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The Existence of Solutions to a Class of Multi-point
Boundary Value Problem of Fractional Differential
Equation

Xiaohong HAO, Zongfu ZHOU*
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Abstract In this paper, we consider the following multi-point boundary value problem of
fractional differential equation

Dgyu(t) = f(t,u(t), D57 u(t), D5y *ult), D55 ult)), € (0,1),

Iy "u(0) = 0, DGy u(0) = ZaiDatlu(s )

)

D5 u Zﬂ;Dw u(ny), DEZ u(1) = DEZ*u(0) = D u(;

where 3 < a < 4 is a real number. By applying Mawhin coincidence degree theory and
constructing suitable operators, some existence results of solutions can be established.

Keywords fractional differential equation; multi-point boundary value problem; coincidence

degree.
MR(2010) Subject Classification 34B10; 34B15

1. Introduction

Recently, fractional differential equations have been of great interest due to the intensive
development of the theory of fractional calculus itself as well as its applications. The fractional
calculus has been applied to numerous and widespread fields of science and engineering, such
as rheology, fluid flows, electrical networks, viscoelasticity, chemical physics, etc. It is really a
useful tool for solving differential and integral equations and various other problems involving
special functions. For details, see [1-11,17-20] and the references therein.

There are some papers dealing with the solvability of fractional boundary value problems

recently. In [5], Bai investigated the nonlinear nonlocal problem

Dgyu(t) = f(tu(t)), te(0,1),
u(0) =0, Pu(n) = u(1),
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where 1 < <2,0< 8n* ! < 1.
In [11], Jiang studied the following boundary value problem

Dgu(t) = f(t,u(t), D u(t), te(0,1),

w(0) =0, Dg;"u(0) ZazDa fu(&), DiPu(l) ZbDo+um

Where2<a§3,0<51<§2<~-~<§m<1,0<771<772<~-~<77n<1,2211a1-:1,

Siiby =1, bymy =1, f:]0,1] x R x R — R satisfies the Caratheodory condition.
However, no contributions exist, as far as we know, concerning the solvability of the following

fractional boundary value problem with 3 < a < 4. Motivated by the above works and recent

studies on fractional differential equations, we fill the gap.

Dg-l-u(t) = f(ta u(t)v DSJ:lu(t)v D(?J:Zu’(t) DO+ 3u(t)) t € (Oa 1)7 (1)
I %u(0) = 0, Dg;  u(0) ZalDo‘ Lu(g,

a— - a— a— a— a— 1
D0+2U(1) = ZﬁjDoJr 2”(773'), D0+ 3”(1) - D0+3U(O) = D0+ 2u(§)a (2)

where 3 < a < 4isareal number, 0 < & <& < <& <L,0<m<n < - <n, <1,
S =1, 30 B =1, 30 Bmy =1, f:[0,1] x R* — R satisfies the Caratheodory
condition. D§, and I, are the standard Riemann-Liouville fractional differential and integral,
respectively.

When « = 4, problem (1), (2) is reduced to four-order multi-point boundary value problem,
which has been studied by many authors [12-16].

The purpose of this paper is to study the existence of solutions for boundary value problem
(1), (2). Our method is based upon Mawhin coincidence degree theory [4].

The outline of the paper is as follows: in Section 2, we give some preliminaries, in Section
3, the existence of solutions for problem (1), (2) are presented. And at the end of this paper, we
give an example to illustrate our main result.

Now, we briefly recall some notations and an abstract existence result.

Let Y, Z be real Banach spaces, L : dom(L) C Y — Z be a Fredholm map of index zero and
P:Y —=Y,Q:Z — Z be continuous projectors such that Im(P) = Ker(L), Ker(Q) = Im(L) and
Y = Ker(L) ®Ker(P), Z = Im(L) ®Im(Q). It follows that L|qom(r)nker(p) : dom(L) NKer(P) —
Im(L) is invertible. We denote the inverse of the map by K. If € is an open bounded subset of
Y such that dom(L) N Q # @, the map N : Y — Z will be called L-compact on Q if QN () is
bounded and K,(I — Q)N : Q — Y is compact. J : Im(Q) — Ker(L) is the isomorphism.

