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Abstract In this paper we establish the existence of single and multiple positive solutions to

the following singular discrete boundary value problem














∆[φ(∆x(i − 1))] + q1(i)f1(i, x(i), y(i)) = 0, i ∈ {1, 2, . . . , T}

∆[φ(∆y(i − 1))] + q2(i)f2(i, x(i), y(i)) = 0,

x(0) = x(T + 1) = y(0) = y(T + 1) = 0,

(1.1)

where φ(s) = |s|p−2s, p > 1 and the nonlinear terms fk(i, x, y) (k = 1, 2) may be singular at

(x, y) = (0, 0).
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1. Introduction

In this paper, we establish the existence of single and multiple positive solutions to singular

discrete boundary value problem










∆[φ(∆x(i − 1))] + q1(i)f1(i, x(i), y(i)) = 0, i ∈ {1, 2, . . . , T}
∆[φ(∆y(i − 1))] + q2(i)f2(i, x(i), y(i)) = 0,

x(0) = x(T + 1) = y(0) = y(T + 1) = 0,

(1.1)

where φ(s) = |s|p−2s, p > 1 to T ∈ {1, 2, . . .}, N = {1, . . . , T}, N+ = {0, 1, . . . , T + 1} and

(x(i), y(i)) ∈ C(N+, [0,∞)2 \ {O}). Throughout this paper, we will assume fk : N × ([0,∞)2 \
{O}) → (0,∞) is continuous. As a result, the nonlinear terms fk(i, x, y) may be singular at

O = (0, 0), k = 1, 2.

Remark 1.1 Recall a map f : N × ([0,∞)2 \ {O}) → (0,∞) is continuous if it is continuous as

a map of the topological space N × ([0,∞)2 \ {O}) into the topological space (0,∞). Moreover

throughout this paper the topology on N will be the discrete topology.
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Let C(N+,R2) denote the class of maps (x, y) continuous on N+ (discrete topology), with

the norm ‖(x, y)‖ = maxi∈N+{‖x‖, ‖y‖} for (x, y) ∈ R2, where ‖x‖ = maxi∈N+ |x(i)|, ‖y‖ =

maxi∈N+ |y(i)|. For a solution to (1.1) we mean a (x, y) ∈ C(N+, [0,∞)2 \ {O}) such that (x, y)

satisfies (1.1) for i ∈ N and the boundary (Dirichlet) conditions.

Here and henceforth, we denote (x1, y1) > (x2, y2) ((x1, y1) ≥ (x2, y2)) if (x1−x2, y1−y2) ∈
R̄2

+ ((x1 − x2, y1 − y2) ∈ R2

+ ), (R̄2

+ = [0,+∞)2\{O}, R2

+ = [0,+∞)2). Further, we say that a

vector (x, y) is positive (nonnegative) if (x, y) > (0, 0)((x, y) ≥ (0, 0)).

It is interesting to note here that the existence of single and multiple solutions to singular

positive boundary value problems in the continuous case have been studied in great detail in the

literature [5–8, 12] (p = 2). However, for the discrete case, (p = 2) was devoted to the existence

of one solution for singular positive problems in almost all papers, for example, [1, 3, 10, 11, 15].

As far as we know, recently, in [13], the existence of one solution for singular discrete problems

to the one-dimensional p-Laplacian has been discussed.

This paper discusses the existence of single and multiple positive solutions for singular

discrete problems. The existence principles for nonsingular discrete Dirichlet problem to the

one-dimensional p-Laplacian are presented in Section 2. Some general existence theorems will

be presented in Section 3 and there we will show, for example, that the discrete boundary value

problem










∆(φ(∆x(i − 1))) + δ[(
√

x2(i) + y2(i))−α + γ(
√

x2(i) + y2(i))β ] = 0, i ∈ N

∆(φ(∆y(i − 1))) + δ[(
√

x2(i) + y2(i))−α + γ(
√

x2(i) + y2(i))β ] = 0,

x(0) = x(T + 1) = y(0) = y(T + 1) = 0,

has two nonnegative solutions, where α > 0, β > 1, δ > 0 small, γ = ( 1√
2
)α+β , fk(i, x, y) =

δ[(
√

x2(i) + y2(i))−α + γ(
√

x2(i) + y2(i))β ] (k = 1, 2) at O = (0, 0) singular. Existence in this

paper will be established using a Leray-Schauder alternative [14] and a general cone fixed point

theorem in [5, 9].

In this paper, we only consider the discrete Dirichlet boundary data. We should note that

the Sturm-Liouville boundary data can be considered. However, the arguments are easy to follow,

we leave the details to the readers.

