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Abstract The purpose of this paper is to study a new strategy to construct embedded

cubature formulae over two-dimensional regions. A new kind of embedded cubature formulae

with some nodes along the selected algebraic curve is constructed. Some examples on the unit

disk are presented to illustrate the validity of this strategy.
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1. Introduction

Let I[ω; f ] be a square positive integral functional with finite moments of all orders:

I[ω; f ] =

∫

Ω

ω(x, y)f(x, y)dxdy, (1)

where Ω ⊂ R
2 and ω(x, y) is a nonnegative weight function over Ω. A cubature formula of degree

m with respect to I[ω; f ] is a linear functional

Qm[ω; f ] =

N∑

i=1

a
(m)
i f(x

(m)
i , y

(m)
i ), (x

(m)
i , y

(m)
i ) ∈ R

2, a
(m)
i ∈ R, (2)

satisfying

Qm[ω; p] = I[ω; p], ∀p ∈ Π2
m, (3)

and Qm[ω; q] 6= I[ω; q] for at least one q ∈ Π2
m+1, where Π2

m is the vector space of all polynomials

in two variables of (total) degree ≤ m. Typically, (x
(m)
i , y

(m)
i ) and a

(m)
i are called nodes and

weights, respectively.

Usually, in order to approximate I[ω; f ] together with an error estimate, we use two cubature

formulae Qmj
[ω; f ],

Qmj
[ω; f ] =

Nj∑

i=1

a
(mj)
i f(x

(mj)
i , y

(mj)
i ), j ∈ 1, 2, m1 < m2.
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The error for Qm1 [ω; f ] can be estimated by, for example, |Qm1 [ω; f ] − Qm2 [ω; f ]| (see [3, 8]).

The use of formula Qm2 [ω; f ] will result in a great deal of extra cost in the computation of the

nodes and weights. One way to reduce the extra computation cost is to employ the embedded

cubature formulae. We call Qm1 [ω; f ] and Qm2 [ω; f ] an embedded pair (of cubature formulae) of

degrees (m1, m2), if {(x(m1)
i , y

(m1)
i )|i = 1, . . . , N1} ⊂ {(x(m2)

i , y
(m2)
i )|i = 1, . . . , N2}. Generally,

there are three strategies for constructing the embedded pair of cubature formulae:

(i) Construct Qm1 [ω; f ] and Qm2 [ω; f ] simultaneously;

(ii) Construct Qm1 [ω; f ], and Qm2 [ω; f ] is obtained by adding nodes;

(iii) Construct Qm2 [ω; f ], and Qm1 [ω; f ] is obtained by using a subset of the set of the

nodes of Qm2 [ω; f ] as the set of nodes of Qm1 [ω; f ].

The first strategy usually gives the embedded pair using the minimum number of nodes.

However, it has to solve a large system of nonlinear equations for determining the nodes and

weights. The second strategy was used first by Kronrod [8] for one-dimensional integration,

named Kronrod quadrature formula, and by Cools and Haegemans [3, 4] for some two-dimensional

regions. In [3] the embedded pair was constructed over some symmetric planar regions. In [4],

due to a special structure of cubature formulae, a reduction of the number of equations and

unknowns of the nonlinear system for determining the nodes and weights was obtained. The

third strategy was introduced by Berntsen and Espelid [2] and Laurie [9] for one-dimensional

integration and used by Rabinowitz et al. [12] for the n-cube. In a polynomial ideal point of view,

it was used by Cools and Haegemans [5] to present a method for all the regions in R
d, d ≥ 2.

All these strategies were used for the three-dimensional cube in [1].

The main purpose of this paper is to provide a new strategy to construct an embedded pair

of cubature formulae over any two-dimensional region. Let Zn(x, y) = 0 be an algebraic curve of

degree n without multiple factors. There are two main steps in the strategy:

Step I. Construct the embedded pair Qmk
[ωZn; f ] of degrees (m1, m2);

Step II. Construct the embedded pair Qmk+n[ω; f ] of degrees (m1 + n, m2 + n) by adding

nodes along Zn(x, y) = 0 to Qmk
[ωZn; f ].

In our strategy, one embedded pair of cubature formulae is constructed in each step and

two embedded pairs are constructed with respect to different weight functions. The theory

and numerical examples show that the construction problem in R
2 will degenerate into a one-

dimensional construction problem in some special cases. To simplify the description, we omit

the superscripts of nodes in the case of no confusion.

The paper is organized as follows. In Section 2, some notations and preliminaries are

introduced. The main theory and algorithm for constructing the embedded pair of cubature

formulae is given in Sections 3 and 4, respectively. Numerical examples are presented in Section

5. A brief conclusion is in Section 6.

2. Notations and preliminaries

The knowledge of ideals and varieties is needed in the rest of the paper. Here we introduce
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some notations and their meanings simply. For details, the readers may refer to [6] and [14].

