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Abstract In this paper, the product and commutativity of slant Toeplitz operators are dis-

cussed. We show that the product of k
th

1 -order slant Toeplitz operators and k
th

2 -order slant

Toeplitz operators must be a (k1k2)
th-order slant Toeplitz operator except for zero operators,

and the commutativity and essential commutativity of two slant Toeplitz operators with different

orders are the same.
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1. Preliminaries

In the year 1995, Ho [1] introduced one class of operators, which have the property that the

matrices of such operators with respect to the standard orthonormal basis could be obtained from

those of Toeplitz operators just by eliminating every other row. Such operators were termed as

slant Toeplitz operators [1].

In the past few years, slant Toeplitz operators have appeared in connection with many appli-

cations where they go under other names. Villemoes associated the Besov regularity of solutions

of the refinement equation with the spectral radii of an associated slant Toeplitz operator [11]

and Goodman, Micchelli and Ward [12] showed the connection between the spectral radii and

conditions for the solutions of certain differential equations being in Lipschitz classes.

Ever since the introduction of the class of slant Toeplitz operators, Ho and many other

researchers began a systematic study of such operators and their various generalizations [1–10].

Throughout this paper, let k, k1 and k2 be integers and min{k, k1, k2} ≥ 2. Let ϕ(z) =
∑∞

i=−∞ aiz
i be a bounded measurable function on the unit circle T, where ai = 〈ϕ, zi〉 is the ith

Fourier coefficient of ϕ and {zi : i ∈ Z} is the standard orthonormal basis of L2(T), Z being the

set of integers. The kth-order slant Toeplitz operator Ukϕ with symbol ϕ in L∞(T) is defined on

L2(T) as follows

Ukϕ(zl) =
∞
∑

i=−∞

aki−lz
i.

It is proved in [1] and [5] that Ukϕ = WkMϕ, where Mϕ is the multiplication operator on L2(T)
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induced by ϕ and Wk is a bounded operator on L2(T) defined as

Wk(z
i) =

{

zi/k, if i is divisible by k,

0, otherwise.

Some properties for the product of two kth-order slant Toeplitz operators were investigated in [5]

and [10]. Motivated by these, we have proved some properties for the product of slant Toeplitz

operators.

2. Product and commutativity of slant Toepltiz operators

In this section, the following problems are examined:

(1) What is the product of slant Toeplitz operators?

(2) When do slant Toeplitz operators with different orders commute?

Now we begin with the following Proposition.

Proposition 2.1 Let ϕ, ψ ∈ L∞(T). Then the following statements hold:

(1) Wk1Wk2 = Wk1k2 ;

(2) Uk1ψ Uk2ϕ = Uk1k2
ψ(zk2 )ϕ

.

Proof (1) By the properties of Wk and W ∗
k , we get that for any integer n,

W ∗
k1k2z

n = zk1k2n,

(Wk1Wk2)
∗zn = W ∗

k2(W
∗
k1z

n) = W ∗
k2 (z

k1n) = zk1k2n.

This implies that for any integer n,

W ∗
k1k2z

n = (Wk1Wk2)
∗zn.

Thus we get that W ∗
k1k2

= (Wk1Wk2)
∗, since {zi : i ∈ Z} is the standard orthonormal basis of

L2(T). So the required result holds.

(2) By the properties of Ukϕ and Wk, we get that

Uk1ψ Uk2ϕ = Wk1MψWk2Mϕ = Wk1Wk2Mψ(zk2)ϕ.

Since Wk1Wk2 = Wk1k2 , we can get that Uk1ψ Uk2ϕ = Uk1k2
ψ(zk2 )ϕ

. �

Lemma 2.1 Let ϕ =
∑∞
l=−∞ alz

l ∈ L∞(T). Then Ukϕ is a zero operator if and only if ϕ = 0.

Proof Suppose that Ukϕ is a zero operator. Then for all i, j in Z, we get that

〈Ukϕz
i, zj〉 = 〈

∞
∑

l=−∞

akl−iz
l, zj〉 = akj−i = 0.