2. Existence principles

Now, we consider the following discrete Dirichlet boundary value problem










∆[φ(∆x(i − 1))] + f1(i, x(i), y(i)) = 0, i ∈ {1, 2, . . . , T}
∆[φ(∆y(i− 1))] + f2(i, x(i), y(i)) = 0,

x(0) = y(0) = A, x(T + 1) = y(T + 1) = B,

(2.1)

where A and B are given real numbers, φ(s) = |s|p−2s, p > 1. Suppose the following two

conditions are satisfied:

(A1) fk(i, x(i), y(i)) : N × R2 → R is continuous, k = 1, 2;

(A2) For each r > 0 there exists hr ∈ C(N, [0,∞)) such that ‖(x, y)‖ ≤ r implies
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|fk(i, x(i), y(i))| ≤ hr(i) for i ∈ N , k = 1, 2.

Moreover, we also suppose that D ⊂ E = E1 × E1 is a bounded set, and there exists a

constant r > 0 such that ‖(x, y)‖ ≤ r for (x(i), y(i)) ∈ D̄. Thus |fk(i, x(i), y(i))| ≤ hr(i) for

(x(i), y(i)) ∈ D̄, where E1 = C(N+,R), k = 1, 2.

For each fixed (x, y) ∈ D, we consider the discrete boundary value problem










∆[φ(∆w(i − 1))] + f1(i, x(i), y(i)) = 0, i ∈ {1, 2, . . . , T}
∆[φ(∆u(i− 1))] + f2(i, x(i), y(i)) = 0,

w(0) = u(0) = A, w(T + 1) = u(T + 1) = B.

(2.2)

Then (2.2) is equivalent to

(w(i), u(i)) = (Φ(x, y))(i) =
(











A, i = 0

B +
∑T

s=i φ
−1(τ +

∑s
r=1 f1(r, x(r), y(r)) i ∈ N

B, i = T + 1,















A, i = 0

B +
∑T

s=i φ
−1(τ

′

+
∑s

r=1 f2(r, x(r), y(r)) i ∈ N
)

B, i = T + 1

(2.3)

where τ = −φ(∆w(0)), τ ′ = −φ(∆u(0)) are, respectively, the solutions of the equations,

Z(τ) := φ−1(τ) +

T
∑

s=1

φ−1(τ +

s
∑

r=1

f1(r, x(r), y(r))) = A−B (2.4)

Z(τ ′) := φ−1(τ
′

) +
T

∑

s=1

φ−1(τ +
s

∑

r=1

f2(r, x(r), y(r))) = A−B. (2.4)′

Similarly to the proofs of Lemmas 2.1, 2.2 and 2.3 in [15], we have the following results.

Lemma 2.1 For each fixed (x, y) ∈ D, Eqs. (2.4) and (2.4)′ have unique solutions τ, τ ′ ∈ R,

and

|τ | ≤ Cr, |τ ′| ≤ Cr,

where Cr is a positive constant independent of (x, y) ∈ D.

Lemma 2.2 Φ : D̄ → E is bounded and continuous.

Lemma 2.3 Φ : E → E is completely continuous.

We obtain the following general existence principles for (2.1) by using Schauder fixed point

theorem and a nonlinear alternative of Leray-Schauder type.

Theorem 2.1 Suppose (A1) and (A2) hold. In addition, suppose there exists a constant

M > |A| + |B|, independent of λ with

‖(x, y)‖ = max
i∈N+

{‖x‖, ‖y‖} = max
i∈N+

{max
i∈N+

|(x(i)|, max
i∈N+

|(y(i)|} 6= M (2.5)
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for any solution (x(i), y(i)) ∈ C(N+,R2) to










∆[φ(∆x(i − 1))] + λp−1f1(i, x(i), y(i)) = 0, i ∈ N

∆[φ(∆y(i− 1))] + λp−1f2(i, x(i), y(i)) = 0,

x(0) = y(0) = λA, x(T + 1) = y(T + 1) = λB,

(2.6)λ

and λ ∈ (0, 1). Then, (2.1) has a solution (x, y) with ‖(x, y)‖ ≤M.

Proof (2.6)λ is equivalent to the following fixed point problem

(x(i), y(i)) = λ(Φ(x, y))(i), i ∈ N+ (2.7)λ

where Φ is as in (2.3). Set

U = {(x, y) ∈ C(N+,R2), ‖(x, y)‖ < M}.

Since Φ : C(N+,R2) → C(N+,R2) is continuous and completely continuous, the nonlinear

alterative [14] guarantees that Φ has a fixed point, i.e., (2.7)1 has a solution in Ū . Thus (2.1)

has a solution (x, y) ∈ C(N+,R2) and ‖(x, y)‖ < M .