We write the monomial xα = xα1yα2 for x = (x, y) and α = (α1, α2). The monomial xα

is of (total) degree |α| = α1 + α2. We denote by Π2 the set of all polynomials in two variables.

For our purpose, we use the graded lexicographic order to order monomials in Π2 throughout

the paper. Denote by I a polynomial ideal in Π2 and Pd(x, y) a polynomial of degree d. Some

notations related to I and their meanings that will be used hereafter are:

V (I) the variety of I,

|V (I)| the cardinality of V (I),

SI the complement of I in Π2,

IPd1
,Pd2

,...,Pdn
the ideal generated by Pd1 , Pd2 , . . . , Pdn

in Π2.

Let m, n be two positive integers and

em(n) =

(
m + 2

2

)
−
(

m + 2 − n

2

)
=






1

2
n(2m + 3 − n), if m ≥ n;

1

2
(m + 1)(m + 2), if m ≤ n − 1.

We [11] presented a method to construct cubature formulae by choosing some nodes along certain

selected algebraic curve.

Lemma 1 ([11]) Let Zn(x, y) = 0 be an algebraic curve of degree n without multiple factors.

If there exists a cubature formula of degree m with respect to I[ωZn; f ],

Qm[ωZn; f ] =
N∑

i=1

a
(m)
i f(xi, yi),

and none of the nodes {(xi, yi)}N
i=1 lies on Zn(x, y) = 0, then there exists a cubature formula of

degree m + n with respect to I[ω; f ],

Qm+n[ω; f ] =

N∑

i=1

a
(m)
i

Zn(xi, yi)
f(xi, yi) +

em+n(n)∑

j=1

b
(m+n)
j f(uj , vj),

where all the nodes (uj , vj), j = 1, 2, . . . , em+n(n), lie on Zn(x, y) = 0.

We remark that the nodes {(uj, vj)}em+n(n)
j=1 can be selected arbitrarily only if they form a

properly posed set of nodes for the polynomial interpolation of degree m + n along Zn(x, y) = 0

(see [10]). Finally, we denote by [x] the integer part of x.

3. Construction of embedded cubature formulae

3.1 Main result

Here is the main result.

Theorem 1 Let Zn(x, y) = 0 be an algebraic curve of degree n without multiple factors. If there
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exists an embedded pair of cubature formulae of degrees (m1, m2) with respect to I[ωZn; f ],

Qmk
[ωZn; f ] =

Nk∑

i=1

a
(mk)
i f(xi, yi), k = 1, 2, m1 < m2, N1 ≤ N2,

and none of the nodes {(xi, yi)}N2

i=1 lies on Zn(x, y) = 0, then there exists an embedded pair of

cubature formulae of degrees (m1 + n, m2 + n) with respect to I[ω; f ],

Qmk+n[ω; f ] =

Nk∑

i=1

a
(mk)
i

Zn(xi, yi)
f(xi, yi) +

emk+n(n)∑

j=1

b
(mk+n)
j f(uj, vj), (4)

where all the nodes (uj , vj), j = 1, 2, . . . , em2+n(n), lie on Zn(x, y) = 0.

Proof It is obvious that em1+n(n) < em2+n(n). We can select {(uj, vj)}
emk+n(n)

j=1 as properly

posed sets of nodes for polynomial interpolation of degree mk + n along Zn(x, y) = 0 for each

k (see [11]). It follows from Lemma 1 that we obtain Eq. (4) for each k. This completes the

proof. �

Replacing emk+n(n) by Mk in Eq. (4), we rewrite Eq. (4) as

Qmk+n[ω; f ] =

Nk∑

i=1

a
(mk)
i

Zn(xi, yi)
f(xi, yi) +

Mk∑

j=1

b
(mk+n)
j f(uj , vj). (5)

In the next subsection, we give another method to choose the nodes (uj , vj) such that the number

of nodes Mk may be less than emk+n(n). That is to say, Theorem 1 gives the upper bounds for

the numbers Mk, k = 1, 2. To facilitate the description, we call the embedded pair Qmk
[ωZn; f ]

and the embedded pair Qmk+n[ω; f ] in Theorem 1 the initial embedded pair and the desired

embedded pair, respectively.

3.2 Improvement of the method

For k = 1, define IZn

m1+n[f ] = I[ω; f ] −∑N1

i=1
a
(m1)

i

Zn(xi,yi)
f(xi, yi). If we find

QZn

m1+n[f ] =

M1∑

j=1

b
(m1+n)
j f(uj , vj), (6)

such that IZn

m1+n[p] = QZn

m1+n[p], ∀p ∈ Π2
m1+n, then

I[ω; p] =

N1∑

i=1

a
(m1)
i

Zn(xi, yi)
p(xi, yi) +

M1∑

j=1

b
(m1+n)
j p(uj, vj), ∀p ∈ Π2

m1+n.