Theorem 1.1 ([4]) Let L be a Fredholm operator of index zero and let N be L-compact on .
Assume that the following conditions are satisfied:

(i) Lz # ANz for every (z, ) € [(dom(L)\Ker(L)) N9Q] x (0,1);

(ii) Nz ¢ Im(L) for every x € Ker(L) N 0Q;
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(iii) deg(JQNxer(r)» N Ker(L),0) # 0.

Then the equation Lx = Nz has at least one solution in dom(L) N €.

2. Preliminaries

For convenience, we present here some necessary basic knowledge about fractional calculus

theory, which can be found in recent papers [1-3].

Definition 2.1 The Riemann-Liouville fractional integral I§, y of order o(a > 0) is defined by

1 t
IS yt) = = [ (t—s)*y(s)ds, t>0
50) = e [ =" Myts, 10,
provided the right side is pointwise defined on (0, +00).

Definition 2.2 The Riemann-Liouville fractional differential D§, y of order a(o > 0) is defined
by

o oL do o y(s)
Do+y(t)—m(§) /omd&

where n = [a] + 1.

Definition 2.3 We say that the map f : [0,1] x R™ — R satisfies the Caratheodory conditions
with respect to L0, 1] if the following conditions are satisfied:

(i) for each z € R™, the mapping t — f(t, z) is Lebesgue measurable;

(ii) for almost every t € [0, 1], the mapping z — f(t,z) is continuous on R™;

(iii) for each r > 0, there exists p, € L'([0,1], R) such that, for a.e. t € [0,1] and every
|z| < r, we have |f(t, z)| < pr(t).

Lemma 2.1 ([11]) Assume f € C[0,1], ¢ > p > 0, then
DT, 1) = T £(0).
Lemma 2.2 ([11]) Assume a > 0, then D§, u(t) = 0 if and only if
u(t) = et Feat® F 4 et
for some ¢; € R, i = 1,2,...,n, where n is the smallest integer greater than or equal to c.

Lemma 2.3 ([19,20]) Let a« > 0, n = [a] + 1. Assume that u € L'(0,1) with a fractional
integration of order n — « that belongs to AC™[0,1]. Then the equality

Z I&O‘u )() "= =0 ja—i
Pla—i+1)

I3 Dgu(t)

holds almost everywhere on [0, 1].

Most time, we use the following form:

Assume that u € C[0,1] N L'[0, 1] with a fractional differential of order a > 0 that belongs
to C[0,1] N L0, 1]. Then

I8, Dy u(t) = u(t) + et '+ eat® 2+ ent* N,
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for some ¢; € R, i=1,2,..., N, where N is the smallest integer greater than or equal to a.
We use the classical Banach space C0,1] with the norm ||zl = maxcjo 1) |2(t)]. Given

@ >0and N = [u] 4+ 1, we can define a linear space
CH0,1] == {u(t)|u(t) = I, x(t) + cith ™' + coth 2+ -+ + enatP~WNY e [0,1]},

where z € C[0,1] and ¢; € R, i =1,2,..., N — 1. By means of the linear functional analysis the-
ory, we can prove that with the norm ||ul|cr = || D} ulloc+- -+ HDS:(N_”uHOO + |luf| oo, C*[0, 1]

is a Banach space [10].

Lemma 2.4 ([9]) F C C*[0,1] is a sequentially compact set if and only if F is uniformly
bounded and equicontinuous. Here uniformly bounded means there exists M > 0, such that for

every u € F,

—(N-1
lullen = || Db, ulloo + -+ + || DT VY

Ulloo + [|ufloe < M,
and equicontinuous means that Ve > 0, 3 > 0, such that

lu(ty) —u(tz)| < e, Vti,t2 €[0,1],]t1 —t2] < 9, Yu € F,
and

Dy u(ty) — D§T ults) < e, Vi, ta €[0,1],[t1 —ta| <6, Vu € F, Vi €0,...,N — 1.

