσ(s)dB(s).

Then, for any given ǫN > 0, we find

P
{

sup
N≤t≤N+1

| x(t) |> ǫN

}

≤ P
{

sup
N≤t≤N+1

e−
∫

t

N
a(u)du

∣

∣

∣
x(N) −

∫ 0

−L

h(ω)

∫ N

N+ω

g(x(u))dudω
∣

∣

∣
> ǫN/4

}

+

P
{

sup
N≤t≤N+1

∣

∣

∣

∫ 0

−L

h(ω)

∫ t

t+ω

g(x(u))dudω
∣

∣

∣
> ǫN/4

}

+

P
{

sup
N≤t≤N+1

∣

∣

∣

∫ t

N

e−
∫

t

s
a(u)dua(s)

∫ 0

−L

h(ω)

∫ s

s+ω

g(x(u))dudωds
∣

∣

∣
> ǫN/4

}

+

P
{

sup
N≤t≤N+1

∣

∣

∣

∫ t

N

e−
∫

t

s
a(u)duσ(s)dB(s)

∣

∣

∣
> ǫN/4

}

:= O1 +O2 +O3 +O4,

where

O1 := P
{

sup
N≤t≤N+1

e−
∫

t

N
a(u)du

∣

∣

∣
x(N) −

∫ 0

−L

h(ω)

∫ N

N+ω

g(x(u))dudω
∣

∣

∣
> ǫN/4

}

,

O2 := P
{

sup
N≤t≤N+1

∣

∣

∣

∫ 0

−L

h(ω)

∫ t

t+ω

g(x(u))dudω
∣

∣

∣
> ǫN/4

}

,



108 Li CHEN and Lianggen HU

O3 := P
{

sup
N≤t≤N+1

∣

∣

∣

∫ t

N

e−
∫

t

s
a(u)dua(s)

∫ 0

−L

h(ω)

∫ s

s+ω

g(x(u))dudωds
∣

∣

∣
> ǫN/4

}

,

O4 := P
{

sup
N≤t≤N+1

∣

∣

∣

∫ t

N

e−
∫

t

s
a(u)duσ(s)dB(s)

∣

∣

∣
> ǫN/4

}

.

Theorem 3.1 implies that there exists a constant C > 0 such that E|x(t)|p ≤ Ce−αt for all t ≥ 0.

Hence, we have

O1 ≤ (4/ǫN)pE sup
N≤t≤N+1

e−p
∫

t

N
a(u)du

∣

∣

∣
x(N) −

∫ 0

−L

h(ω)

∫ N

N+ω

g(x(u))dudω
∣

∣

∣

p

≤ (4/ǫN)p2p−1
{

E|x(N)|p + E
∣

∣

∣

∫ 0

−L

h(ω)

∫ N

N+ω

g(x(u))dudω
∣

∣

∣

p}

≤ (4/ǫN)p2p−1
{

Ce−αN +
(

∫ 0

−L

|h(ω)|qdω
)

p
q

E

∫ 0

−L

∣

∣

∣

∫ N

N+ω

g(x(u))du
∣

∣

∣

p

dω
}

≤ (4/ǫN)p2p−1
{

Ce−αN +
(

∫ 0

−L

|h(ω)|qdω
)

p
q

E

∫ 0

−L

(−ω)
p
q

∫ N

N+ω

|g(x(u))|pdudω
}

≤ (4/ǫN)p2p−1
{

Ce−αN +
(KL)p

p

(

∫ 0

−L

|h(ω)|qdω
)

p
q

∫ N

N−L

E|x(u)|pdu
}

≤ (4/ǫN)p2p−1C
{

1 +
(KL)p

p

eαL−1

α

(

∫ 0

−L

|h(ω)|qdω
)

p
q
}

e−αN . (3.11)

Similarly, we get that

O2 ≤ (4/ǫN)p (KL)p

p

C(eαL−1)

α

(

∫ 0

−L

|h(ω)|qdω
)

p
q

e−αN , (3.12)

and

O3 ≤ (4/ǫN)p (KL)p

p

C(eαL−1)

α

(

∫ 0

−L

|h(ω)|qdω
)

p
q

e−αN . (3.13)

On the other hand, it follows from Lemmas 2.3 and 2.4 that

O4 ≤ (4/ǫN)pE sup
N≤t≤N+1

∣

∣

∣

∫ t

N

e−
∫

t

s
a(u)duσ(s)dB(s)