Thus, the construction of Qm1+n[ω; f ] is transformed to the construction of QZn

m1+n[f ]. If all the

nodes (uj , vj), j = 1, 2, . . . , M1, are chosen along Zn(x, y) = 0, then

IZn

m1+n[p] = 0 = QZn

m1+n[p], ∀p ∈ IZn

⋂
Π2

m1+n.

Hence, QZn

m1+n[f ] will have degree m1 + n if for ∀p̃ ∈ SIZn

⋂
Π2

m1+n,

IZn

m1+n[p̃] = QZn

m1+n[p̃]. (7)
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Suppose that Pdi
, i = 1, 2, . . . , em1+n(n), are a basis of SIZn

⋂
Π2

m1+n. Then Eq. (7) implies

that IZn

m1+n[Pdi
] = QZn

m1+n[Pdi
], i = 1, 2, . . . , em1+n(n).

Similarly, for k = 2, let

IZn

m2+n[f ] = I[ω; f ]−
N2∑

i=1

a
(m2)
i

Zn(xi, yi)
f(xi, yi), (8)

and

QZn

m2+n[f ] =

M2∑

j=1

b
(m2+n)
j f(uj , vj), M1 ≤ M2, (9)

where the former M1 nodes of {(uj, vj)}M2

j=1 are those used in Eq. (7). Then Qm2+n[ω; f ] is

obtained by choosing {(uj , vj)}M2

j=M1+1 along Zn(x, y) = 0 such that IZn

m2+n[q̃] = QZn

m2+n[q̃] holds

for any q̃ ∈ SIZn

⋂
Π2

m2+n.

In fact, it is not easy to construct the embedded pair of Eqs. (6) and (9). However, if Zn(x, y)

is selected carefully, the constructions of Eqs. (6) and (9) will be reduced to one-dimensional

moment problems. We will show this below for some special Zn(x, y)’s. In the rest of this

section, we suppose that all the nodes {(uj, vj)}M2

j=1 are on the corresponding algebraic curve

Zn(x, y) = 0.

Case 1 n = 1.

Without loss of generality, let Z1(x, y) = x + lower terms. Let Qmk
[ωZ1; f ] be the initial

embedded pair. Now we choose {(uj, vj)}M2

j=1 such that the desired embedded pair Qmk+1[ω; f ]

has degrees (m1 + 1, m2 + 1).

It is easy to verify that 1, y, . . . , ymk+1 are a basis of SIZ1

⋂
Π2

mk+1. Let

IZ1
mk+1[f ] = I[ωZ1; f ] −

Nk∑

i=1

a
(mk)
i

Z1(xi, yi)
f(xi, yi). (10)

Then Qmk+1[ω; f ] will have degree mk + 1 for each k if {vj}M2

j=1 satisfies

IZ1
mk+1[y

hk ] =

Mk∑

j=1

b
(mk+1)
j vhk

j , k = 1, 2, hk = 0, 1, 2, . . . , mk + 1. (11)

Suppose that IZ1
m1+1[y

h1 ] and IZ1
m2+1[y

h2 ] are nonzero for some h1 and h2, respectively. Then for

k = 1, Eq. (11) is a one-dimensional moment problem. It may be solved [13] when degree M1 is

non-degenerate by taking {vj}M1

j=1 as zeros of the orthogonal polynomial PM1(y) with respect to

the weight function ρ1(y), where M1 = [(m1 + 3)/2] and

∫ b

a

ρ1(y)yh1dy = IZ1
m1+1[y

h1 ], h1 = 0, 1, 2, . . . , m1 + 1. (12)

Meanwhile, there exists a weight function ρ2(y) such that

∫ b

a

ρ2(y)yh2dy = IZ1
m2+1[y

h2 ], h2 = 0, 1, 2, . . . , m2 + 1. (13)
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Let M = [(m2 − M1 + 3)/2]. For any polynomial Pm2+1(y),

Pm2+1(y) = PM1 (y)PM (y)q(y) + r(y),

where deg(r(y)) ≤ M1 + M − 1 or r(y) = 0. For k = 2, Eq. (11) holds by taking {vj}M1+M
j=M1+1 as

zeros of PM (y) which satisfies

∫ b

a

ρ2(y)PM1 (y)PM (y)yhdy = 0, h = 0, 1, 2 . . . , M − 1. (14)

Similarly to PM1(y), PM (y) exists. Finally, we denote M2 = M1 + M . In absence of degeneracy,

M2 = [(m2 + M1 + 3)/2].

Case 2 n = 2.

For n = 2, we will deal with the algebraic curves xy = 0 and Z2(x, y) = x2+lower terms = 0.

Case 2.1 The algebraic curve xy = 0.