Let Z = L'[0,1] with the norm |jgll; = [, |g(s)lds. Y = C*7'[0,1] = {u(t)[u(t) =
Ig‘;lx(t) + 1172 4 cot® 3 t € [0,1]}, where x € C[0,1], ¢; € R, i = 1,2, with the norm
[ull camr = [|D§T " ulloo + |1 DG T ulloo + 1D *ulloc + ||u]|oc- Then Y is a Banach space. Define
L to be the linear operator from dom(L) NY to Z with

dom(L) = {C*71(0,1]|D§ u € L'(0, 1], u satisfies (2)} (3)

and
Lu = Dg,u, u € dom(L). 4)

Define N : Y — Z by
Nu(t) = f(t, u(t), D5 u(t), Dg*u(t), D ult)). ()
Then boundary value problem (1), (2) can be written as

Lu = Nu. (6)

3. Existence results

In order to simplify the calculation process, let
m m m
Al - Z O‘igiaa A2 = Zo‘igg_la A3 = Zaigg_Qa
i=1 i=1 i=1

By=1-)Y Bimi™, By=1-> Binf, Bs=1-> B,
j=1

Jj=1 j=1
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a—2A;  T(a-— 1 BI‘(a—Q) I'a) 1 1

2 _

M= LB T T ) T BT e )Tt T
T e L By (o Tl
! r(l;(i)m ?EZ T ; (1= 2%) - Bzr(l;(i)?)) ?EZ n B (1 2a1+1> #0,
Ao :ac—yzj_?[ 2?8;3 ai?,( - 2a1+1) - 1F(1;(i)2) ggl;“ - 2%)]7L
%%[Blr(z(?z) ?EZ :L i; (1= 2a1—1) B Blr(?(;)m P(l;(i)?,)( B 2a1+1 Ui
O i R A

Lemma 3.1 The mapping L : dom(L) NY — Z is a Fredholm operator of index zero.

Proof By Lemma 2.3, D§, u(t) = 0 has solution

u(t) :ﬁ((lg_;au)(t))@)|t:0toz—l + ﬁ((ISLJO‘U)(t))@)lt:otO‘_Q—i—
F g (790 o™+ gy G o™

Combining with (2) gives

Ker(L) = {at® ' + bt* 2 4+ ¢t 3|a,b,c € R} = R>.

179

Let g € Im(L). Then there exists u € dom(L) s.t. g = D§,u. From Lemma 2.3, we have

u(t) = I§ g(t) + et + cot® 2 4 et % 4 gt ™,

which, due to the boundary value conditions (2), implies that g satisfies

m &i
Zai/ g(s)ds = (7)
i=1 0
1 n n;
/ (1—-29)g(s)ds — Zﬁj/ (n; —s)g(s)ds =0, (8)
0 = 0
1! ) 71
L a—spgas— [T G - s)gts)ds =0, (9)
Hence
Im(L) C {g € Z|g satisfies (7), (8) and (9)}.
Let g € Z and
t
u(t) = %/ (t—s)*"1g(s)ds+cit® 4 et 2 4 et 3 = I&rg(t)—i—clto‘_l + ot 2 gt 3,
@) Jo

Then D§ u(t) = g(t) a.e. t € (0,1) and if (7)—(9) hold, then u(t) satisfies the boundary conditions

(2). That is, u € dom(L), then we have

{g € Z|g satisfies (7), (8) and (9)} C Im(L).
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Therefore,
Im(L) = {g € Z|g satisfies (7), (8) and (9)}.

Define the following continuous linear mapping Q1 : 2 — 2, Q2 : Z — Z and Q3 : Z — Z

m &i
Q19 = Z ai/ g(s)ds, (10)
Q29 = / (1 —3s)g(s)ds — ZBJ / (n; — s)g(s)ds, (11)
1 3
Qsg = %/0 (1—s)2g(s)ds _/0 (% — 8)g(s)ds. (12)

Using the above definitions, we construct three auxiliary maps Ry : Z — Z, Ry : Z — Z and
Rs:Z —Z

no-§ R st RS b
I T M
[Bgziii—z”&;ﬁ Bz?EZJ Qas). 19

WL SR I WSS
[a; Qj_;rga + ?;( B 204171) B F(l;(i)m (1= 2a1+1)]Q2g‘L
[B3a; 2 %F(I?(;)Q) B 11“(2(?2)]6239}’ (14)