Thus al = 0 for all l in Z, that is, ϕ = 0. The converse is obvious. �

Theorem 2.1 Let ϕ(z) =
∑∞
l=−∞ alz

l ∈ L∞(T) and let m be an integer with m ≥ 2 and m 6= k.

Then Ukϕ is an mth-order slant Toeplitz operator if and only if ϕ = 0.

Proof Suppose that Ukϕ is an mth-order slant Toeplitz operator. Then for all i, j in Z, we get
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that 〈Ukϕz
i, zj〉 = 〈Ukϕz

i+mk, zj+k〉, that is,

〈
∞
∑

l=−∞

akl−iz
l, zj〉 = 〈

∞
∑

l=−∞

akl−i−mkz
l, zj+k〉.

Therefore akj−i = ak(j+k)−i−mk for any integer i and j. From this we get that a0 = alk|k−m|,

a1 = alk|k−m|+1, a2 = alk|k−m|+2, . . . , ak|k−m|−1 = alk|k−m|+k|k−m|−1. Since al → 0 as l → ∞,

we get that alk|k−m|+i → 0 as l → ∞ for each i = 0, 1, . . . , k|k −m| − 1. Thus a0 = a1 = · · · =

ak|k−m|−1 = 0. Hence al = 0 for all integers l, which means that ϕ = 0. It is clear that the

converse is true. �

Now we are in a position to state the properties for the product of slant Toeplitz operators.

Theorem 2.2 Let ϕ, ψ ∈ L∞(T). Then Uk1ψ Uk2ϕ is a kth-order slant Toeplitz operator if and

only if one of the following statements holds:

(1) k = k1k2;

(2) ψ(zk2)ϕ = 0, if k 6= k1k2.

Proof By Proposition 2.1 we get that Uk1ψ Uk2ϕ = Uk1k2
ψ(zk2 )ϕ

. Then by the definition of Ukϕ and

Theorem 2.1 we get the required results. �

Remark 2.1 From Theorem 2.2, it is obvious that the product of two kth-order slant Toeplitz

operators cannot be a kth-order slant Toeplitz operator and kth-order slant Toeplitz operators

cannot be idempotent except for the zero operator [5, Theorem 2 and Corollary 3].

Remark 2.2 By the properties of Wk and Ukϕ, one can repeat the proof above and arrive at the

conclusions analogous to those in Theorem 2.2 for the finite product of slant Toeplitz operators.

Recall that two operators A and B essentially commute if AB−BA is compact; an operator

A is said to be hyponormal and normal if its self-commutator [A∗, A] := A∗A − AA∗ ≥ 0 and

[A∗, A] = 0, respectively.

Theorem 2.3 Let ϕ, ψ ∈ L∞(T). The following statements are equivalent:

(1) Uk1ψ Uk2ϕ is compact;

(2) Uk1ψ Uk2ϕ is hyponormal;

(3) Uk1ψ Uk2ϕ is normal;

(4) Uk1ψ Uk2ϕ = 0;

(5) ψ(zk2)ϕ = 0.

Proof By Proposition 2.1 we get that Uk1ψ Uk2ϕ = Uk1k2
ψ(zk2)ϕ

. Then by Theorems 5, 9 ([5]) and

Lemma 2.1 we can obtain that (1), (2), (4) and (5) are equivalent.

Now we start to show that (3) and (5) are equivalent. Suppose that Uk1ψ Uk2ϕ = Uk1k2
ψ(zk2 )ϕ

is

normal. Since (2) and (5) are equivalent and the normal operator is hyponormal, we can get

that ψ(zk2)ϕ = 0. The converse is clear. Hence (3) and (5) are equivalent. �

Remark 2.3 One can obtain the conclusions analogous to those in Theorem 2.3 for the finite

product of slant Toeplitz operators.
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Theorem 2.4 Let ϕ, ψ ∈ L∞(T). The following statements are equivalent:

(1) Uk1ψ and Uk2ϕ essentially commute;

(2) Uk1ψ and Uk2ϕ commute;

(3) ψ(zk2)ϕ− ψϕ(zk1) = 0.