A basis of SIxy

⋂
Π2

mk+2 is 1, x, . . . , xmk+2, y, . . . , ymk+2. Let Qmk
[ωxy; f ] be the initial

embedded pair, Xk = {1, x, . . . , xmk+2} and Yk = {1, y, . . . , ymk+2}. In this case, we construct

the desired embedded pair Qmk+2[ω; f ] with the following form

Qmk+2[ω; f ] =

Nk∑

i=1

a
(mk)
i

xiyi
f(xi, yi) +

Mk∑

j=1

b
(mk+2)
j f(uj , 0)+

Mk∑

j=1

c
(mk+2)
j f(0, vj) + d(mk+2)f(0, 0), M1 ≤ M2. (15)

Let

Ixy
mk

[f ] = I[ω; f ] −
Nk∑

i=1

a
(mk)
i

xiyi
f(xi, yi),

and

Qxy
mk

[f ] =

Mk∑

j=1

b
(mk+2)
j f(uj, 0) +

Mk∑

j=1

c
(mk+2)
j f(0, vj) + d̃(mk+2)f(0, 0).

For each k, by the similar process in Case 1, we first choose {(uj, 0)}M2

j=1 and {(0, vj)}M2

j=1 such

that Qxy
mk

[f ] = Ixy
mk

[f ] holds for f ∈ Xk and for f ∈ Yk, respectively. Next, we obtain d(mk+2)

by substituting f(x, y) = 1 into Eq. (15). In absence of degeneracy, M1 = [(m1 + 4)/2] and

M2 = [(m2 + M1 + 4)/2].

Case 2.2 The algebraic curve Z2(x, y) = x2 + lower terms = 0.

A basis of SIZ2

⋂
Π2

mk+2 is 1, y, . . . , ymk+2, xy, . . . , xymk+1. Let Qmk
[ωZ2; f ] be the initial

embedded pair. Let

IZ2
mk

[f ] = I[ω; f ] −
Nk∑

i=1

a
(mk)
i

Z2(xi, yi)
f(xi, yi).

Under some assumption on IZ2
mk

[f ], we will construct two kinds of desired embedded pairs.
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First, we assume that IZ2
mk

[f ] = 0, for ∀f(x, y) = −f(−x, y), k = 1, 2. Then for any non-

negative integer h, IZ2
mk

[xyh] = 0. Let

QZ2
mk

[f ] =

Mk∑

j=1

b
(mk+2)
j (f(uj, vj) + f(−uj, vj)).

Thus, the desired embedded pair

Qmk+2[ω; f ] =

Nk∑

i=1

a
(mk)
i

Z2(xi, yi)
f(xi, yi) +

Mk∑

j=1

b
(mk+2)
j (f(uj , vj) + f(−uj, vj)) (16)

will have degrees (m1 + 2, m2 + 2) only if QZ2
mk

[f ] = IZ2
mk

[f ] holds for f ∈ Yk, where M1 =

[(m1 + 4)/2], M2 = [(m2 + M1 + 4)/2] and all the nodes {(uj, vj)}M2

j=1 lie on Z2(x, y) = 0.

Secondly, we assume that IZ2
mk

[f ] = 0, for ∀f(x, y) = f(−x, y), k = 1, 2. Similarly, the

desired embedded pair could be of the form

Qmk+2[ω; f ] =

Nk∑

i=1

a
(mk)
i

Z2(xi, yi)
f(xi, yi) +

Mk∑

j=1

b
(mk+2)
j (f(uj, vj) − f(−uj, vj)), (17)

where M1 = [(m1 + 4)/2] and M2 = [(m2 + M1 + 4)/2].

The nodes {(uj, vj)}M2

j=1 in Eqs. (16) and (17) can be chosen by the similar method in Case

1.

Based on all the cases above, we will introduce an algorithm for constructing an embedded

pair of cubature formulae in the next section.

4. Algorithm for constructing an embedded pair of cubature formulae

Suppose that Zn(x, y) =
∏N

i=1 Rdi
(x, y), where Rdi

(x, y) is a polynomial of degree di with

the form Z1(x, y), Z2(x, y) or xy and
∑N

i=1 di = n. If there exists an initial embedded pair

Qmk
[ωZn; f ] of degrees (m1, m2) (m1 < m2) with respect to I[ωZn; f ] over the region Ω and

none of the nodes lies on Zn(x, y) = 0, then there exists a desired embedded pair Q[ω; f ] of

degrees (m1 + n, m2 + n) with respect to I[ω; f ] by adding nodes along Rdi
(x, y) = 0.

Taking ω(x, y) = 1, Z2n(x, y) = xy
∏n−1

i=1 Si and Ω = B2 = {(x, y)|x2 + y2 ≤ 1} as an

example, we construct the embedded pair of cubature formulae of degrees (m1 + 2n, m2 + 2n),

where Si = x2 + y2 − s2
i and 0 ≤ si ≤ 1.