Fsg :A_Q{A_l 2?8 J_r B F(I;(i)i%)( - 2a1+1) - 1r(z(i)2) ?EZ J_r ii (1= 5219
[ai 1%F(l;(i)3) - 2a1+1) - ?EZ;;( ~ 5o )l@2gt
[Blai 1%5?2) _B%EZIK]Q“’}' (15)

Consider continuous linear mapping Q : Z — Z defined by
Qg = (Rig)t* ™" + (Rag)t* > + (Rag)t* > (16)
It is well-defined. Recall A; # 0 and Ay # 0, and note that
P (Fagt™™) = A_l{ A32[ 2?8;3 ?EZ;B( - 2&171) _B3F(1?(;)2) ?EZI% - 2%)]'

a—2 4, T(a—2) 1 Ma-1) 1
e 14 T@rD " 3 Tary! T
a—2AT(a—2) [(o— )]Qg(ngta H

- D2

Qi(Ragt*™") — [ )

QQ (ngta_l) + [Bg

a—1A4;3 T(a) INa+1)
B 1 a=-2 _ T(a—2)T(a—1) 1 Na—-2)T(a—1)
R A B T T ) "B ) Tt
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1,1 a—2AT(a—2) 1 MNa—-1) 1
(1= glg A= [a—lAZ (a—|—1)(1_20‘*1)_F(a—|—2)( ey
() a—2AT(a—2) MNa-1), T'(a) 1
I‘(a+2)Bl+[B3a—1A_3 Lla) (a—i—l)]l"(a—i—?))( ~ et

Ay
19 A 19,
and similarly we can derive that

Ri(Ragt®™?) =0, Ri(Ragt®™®) =0, Ry(R1gt* ") =0, Ry(Ragt® ?) = Rag,
Ro(R3gt®™®) =0, R3(Rigt®™ ") =0, R3(Rogt®?) =0, R3(R3gt®*) = Rsg.

Therefore, for g € Z, it follows from the nine relations above that

ng :Rl (ngtafl + R2gtoc72 + R3gta73)ta71 + Rz(ngtocfl + R2gto¢72 + RSgta73)ta72+
Rs (ngta71 + RQgta72 + Rggtaig)taig
=(Rig)t*"! + (Rag)t* ™2 + (R3g)t* > = Qg. (17)

That is, the map @ is a continuous linear projector.

Note that g € Im(L) implies Qg = 0. Conversely, if Qg = 0, then we must have R1g =
Rsg = Rsg = 0; this can only be the case if Q19 = Q29 = Q39 = 0, that is, g € Im(L), in fact
Im(L) = Ker(Q).

Take g € Z in the form g = (g — Qg) + Qg, so that g — Qg € Im(L) and Qg € Im(Q). Thus,
Z =Im(L) + Im(Q). Let g € Im(L) NIm(Q) and assume that g(s) = as®~! + bs*~2 + 5273 is
not identically zero on [0, 1]. Then, since g € I'm(L), from (7),(8),(9) and the condition Ay # 0
and Ay # 0, we derive a = b = ¢ = 0, which is a contradiction. Hence, Im(L) N Im(Q) = {0};
thus Z = Im(L) & Im(Q).

Now, dim Ker(L) = 3 = codimIm(L) and so L is a Fredholm operator of index zero.

Let P:Y — Y be defined by

1

Pu(t) = Tla 10

Dal()tal—f— Da2()toz2+ DaB()toz3

I‘( ) I'(a—2)

Note that P is a continuous linear projector and
Ker(P) = {UEY|D0+ u(0) = Dy *u(0) = Doy “u(0) = 0}.