∣

∣

∣

p

≤ (4/ǫN)p
(p(p− 1)

2

)

p
2 t

p−2

2 sup
N≤t≤N+1

∫ t

N

e−p
∫

t

s
a(u)du|σ(s)|pds

≤ (4/ǫN)p
(p(p− 1)

2

)

p
2
(N + 1)

p−2

2

eαN

∫ N+1

N
e2pαs|σ(s)|pds

e(2p−2)αN
e−αN . (3.14)

Since N is sufficiently large, we get from (3.4) or (3.5) that there exists a constant L1 > 0 such

that
∫ N+1

N
e2pαs|σ(s)|pds

e(2p−2)αN
< L1.

Together with (3.14), we obtain

O4 ≤ (4/ǫN)p
(p(p− 1)

2

)

p
2L1e

−αN . (3.15)

Therefore, from (3.11)–(3.13) and (3.15), we find

P
{

sup
N≤t≤N+1

|x(t)| > ǫN

}

≤ (D/ǫN
p)e−αN ,
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where

D :=4p
{

2p−1C + 2p−1C(KL)p

p

(eαL − 1)

α

(

∫ 0

−L

|h(ω)|qdω
)

p
q

+

2C(KL)p

p

(eαL − 1)

α

(

∫ 0

−L

hq(ω)dω
)

p
q

+
(p(p− 1)

2

)

p
2L1

}

e−αN .

Choosing ǫN = D
1
p e−

αN
2p , we get from the Borel-Cantelli Lemma that there exists a random time

T (ω) > 0 such that

| x(t) |≤ D
1
p e

α
2p e−

αt
2p , a.s. for t > T (ω).

This completes the proof. �

Remark 3.1 In this paper, we investigate that the solutions of the stochastic Volterra-Levin

equations are exponentially stable in pth moment and almost surely exponentially stable. If we

only take p = 2 in Theorem 3.1, then we get the same results as in [12]. Therefore, we generalize

and extend some results in recent references.

Remark 3.2 Adopting the similar method as in Theorems 3.1 and 3.2, we can consider the

case in n-dimensional space, but we take the norm | · | which is the Euclidean norm in Rn.

Next, we give two examples to illustrate our results.

Example 3.1 Consider the following equation:

dx(t) = −
(

∫ t

t−L

h(s− t)g(x(s))ds
)

dt+ σ(t)dB(t), t > 0, (3.16)

where g(x) = 2x, h(t) = t2 and σ(t) = e−
1
2
αt.

Clearly,
∫ t

0

e4αs|σ(s)|2ds =
1

3α
(e3αt − 1)

and

eαt|σ(t)|2 = 1.

We can see that the conditions (i) and (ii) of Theorem 2.1 in [12] fail.

On the other hand, it is obvious that xg(x) ≥ 0, g(0) = 0, and limx→0
g(x)

x
= 2, which

implies that the condition (1) in Theorem 3.1 holds. For any constant α ∈ (0, 1), we can see that
g(x)

x
≥ 2α, that is, the condition (2) in Theorem 3.1 holds. Let K = 2. Then the condition (3)

in Theorem 3.1 holds if L = 3
1
3 . If p = 3,

∫ ∞

0

e6αs|σ(s)|3ds = ∞,

and

eαt|σ(t)|3 = e−αt → 0 as t→ ∞.

Then the condition (4) in Theorem 3.1 holds. From Theorem 3.1, the solution of (3.16) is

exponentially stable in 3rd moment and the convergence rate is α. Again from Theorem 3.2, the

solution of (3.16) is almost surely exponentially stable.
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Example 3.2 Consider the following equation:

dx(t) = −
(

∫ t

t−L

h(s− t)g(x(s))ds
)

dt+ σ(t)dB(t), t > 0, (3.17)

where g(x) = 2x, h(t) = t2 and σ(t) = e−3αt.

Following the notation in Example 3.1, it is obvious that the conditions (1)–(3) in Theorem

3.1 hold. For any p ≥ 2,
∫ t

0

e2pαs|σ(s)|pds =

∫ t

0

e−pαsds ≤
1

αp
, t > 0.

Hence the condition (4) in Theorem 3.1 holds. From Theorem 3.1, the solution of (3.17) is ex-

ponentially stable in pth moment and the convergence rate is α. Again from Theorem 3.2, the

solution of (3.17) is almost surely exponentially stable.
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