Step 1. Construct Qmk
[Z2n; f ], k = 1, 2.

Let T (x, y) =
∏n′

i=1 Ti(x, y), Ti(x, y) = x2 + y2 − t2i and 0 ≤ ti ≤ 1. Then
∫

B2

Z2n(x, y)p(x, y)dxdy = 0, (18)

∫

B2

Z2n(x, y)T (x, y)p(x, y)dxdy = 0, (19)

where deg(p(x, y)) ≤ 1. Thus it is easy to obtain a cubature formula of degree 1 with respect to

I[Z2n; f ] by choosing zero node since Eq. (18) holds, that is,

Qm1 [Z2n; f ] = 0. (20)
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Suppose that Z2n(x, y) is a quasi-orthogonal polynomial of degree 2n and order 2n−m1−1 with

respect to the weight function 1 (a polynomial p(x, y) of degree n is called a quasi-orthogonal

polynomial of degree n and order s, if it is orthogonal to all polynomials of degree at most

n − s − 1). From Eq. (18), we see that m1 ≥ 1. We obtain a cubature formula Qm1 [Z2n; f ]

of degree m1 with the form Eq. (20). Furthermore, suppose that T (x, y) is a quasi-orthogonal

polynomial of degree 2n′ and order 2n′ − m′ − 1 with respect to the weight function Z2n(x, y)

and that m′+2n′ > m1. We obtain a cubature formula of degree m′ with zero node with respect

to I[Z2nT ; f ]. Since I[Z2nT ; f ] = 0, for ∀f(−x, y) = f(x, y), we obtain a cubature formula of

degree m′ + 2n′ with respect to I[Z2n; f ] by choosing nodes along Ti(x, y) = 0, which is denoted

by Qm2 [Z2n; f ] as follows (m2 = m′ + 2n′),

Qm2 [Z2n; f ] =

M2,1∑

i=1

a
(m2)
i,1 (f(ui,1, vi,1) − f(−ui,1, vi,1)), (21)

where {(ui,1, vi,1)}M2,1

i=1 are on T (x, y) = 0. Clearly, formulae Qm1 [Z2n; f ] and Qm2 [Z2n; f ] are

an embedded pair since there are no nodes in Qm1 [Z2n; f ]. Step 1 is completed.

Let N1,0 = N2,0 = M1,1 = N1,1 = 0, N2,1 = M2,1, b
(m2)
i,1 = a

(m2)
i,1 and S(γ) =

∏n−1
i=γ Si.

Denote S(n) = 1.

Step γ. Construct Qmk+2(γ−1)[xyS(γ); f ], k = 1, 2, γ = 2, . . . , n.

After the (γ − 1)th step, the embedded pair of degrees (m1 + 2(γ − 2), m2 + 2(γ − 2)) is

obtained as follows,

Qmk+2(γ−2)[xyS(γ − 1); f ] =

Nk,γ−2∑

i=1

a
(mk+2(γ−3))
i,γ−2

Sγ−2(xi,γ−2, yi,γ−2)
(f(xi,γ−2, yi,γ−2) − f(−xi,γ−2, yi,γ−2))+

Mk,γ−1∑

i=1

b
(mk+2(γ−2))
i,γ−1 (f(ui,γ−1, vi,γ−1) − f(−ui,γ−1, vi,γ−1)),

where k = 1, 2 and M1,γ−1 ≤ M2,γ−1. Choosing nodes along Sγ−1(x, y) = 0, the embedded pair

of degrees (m1 + 2(γ − 1), m2 + 2(γ − 1)) is obtained as follows,

Qmk+2(γ−1)[xyS(γ); f ] =

Nk,γ−1∑

i=1

a
(mk+2(γ−2))
i,γ−1

Sγ−1(xi,γ−1, yi,γ−1)
(f(xi,γ−1, yi,γ−1) − f(−xi,γ−1, yi,γ−1))+

Mk,γ∑

i=1

b
(mk+2(γ−1))
i,γ (f(ui,γ , vi,γ) − f(−ui,γ, vi,γ)), (22)

where k = 1, 2, M1,γ ≤ M2,γ , Nk,γ = Nk,γ−1 + Mk,γ and

(xi,γ , yi,γ) =

{
(xi,γ−1, yi,γ−1), i = 1, 2, . . . , N2,γ−1,

(ui−N2,γ−1 , vi−N2,γ−1), i = N2,γ−1 + 1, N2,γ−1 + 2, . . . , N2,γ−1 + M2,γ ,

a
(mk+2(γ−1))
i,γ =






a
(mk+2(γ−2))
i,γ−1

Sγ−1(xi,γ−1, yi,γ−1)
, i = 1, 2, . . . , Nk,γ−1,

b
(mk+2(γ−1))
i−Nk,γ−1

, i = Nk,γ−1 + 1, Nk,γ−1 + 2, . . . , Nk,γ−1 + Mk,γ ,

(23)