It is clear that Y = Ker(L) @ Ker(P).
Note that the projectors P and @ are exact. Define K, : Im(L) — dom(L) N Ker(P) by

Kyg(t) = %a) / (t - )* T g(s)ds = Ig, g().
Then

K oo 5 D oog )
[ gl _F( )Ilglh DG (Kpg)l lgllx

a— a— 1
105 (Kp9)llso < llglhs 15 (Kpg)lloo < 5 llglhr-
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Hence

HKVPQHCQ*1 = ”K;DQHOO + ”Dg-;l(Kpg)Hoo + HD(?;Q(KPQ)HOO + ”Dg;S(Kpg)Hoo
5

§(§+

1
m)HQHL (18)

So K,g € C*710,1]. It is clear that K,g € dom(L) and K,g € Ker(P). Therefore, K,,(Im(L)) C
dom(L) N Ker(P). And if g € Im(L), then (LK,)g = Dg, 15, g = g. If u € dom(L) N Ker(P),
(KpL)u(t) = I, D§ u(t) = u(t) + et 4 cot® 2 + cgt® ? 4 cat® ™4,
from the boundary value conditions (2) and the fact that u € dom(L) N Ker(P), we have ¢; =
cp = c3 = ¢4 = 0. Thus
Kp = (Llaom(LynKer(P)) " (19)
Lemma 3.2 Assume ) C X is an open bounded subset and dom(L) N Q # 0, then N is L-

compact on Q.

Proof By Definition 2.3, we can get QN (€2) is bounded. Now we show that K,(I-Q)N : Q — X
is compact.  C X is bounded, i.e., there exists a positive constant N > 0, s.t ||ul|c < N for all
u € Q). Denote

M = max 1 (¢, u(t), D " ult), Dey*u(t), Do u(t) = Qf (¢, ult), Dy ult), g *u(t), Do u(t)) 1.

For u € Q,

15, (I = Q) Nulloo =II157 [f (t,u(t), Dg "ult), Diy *u(t), Do u(t))—
QF (t.u(t), D§; u(t), DG *u(t), Dy u())] |l

_ﬁ £t u(t), Dy u(t), D§*u(t), Dgy Pu(t)) — Qf (t,u(t), Dgy u(t),

DG 2ult). D u(0) | < 75 M,

IDG Kp(I = Q)Null oo =g [f (t, u(t), DG ult), DG 2ult), DE u(t)) — QF (¢, ult),
DG ult), Dgr*u(t), Dy u(t)]ll
<IF (¢ ut), Do u(t), DE*u(t), DG u(t)) — QF (¢ u(t), D Mult),
D *u(t), D ult))lh < M.
Hence K,(I — Q)N (Q) C X is bounded.
It follows from the Lebesgue dominated convergence theorem that K,(I — Q)N : Q@ — X is

continuous. For 0 <t; <ty <1,u € ﬁ, we have

[Kp(I = Q)Nu(tz) — Kp(I — Q)Nu(t)]

L " — ) NI - u(s s—L " — s I - u(s)ds
o [ 2= 9 = QNus — s [ =97 0 - QN (e

% {/otl(t2 —8)" T = (i —s) s + /t2 (t2 = 5)°"ds]

ty

IN
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M

= O[F(Oé) (tg - t(ll)

and
|D§T K (I = Q)Nul(ts) — DiT Kp(I — Q)Nu(t)]
_ ‘/2(1_ Q)Nu(s)ds — / (1= Q)Nu(s)ds| < Mty — 1y).
0 0

Since t* and ¢ are uniformly continuous on [0, 1], we can get that K,(I—Q)N(Q) and D§; " K, (I—
Q)N (Q) are equicontinuous. By the Ascoli-Arzela theorem, K,(I — Q)N : Q — X is compact.
Then the map N : X — Y is L-compact on €.

Theorem 3.1 Let f:[0,1] x R* — R be continuous and assume the following conditions are
satisfied:

(A1) For all (z,y,z,5) € R* and a.e. t € [0,1], there exist functions a,b,c,d,e, f,g,h €
L]0, 1] and constants 6, p, T € [0,1) such that one of the following inequalities is satisfied:

[ty 2, 8)] < h(t) + alt)]a] + b(t)]y| + c(t)|2] + d(B)|s] + e(t)]y|” + F()|=]7 + g()]s]",
[t 2.y, 2,8)| < h(t) + a(t)|z] + b(O)|y| + c(t)|2] + d(t)]s| + e(t)]=]” + F()]s]7 + g(B)la]",
[ty 2, 8)] < h(t) + a()]a] + b(E)]y| + c(t)|2] + d(B)]s] + e(@)]s|” + f()]z]* + g (@)Yl
[ty 2, 8)] < h(t) + alt)]a] + b(t)]y| + c(t)|2] + d(B)|s] + e(t)]]” + FB)lyl* +g(t)]]".