Proof By Proposition 2.1 we get that Uk1ψ Uk2ϕ = Uk1k2
ψ(zk2 )ϕ

and Uk2ϕ Uk1ψ = Uk1k2
ψϕ(zk1 )

, so by the

properties of Ukϕ we have

Uk1ψ Uk2ϕ − Uk2ϕ Uk1ψ = Uk1k2
ψ(zk2 )ϕ

− Uk1k2
ψϕ(zk1 )

= Uk1k2
ψ(zk2 )ϕ−ψϕ(zk1 )

.

Then by Theorem 9 ([5]) and Lemma 2.1 we obtain that Uk1k2
ψ(zk2)ϕ−ψϕ(zk1 )

is compact if and only

if Uk1k2
ψ(zk2 )ϕ−ψϕ(zk1)

= 0 if and only if ψ(zk2)ϕ− ψϕ(zk1) = 0. Thus the required results hold. �

Proposition 2.2 Let ϕ ∈ L∞(T) and ψ(z) = zm, where m is a nonnegative integer. Then

ϕ(zk1)ψ(z) = ϕ(z)ψ(zk2)

if and only if one of the following statements holds:

(1) If m = 0, ϕ is a constant;

(2) If m ≥ 1 and (k2 − 1)m is not divisible by k1 − 1, ϕ = 0;

(3) If m ≥ 1 and (k2 − 1)m is divisible by k1 − 1, ϕ = Cz
(k2−1)m

k1−1 , where C is a constant.

Proof Suppose that ϕ(zk1)ψ(z) = ϕ(z)ψ(zk2). Since m is a nonnegative integer, we continue

the proof in two cases: m = 0 and m ≥ 1.

If m = 0, since ϕ(zk1)ψ(z) = ϕ(z)ψ(zk2) and ψ(z) = zm, we have that ϕ(zk1) = ϕ(z). Then

by Lemma 2.9 ([10]) we get that ϕ is a constant.

If m ≥ 1, let ϕ(z) =
∑∞
p=−∞ apz

p. Since ϕ(zk1)ψ(z) = ϕ(z)ψ(zk2) and ψ(z) = zm, we have

that

z(k2−1)m
∞
∑

p=−∞

apz
p =

∞
∑

p=−∞

apz
k1p.

Let (k2 − 1)m = k1m1 + r1, where m1 and r1 are nonnegative integers with 0 ≤ r1 ≤ k1 − 1.

Then
∞
∑

p=−∞

ak1p−r1z
k1p +

k1−1
∑

i=1

∞
∑

p=−∞

ak1p+i−r1z
k1p+i =

∞
∑

p=−∞

ap+m1z
k1p.

So ak1p+i−r1 = 0 for any integer p and any integer i with 1 ≤ i ≤ k1 − 1, and ak1p−r1 = ap+m1

for any integer p. Therefore for any integer p, we have

ak1p−r1 = a
kn

1 [p−
r1+m1
k1−1 ]+

(k2−1)m
k1−1

for any nonnegative integer n. Here are two cases: r1+m1

k1−1 is an integer and r1+m1

k1−1 is not an

integer.

If r1+m1

k1−1 is not an integer, that is, (k2 − 1)m is not divisible by k1 − 1, then for any positive

integer r and any integer p,

(r + 1)(|ak1p−r1 |
2) =

r
∑

n=0

|a
kn

1 [p−
r1+m1
k1−1 ]+

(k2−1)m
k1−1

|2 ≤

∞
∑

p=−∞

|ap|
2 < +∞,



126 Chaomei LIU and Yufeng LU

which implies that ak1p−r1 = 0 for any integer p. So ϕ(z) = 0.