Obviously, N1,γ ≤ N2,γ . When γ = n, the embedded pair of degrees (m1+2(n−1), m2+2(n−1))
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with respect to I[xy; f ] is obtained as follows,

Qmk+2(n−1)[xy; f ]

=

Nk,n−1∑

i=1

a
(mk+2(n−2))
i,n−1

Sn−1(xi,n−1, yi,n−1)
(f(xi,n−1, yi,n−1) − f(−xi,n−1, yi,n−1))+

Mk,n∑

i=1

b
(mk+2(n−1))
i,n (f(ui,n, vi,n) − f(−ui,n, vi,n)), (24)

where M1,n ≤ M2,n.

Step n + 1. Construct Qmk+2n[1; f ], k = 1, 2.

In this step, the embedded pair of degree (m1 + 2n, m2 + 2n) is obtained by choosing nodes

along xy = 0 based on Eq. (24). That is,

Qmk+2n[1; f ] =

Nk,n∑

i=1

a
(mk+2(n−1))
i,n

xi,nyi,n
(f(xi,n, yi,n) − f(xi,n, yi,n))+

Mk,n+1∑

i=1

b
(mk+2n)
i,n+1 f(ui,n+1, 0) +

Mk,n+1∑

i=1

c
(mk+2n)
i,n+1 f(0, vi,n+1) + d

(mk+2n)
n+1 f(0, 0),

M1,n+1 ≤ M2,n+1. (25)

In this algorithm, only one-dimensional problems are solved, which are very convenient in

practice.

5. Examples of embedded cubature formulae on the unit disk

In this section, we give two numerical examples of constructing embedded cubature formulae

by the methods in Sections 3 and 4 on the unit disk.

Example 1 An embedded pair of cubature formulae of degrees (5, 7)

The formulae are constructed in two steps:

Step 1. Construct the initial embedded pair of degrees (3, 5) with respect to I[xy; f ].

Step 2. Construct the desired embedded pair of degrees (5, 7) with respect to I[1; f ] by

choosing nodes along xy = 0.

Let Fj(x, y) = y2− l2jx
2, Gj(x, y) = x2 + y2− r2

j and Ij = IFj ,Gj
, j = 1, 2. Here we demand

0 < r1, r2 ≤ 1, l1, l2 > 0, and
1+l21
1+l22

6= l21r2
1

l22r2
2
. Let I3 = I1 · I2. Then I3 = IFiGj,i,j=1,2 and

V (I3) = V (I1)
⋃

V (I2).

In Step 1, it is easy to verify that F1(x, y) and G1(x, y) are orthogonal polynomials of degree

2 and that Fi(x, y)Gj(x, y), 1 ≤ i, j ≤ 2, are quasi-orthogonal polynomials of degree 4 and order

2 with respect to the weight function xy. Since dimSI3 = |V (I3)| = 8, according to the theory

in [14] there exist Q3[xy; f ] and Q5[xy; f ] as follows,

∫

B2

xyp(x, y)dxdy = Q3[xy; p] =
4∑

i=1

a
(3)
i p(xi, yi), p ∈ Π2

3, (26)



A new strategy to construct embedded cubature formulae over two-dimensional regions 151

∫

B2

xyq(x, y)dxdy = Q5[xy; q] =

8∑

i=1

a
(5)
i q(xi, yi), q ∈ Π2

5, (27)

where {(xi, yi)}4
i=1 ∈ V (I1), {(xi, yi)}8

i=5 ∈ V (I2) and a
(3)
i and a

(5)
i are unknowns. In order to

reduce the number of equations and unknowns in Eqs. (26) and (27), we set α =
a
(3)
i

xiyi
, β1 =

a
(5)
i

xiyi
,

i = 1, 2, 3, 4 and β2 =
a
(5)
i

xiyi
, i = 5, 6, 7, 8. Thus, we have α =

(1+l21)
2π

96l21r4
1

and

A

(
β1

β2

)
= b, A =




l21r4
1

(1+l21)2
l22r4

2

(1+l22)2

l41r6
1

(1+l21)3
l42r6

2

(1+l22)3

l21r6
1

(1+l21)3
l22r6

2

(1+l22)3


 , b =




π
96
π

256
π

256


 .

There exists a solution of βi if and only if r(A) = r(A, b), where r(·) denotes the rank of matrix.

Since r(A) ≤ 2, we have det(A, b) = 0. Hence the necessary condition of the existence of βi is

3(1 − l21 + l22 − l21l
2
2)r

2
1 − 3(1 + l21 − l22 − l21l

2
2)r

2
2 + 8(l21 − l22)r

2
1r

2
2 = 0. (28)

Since
1+l21
1+l22

6= l21r2
1

l22r2
2
, β1 and β2 are solved by the following equations

A1

(
β1

β2

)
= b1, A1 =

( l21r4
1

(1+l21)
2

l22r4
2

(1+l22)
2

l41r6
1

(1+l21)
3

l42r6
2

(1+l22)
3

)
, b1 =

(
π
96
π

256

)
.