(As) There exists a constant A > 0 such that for u € dom(L)\Ker(L) satisfying |D§} ' u(t)+
DS‘;QU( )+ Doy Su(t)| > A for all t € [0,1], then we have

Q1Nu(t) # 0 or QaNu(t) # 0 or QsNu(t) # 0.

(A3) There exists a constant B > 0 such that for every I, m,n € R satisfying I> +m?+n? >
B, then

IRy N (It 4mt® 24 nt 3+ mRo N (1t +mt® 2 4nt® ™ 3) +n Ry N (1t +mt* 2 4nt*~3) > 0
or

IR N (1t pmit® =24t mRy N (1t 4-mt® 2 4nt® = 3) +nRa N (1t mt 2 4nt*3) < 0.
Then, the boundary value problem (1), (2) has at least one solution in C*~1[0,1] provided that

1
llafle + 10l + llelly + fldlls < -

Proof Set
Qy = {u € dom(L) \ Ker(L)|Lu = ANwu for some A € [0,1]}.

Then for u € Qq, Lu = ANwu, thus A # 0, Nu € Im(L), hence QNu = 0 for all ¢ € [0,1]. By the
definition of @, we have Q1 Nu(t) = Q2Nu(t) = QsNu(t) = 0. Then it follows from (Ag) that
there exists to € [0, 1] s.t.

|DOJr u(t0)+D0+ u(t0)+D0+ u(to)| < A.
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Note that

¢
Dy u(t) = DS Muto) / D, u(s)ds, D u(t) = Dy *ulto) —I—/ Dy u(s)ds
to

t
DS‘_:?’u(t) = Dg;gu(to) —I—/ DS_FQ’U, s)ds
to
and then

D5 u(0)] < IDgE u(t) oo < DG ulto)l + | DFyut)ll < A+ [[Lulls < A+ [|Nully,

D5 u(0)] < IDG*u(t)lloe < |DFTulto)] + DG ulto)] + DG u(t)]x
<A+ | Lufy < A+ [|Nully,
D5 u(0)] < D u(®)lloe < [DGT ulto)| + DG *ulto)] + [ DGy ulto)] + | DG u(t) 1

< A+ ||Nul.

By the above three inequalities, we have

a— 1 a— 1 [e% a—
1Pullga—r =I5 (o )Do+ Lu(0)t ! + W‘Do-i- 2u(0)t* 72 + mDO+3u( )13 oot
||Do+ w(0) o + D55 (0}t + DG 2u(0)]| oo+
||_Da ! ( )t2+D0+ u(0 )t+D0+ u( )”oo
s<§ + Fa)ID8 ) + (24 T gp)IDG2ul0)] + (1 + 75 =)D u(0)
<3+ Fay) A+ INull) + @+ gz g4+ [Vul)+
1+ Fr—gy) (A + [N, (20)
Note that (I — P)u € Im(K),) = dom(L) N Ker(P) for u € ;. Then by (18) and (19) we have
I = Phullcans = [T = Pullcns < G + o) IEU = Phull
= G + Il < G + IVl (21)
Combining (20) and (21) gives
lullca < IPullgars + (I = PYulloa
2 1 1 11 1 1 1
=@+ I'a) + MNa—-1) + INa— 2))||Nu||1 + (? + I'(a) + MNa—-1) + INa— 2))A