If r1+m1

k1−1 is an integer, that is, (k2 − 1)m is divisible by k1 − 1, then for any positive integer

r and any integer p with p 6= r1+m1

k1−1 ,

(r + 1)(|ak1p−r1 |
2) =

r
∑

n=0

|a
kn

1 [p−
r1+m1
k1−1 ]+

(k2−1)m
k1−1

|2 ≤

∞
∑

p=−∞

|ap|
2 < +∞,

which implies that ak1p−r1 = 0 for any integer p with p 6= r1+m1

k1−1 . So ϕ(z) = Cz
(k2−1)m

k1−1 , where

C = a (k2−1)m
k1−1

.

Now we start to show the other direction. If (1) and (2) hold, then it is obvious that

ϕ(zk1)ψ(z) = ϕ(z)ψ(zk2). If (3) holds, then ϕ(zk1)ψ(z) = Cz
k1(k2−1)m

k1−1 · zm = Cz
(k1k2−1)m

k1−1 and

ϕ(z)ψ(zk2) = Cz
(k2−1)m

k1−1 · z
k2m = Cz

(k1k2−1)m
k1−1 . Hence ϕ(zk1)ψ(z) = ϕ(z)ψ(zk2). �

Remark 2.4 If ϕ(zk1)ψ(z) = ϕ(z)ψ(zk2), then ϕ(zk1)ψ(z) = ϕ(z)ψ(zk2). Therefore, one can

repeat the proof above and get the same conclusions as Proposition 2.2 for any negative integer

m.

From the preceding analysis it is obvious that the following theorem holds.

Theorem 2.5 Let ϕ ∈ L∞(T) and ψ(z) = zm, where m is an integer. Then the following

statements are equivalent:

(1) Uk1ψ and Uk2ϕ essentially commute;

(2) Uk1ψ and Uk2ϕ commute;

(3) ψ(zk2)ϕ− ψϕ(zk1) = 0;

(4) if (k2 − 1)m is not divisible by k1 − 1, ϕ = 0,

if (k2 − 1)m is divisible by k1 − 1, ϕ = Cz
(k2−1)m

k1−1 , where C is a constant.

References

[1] M. C. HO. Properties of slant Toeplitz operators. Indiana Univ. Math. J., 1996, 45(3): 843–862.

[2] M. C. HO. Spectra of slant Toeplitz operators with continuous symbols. Michigan Math. J., 1997, 44(1):
157–166.

[3] M. C. HO. Adjoints of slant Toeplitz operators. Integral Equations Operator Theory, 1997, 29(3): 301–312.
[4] M. C. HO. Adjoints of slant Toeplitz operators (II). Integral Equations Operator Theory, 2001, 41(2): 179–

188.

[5] S. C. ARORA, R. BATRA. On generalized slant Toeplitz operators. Indian J. Math., 2003, 45(2): 121–134.
[6] S. C. ARORA, R. BATRA. Generalized slant Toeplitz operators on H

2. Math. Nachr., 2005, 278(4):

347–355.
[7] Hengbin AN, Renyi JIAN. Slant Toepltiz operators on Bergman space. Acta Math. Sinica (Chin. Ser.),

2004, 47(1): 103–110. (in Chinese)

[8] Jun YANG, Aiping LENG, Yufeng LU. kth-order slant Toeplitz operators on the Bergman space. Northeast.
Math. J., 2007, 23(5): 403–412.

[9] Yucai MA, Jianbin XIAO. Slant Toeplitz operators on the weighted Bergman spaces. J. Hangzhou Dianzi
University, 2008, 28(1): 96–98. (in Chinese)

[10] Yufeng LU, Chaomei LIU, Jun YANG. Commutativity of k-th order slant Toeplitz operators. Math. Nachr.,

2010, 283(9): 1304–1313.
[11] L. VILLEMOES. Wavelet analysis of refinement equations. SIAM J. Math. Anal., 1994, 25(5): 1433–1460.

[12] T. N. T. GOODMAN, C. MICCHELLI, J. D. WARD. Spectral Radius Formula for Subdivision Operators.
Academic Press, Boston, MA, 1994.