Therefore,

βi = (−1)(i−1) (1 + l2i )
3σ(l1, l2, r1, r2)

l2i r
4
i (3 + 3l2i − 8l2i r

2
i )

, i = 1, 2,

where σ(l1, l2, r1, r2) =
(3+3l21−8l21r2

1)(3+3l22−8l22r2
2)π

768(l21r2
1−l22r2

2+l21l22(r
2
1−r2

2))
.

In Step 2, the nodes are chosen by the method in Section 3.2. The desired embedded pair is

Q5[1; f ] =

4∑

i=1

αf(xi, yi) +

2∑

j=1

b
(5)
j f(uj , 0) +

2∑

j=1

c
(5)
j f(0, vj) + d(5)f(0, 0)

and

Q7[1; f ] =

8∑

i=1

β1+[(i−1)/4]f(xi, yi) +

4∑

j=1

b
(7)
j f(uj , 0) +

4∑

j=1

c
(7)
j f(0, vj) + d(7)f(0, 0).

The expressions of uj , vj , b
(k)
j , c

(k)
j , and d(k), k = 5, 7, are functions of l1, l2, r1 and r2 and com-

plicated, and we omit them here. Two special cases are shown as follows.

Case 1 l1 = 0.596673042488015, l2 = 9.589366183178306, r1 = 0.902004008737817, r2 =

0.803707572904092.

The desired embedded pair was constructed in [3] by using a different method.

Case 2 l1 = l2 = 1.

The condition Eq. (28) is satisfied. Through the computation, we conclude that

(i) There does not exist such desired embedded pair of degrees (5,7) that its nodes are

located inside the disk symmetrically and invariant by rotation of π/2.

(ii) All the weights are positive if one of the following conditions is satisfied:
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(a) r1 = 0.759909177984682, r2 = 1;

(b) r1 = 0.866025403784439, r2 6= r1;

(c) 0.650115167343736≤ r1 ≤ 0.746381949494463, 0.866025403784439 ≤ r2 ≤ 1;

(d) 0.759909177984682 < r1 < 0.746381949494463, η(r1) ≤ r2 ≤ 1;

(e) 0.866025403784439 < r1 ≤ 0.910995803644429, η(r1) ≤ r2 ≤ 0.866025403784439;

(f) 0.910995803644429 < r1 ≤ 1, ξ(r1) ≤ r2 ≤ 0.866025403784439,

where ξ(r1) = 1
2

√
9−12r2

1

3−5r2
1

and

η(r1) = 1
2

√
18−81r2

1+121r4
1−60r6

1+
√

3
√

108−972r2
1+3543r4

1−6678r6
1+6899r8

1−3768r10
1 +880r12

1

12−56r2
1+78r4

1−30r6
1

.

In Table 1 we present the desired embedded pair of degrees (5,7) which is constructed by

choosing r1 = 0.650115167343736 and l1 = l2 = r2 = 1 and has the following properties:

(i) All the nodes are located symmetrically and invariant by rotation of π/2;

(ii) The nodes in the fourth row in Table 1 are on the boundary;

(iii) All the weights are positive.

±xi ±yi ω5i ω7i

0.459700843380983 0.459700843380983 0.732786462492640 0.317305846033979

1.255926060399109 0.0 0.052611700904808 0.004253968490140

0.0 1.255926060399109 0.052611700904808 0.004253968490140

0.707106781186548 0.707106781186548 0.074218463767255

0.822933195591952 0.0 0.262339623560236

0.0 0.822933195591952 0.262339623560236

0.0 0.0 0.509121046183350

Table 1 The embedded pair of cubature formulae of degrees (5, 7) over B2 with

l1 = l2 = r2 = 1 and r1 = 0.650115167343736

In this example, if r1 = 0.650115167343736 and r2 = 0.524576772205617, then d(5) =

d(7) = 0. Thus the numbers of nodes of the cubature formulae of degree 5 and 7 are 8 and 16,

respectively. The corresponding formulae are omitted here.

Example 2 Another embedded pair of cubature formulae of degrees (5, 7)

The example is constructed by the algorithm in Section 4. For any r1 and r2 (0 ≤ r1, r2 ≤ 1),
∫

B2

xy(x2 + y2 − r2
1)p(x, y)dxdy = 0, (29)

∫

B2

xy(x2 + y2 − r2
1)(x

2 + y2 − r2
2)p(x, y)dxdy = 0, (30)

where deg(p(x, y)) ≤ 1. The detail process is as follows.