= A||Nu|: + D,
where D = (4 + ﬁ + ﬁ + ﬁ)A is a constant. That is, for all u € Qy,
[ull¢o-r < Al|Nully + D.
If the first condition of (Aq) is satisfied, then we have

max(||ull o, | DFF  ulloo, 1D *ull oo, DEF*ulloc)
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< ullga-1 < ARl + llallsllulloe + 1011 1-D5F ulloo + llell 1D *ulloo+
ldl1 1D ulloo + lleln 1D ulld + I I IDEE *ull + gl D5 ull %) + D,

and consequently, we have

[[/loo
< m(llhlll + bl D55 ulloe + llell | DS ullo + N1 DG ulloo + llell1 D5 ull%
£ 1D *ull% + gl 1D ull %) + %,
= llalliA
1055 oo
Alle|l1 ]| D§F " ullé A

< + (lRlls + el I DEE*ulloo + Il 1 D5 ull ot
1= la[hA =1folxA 1= [lafl A = [jb]l1 A o o

a— a— T D
AP 2 ull % + gl DEFull %) +

1= JlallA = [IbllL A

1Dl
Allf I3 IDg*ullg A 1,16
< . + (Il + Tlell [ Doy ullo+
L—fla[lhA = [oliA = flelhA 1= flaliA = [[bl[1A = [lef1 A .

D

d|l1 | DS 3l o + D& 3u|T) + ,
|| ||1|| 0+ || ||g||1|| 0+ ” ) 1— ||a||1A — HleA — ||C||1A

D6} ]l oo
Allgll1 IDg P ullz, N A
= 1—laliA = [|bo[1A = le[iA = |d[iA 1 = [lal|sA = [[b]]1A = [[c]|1A = [|d]|1 A

D
lell1Dg ullde + LIl I DE*ull£, + :
o o 1= [lafliA = [[bli A = flell A = ldl}: A

As0,p,7 €[0,1) and |alls +[|b]|1 + [|c]l1 + [|d]|s < £ holds, then there exist My, Mo, M3, My > 0
such that for all u € Q1 [Juljec < M, | D§y " ulloe < Mo, | DS ?ulloc < M, | DY ulloo < M.
Therefore, for all u € Q,

(7l +

lulloa—r = llullo + D5+ ulloo + D5 ulloo + D5 ulloe < My + My + Ms + M.

So €2 is bounded given the first condition of (Ay).

If the other conditions of (A;) hold, similarly to the above, we can prove that €; is also
bounded.

Let

Qg = {u € Ker(L)|Nu € Im(L)}.

For u € Qg, u € Ker(L) = {It* 1 + mt*=2 + nt*3|l,m,n € R,t € [0,1]}, from Nu € Im(L) and
Im(L) = Ker(Q), we have QN (It*~! + mt*=2 + nt®*=3) = 0. Thus
RiN(It* 1 4-mt® 2 4nt*3) = RyN(It* ' 4+-mt® 2 4nt*3) = RgN(It* ' +mt* 2 +nt*3) = 0.
By (A3), we have [2 + m? + n? < B. Therefore, Q5 is bounded.

We define the isomorphism J : Im(Q) — Ker(L) by

JIto ™ 4 mt 2 4t 3) = 107 it 2 4 nt® 3, I,m,n € R.



186 Xiaohong HAO and Zongfu ZHOU
If the first part of (A3) is satisfied, let
Q3 = {u € Ker(L)|\J tu+ (1 = N\)QNu=0,\ € [0,1]}.
For every [t®~! + mt*=2 4 nt* =3 € Q3,
A1t + mt*2? 4 nte3)
= —(1 = N[R Nt +mto2 4t 3) 7§ RoN (1t 4 mt 2 43024
Ry N (It~ 1 + mt®=2 4 nt*=3)1o3],
if A\ =1, then | = m =n = 0; if [> + m? +n? > B, then by (A3),
M2 4+m2+n?) == (1= N[IRNIt* ™ +mt 2 4 nt*3) £ mRoN (1t + mt*™2 4 nt* %)+
nRyN(1t*~ 1+ mt* 2 + nt*3)] > 0,
which, in either case, is a contradiction. Thus, for all u € Qg,
[ullga—r =1t + mt* 2 + nt* 3| o + [IT(@)]| 0o + [IT (@)t + mI(a — 1) || oo+
||%ll"(o<)t2 +mI(a— 1)t + nl'(a — 2)||oot
<(1+ gl“(a))|l| +(1+2T(a=1))m|+ 1+ T(a—2))|n|
<3+ gr(a) +2T(a 1) +T(a — 2))B.