Step 1. Based on Eq. (29), there exists a cubature formula of degree 1 with zero node with

respect to I[xy(x2+y2−r2
1); f ]. Based on Eq. (30), construct a cubature formula of degree 3 with
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respect to I[xy(x2 + y2 − r2
1); f ] by choosing nodes along (x2 + y2 − r2

2) = 0. Thus, an embedded

pair of cubature formulae of degrees (1,3) with respect to I[xy(x2 + y2 − r2
1); f ] is obtained.

Step 2. First construct the embedded pair of cubature formulae of degrees (3,5) with

respect to I[xy; f ] by choosing nodes along x2 + y2 − r2
1 = 0. Then construct the embedded pair

of cubature formulae of degrees (5, 7) with respect to I[1; f ] by choosing nodes along xy = 0.

In this example, all the nodes and weights are parameterized by r1 and r2. Here we give

some conditions for special embedded pairs of cubature formulae.

±xi ±yi ω5i ω7i

0.653674609031777 0.612372435695795 0.204232164591664 0.130016551340444

0.747106153371610 0.0 0.390861373496535 -1.011700001352971

0.0 0.761535561006202 0.413019348061539 0.066960213050551

0.0 0.0 0.716902552106991 0.074330402067366

0.706072094640341 0.128164835786863 0.727260315941574

0.259900178979615 0.857171156455472 0.119609150980555

0.983076911315562 0.0 0.108641290974499

0.0 0.369197652664678 0.415957586563990

Table 2 The embedded pair of cubature formulae of degrees (5,7) over B2 with

r1 = 0.895706701154371 and r2 = 0.717609941376283

Condition 1 All the nodes are inside the disk:

(i) 0.894427190999916 < r1 < 0.895706701154371,√
−12−30r2

1+60r4
1

−75+100r2
1

< r2 ≤
√

234−409r2
1−420r4

1+720r6
1

50(−3+4r2
1)(−7+12r2

1)
+ 1

50φ(r1);

(ii) r1 = 0.895706701154371, 0.698530447975331 < r2 < 0.720721950181746;

(iii) 0.895706701154371 < r1 < 0.896561075287405,√
−12−30r2

1+60r4
1

−75+100r2
1

< r2 <
√

315−555r2
1−116r4

1+400r6
1

50(−3+4r2
1)2

− 1
50ϕ(r1),

where

φ(r1) =
√

4356−33612r2
1+220861r4

1−840120r6
1+1603440r8

1−1468800r10
1 +518400r12

1

(−3+4r2
1)2(−7+12r2

1)2
,

ϕ(r1) =
√

75249−503334r2
1+1411965r4

1−2125032r6
1+1810096r8

1−828800r10
1 +160000r12

1

(−3+4r2
1)4

.

Condition 2 All the weights of the cubature formula of degree 5 are positive:

0.711276861706101 < r1 ≤ 1, r1 6= 0.735980072193987, 0 < r2 ≤ 1.

Condition 3 All the weights of the cubature formula of degree 7 are positive:

(i) 0.962594280847148 < r1 < 0.970736323872751,√
1
50 (

459−1009r2
1−20r4

1+720r6
1

21−64r2
1+48r4

1
+ ζ(r2

1)) < r2 ≤
√

57−75r2
1

75−100r2
1
;

(ii) 0.899219894623581 < r1 ≤ 0.899255633514933,√
459−1009r2

1−20r4
1+720r6

1

21−64r2
1+48r4

1
+ ζ(r2

1) <
√

50r2 ≤
√

225−315r2
1−276r4

1+400r6
1

(3−4r2
1)2

+ θ(r2
1),

where

ζ(r1) =
√

51606−437262r2
1+1572661r4

1−3064120r6
1+3405040r8

1−2044800r10
1 +518400r12

1

(21−64r2
1+48r4

1)2
,
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θ(r1) =
√

34344−251694r2
1+787005r4

1−1340712r6
1+1312176r8

1−700800r10
1 +160000r12

1

(−3+4r2
1)4

.

In Table 2 we present the embedded pair of cubature formulae of degrees (5,7) which is con-

structed by choosing r1 = 0.895706701154371 and r2 = 0.717609941376283.

6. Conclusion

In this paper, we introduce a new strategy to construct an embedded pair of cubature

formulae in R
2. The methods in Section 3 show that the problem of constructing embedded

cubature formulae in R
2 can be simplified and for some special cases it is only a one-dimensional

problem. The algorithm in Section 4 shows that an embedded pair of cubature formulae can

be iteratively constructed and during all the process only one-dimensional moment problems

are dealt with. The main result in Section 3 and the algorithm in Section 4 can be also used

for constructing an embedded sequence of cubature formulae. Examples 1 and 2 show that

the positions of the nodes and the signs of the weights of embedded cubature formulae can be

controlled by some parameters, which will be much more convenient in practice.
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