So 3 is bounded.
Similarly, if the second part of (As) is satisfied, let

Q3 = {u € Ker(L)| — AT tu+ (1 = N)QNu =0, X €[0,1]},

where J is as above. Similarly to above arguments, we can show that €3 is bounded too.
Note that Qq, s, Q3 are all bounded. So there exist H; > 0, such that for all u € €,
||ul|ge—r < Hy,i=1,2,3. Let
H = max{H,, H2, Hs}

and
Q= {ulue Y, |ulour < H}.

In the following, we shall prove that the conditions of Theorem 1.1 are satisfied. 2 is a
bounded open set of Y defined as above. By the above argument, we have
(i) Lz # ANz for every (z,\) € [(dom(L)\Ker(L)) N9Q] x (0,1);
(ii) Nz & Im(L) for every x € Ker(L) NI
Finally, we will prove that (iii) of Theorem 1.1 is satisfied.
Let
H(u,\) = £Aidu + (1 — X\)JQNu,

where id is the identity operator in the Banach space Y. According to the above argument, we
know that
H(u, ) # 0, for all u € Ker(L) N o9,
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and thus, by the homotopy property of degree,
deg(JQN |ker(r), XN Ker(L),0) =deg(H(-,0),2NKer(L),0) = deg(H(-,1),2N Ker(L),0)
=deg(+id, Q N Ker(L),0) = +1 # 0,

Then by Theorem 1.1, Lu = Nu has at least one solution in dom(L) N €.

Therefore, the boundary value problem (1), (2) has at least one solution in the space
ce=10,1]. O

4. Example
Example 4.1 Consider the boundary value problem
z 1 . 1 1 1 1
D ult) =g sin(u(®)) + %w%w»a@%ww+ﬁw%wm—
Sin(Dg)_,’_u(t))Z + cos(Dngu(t))? + sinQ(Dngu(t))%), t€(0,1), (22)

1 5 1
IOZJru(O) =0, D02+u(0) DOJru(2
1 3 1
D§+u(1) D0+u(0) = D02+u(§). (23)

That isa:%amzlvn:2;o‘i:17§i: %561:_1562:27771 = %5772: %7 and

3 3 1 3
)s D(?Jru(l) = —D§+u(§) + 2D02+u(—),

1 1 1 1 1 ..o 1
fl,x,y,2,8) = —81nx—|——y+—z—|——s—|—31ny4 + cosz? + sin” s5

48 48 48 48
=l o le] I8l |
~ 48 s 48 TR 48 +
Takingazbzc:d:%,wehave
1 1 1 1 2
lafls +1olls + llelly +lldlls = 15 < 5 = 2 I T ~oT
2TAT Bttty 8tmgs 2

Let A = 146. For any u € C2[0, 1] N I§+(L1[O 1]), assume |D§+u(t) + D§+u(t) + D(J%+u(t)| > A
for any t € [0,1]. If (DO%Jru( t) + D0+u( )+ D0+u( )) > A holds for any ¢ € [0, 1], then

(60, D (o), DE2u(e), D *u(t) 2 22 > 0,

SO
A—97 [3 A—97
/ftu , DT u(t), DS 2 u(t), DGy Pu(t))ds > /ds= 96 > 0.
0
If (D§, u(t) + D§+u( £) + Dg, u(t)) < —A holds for any ¢ € [0, 1], then
o 145 — A
SO

1

1
145 —-A (2 145 - A
/ ds = < 0.
0

[ sttt 57 ), D50, Doy < Ho =
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Thus, the condition (As) holds. Again, taking B = 200, then for any I,m,n € R satisfying
12 4+m? +n? > B, we have

IRy N (It mt® 2 4nt® ) +mRa N (1t* 'mt ™2 4nt® ) +n Ry N (It* *+mt®* 2 4nt* %) > 0.

So, the condition (Aj3) holds.
Thus, according to Theorem 3.1, the boundary value problem (22), (23) has at least one
solution in C% [0, 1].
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