Theorem 2.2 Suppose (A1) and (A2) hold. In addition, we also suppose there exists a constant

M > |A| + |B|, independent of λ with

‖(x, y)‖ = max
i∈N+

{max
i∈N+

|x(i)|, max
i∈N+

|y(i)|} 6= M

for any solution (x, y) ∈ C(N+,R2) to










∆[φ(∆x(i − 1) − (1 − λ)(B−A
T+1 ))] + λp−1f1(i, x(i), y(i)) = 0, i ∈ N

∆[φ(∆y(i− 1) − (1 − λ)(B−A
T+1 ))] + λp−1f2(i, x(i), y(i)) = 0,

x(0) = y(0) = A, x(T + 1) = y(T + 1) = B,

(2.8)λ

and λ ∈ (0, 1). Then (2.1) has a solution (x, y) with ‖(x, y)‖ ≤M.

Proof (2.8)λ is equivalent to the fixed point problem

(x, y) = (1 − λ)(Q,Q) + λΦ(x, y) where Q = A+
B −A

T + 1
i. (2.9)λ

Set

U = {(x, y) ∈ C(N+,R2), ‖(x, y)‖ < M}.

Since Φ : C(N+,R2) → C(N+,R2) is continuous and completely continuous, the nonlinear al-

terative [14] guarantees that Φ has a fixed point, i.e., (2.9)1 has a solution in Ū . Thus (2.1) has

a solution (x, y) ∈ C(N+,R2) and ‖(x, y)‖ < M .

Theorem 2.3 Suppose that (A1) holds, and there exists h ∈ C(N, [0,∞)) with |fk(i, x(i), y(i))| ≤
h(i) for i ∈ N, k = 1, 2. Then (2.1) has a solution (x, y).

Proof Solving (2.1) is equivalent to the fixed point problem (x, y) = Φ(x, y). Since Φ :

C(N+,R2) → C(N+,R2) is continuous and compact, the result follows from Schauder’s fixed

point theorem.
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3. Singular discrete boundary value problems

In this section, we examine the singular Dirichlet boundary value problem










∆[φ(∆x(i − 1))] + q1(i)f1(i, x(i), y(i)) = 0, i ∈ N

∆[φ(∆y(i− 1))] + q2(i)f2(i, x(i), y(i)) = 0,

x(0) = y(0) = 0, x(T + 1) = y(T + 1) = 0,

(3.1)

where φ(s) = |s|p−2s, p > 1, and the nonlinear terms fk(k = 1, 2) may be singular at (x, y) =

(0, 0). We begin by showing that (3.1) has a solution. To do so, we first establish, via Theorem

2.2, the existence of a solution, for each sufficiently large n, to the “modified” problem










∆[φ(∆x(i − 1))] + q1(i)f1(i, x(i), y(i)) = 0, i ∈ N

∆[φ(∆y(i− 1))] + q2(i)f2(i, x(i), y(i)) = 0,

x(0) = y(0) = 1
n
, x(T + 1) = y(T + 1) = 1

n
.

(3.1)n

To show that (3.1) has a solution, we let n → ∞. The key idea in this step is Arzela-Ascoli

theorem.

Before we prove our main results, we first state a well known result in [4].

Lemma 3.1 ([4]) Let y ∈ C(N+,R) satisfy y(i) ≥ 0 for i ∈ N+. If u ∈ C(N+,R) satisfies
{

∆2u(i− 1) + y(i) = 0, i ∈ N

u(0) = u(T + 1) = 0,

then

u(i) ≥ µ(i)||u|| for i ∈ N+,

here

µ(i) = min{T + 1 − i

T + 1
,
i

T
}.

Theorem 3.1 Suppose the following conditions are satisfied:

(H1) qk ∈ C(N, (0,+∞)), k = 1, 2;

(H2) fk ∈ C(N × ([0,∞)2 \ {O})), k = 1, 2;

(H3) fk(i, x, y) ≤ gk(x, y) + hk(x, y) on N × ([0,∞)2 \ {O}) with gk > 0 continuous

and nonincreasing on [0,∞)2 \ {O}, hk ≥ 0 continuous on [0,∞)2, and hk

gk
nondecreasing on

[0,∞)2 \ {O}, k = 1, 2;

(H4) For each constant H > 0 there exists a function ψH which is continuous on N+ and

positive on N such that fk(i, x, y) ≥ ψ
(k)
H (i) on N × (0, H ]2, k = 1, 2;

(H5) There exists a constant r > 0 such that

1

φ−1
(

1 + h1(r,r)
g1(r,r)

)

∫ r

0

du

φ−1(g1(u, 0))
> b10,

1

φ−1
(

1 + h2(r,r)
g2(r,r)

)

∫ r

0

dv

φ−1(g2(0, v))
> b20, (3.2)

where

bk0 = max
i∈N

(

i
∑

s=1

φ−1(

i
∑

z=s

qk(z)),

T
∑

s=i

φ−1(

s
∑

z=i

qk(z))
)

(k = 1, 2).

Then (3.1) has a solution (x, y) ∈ C(N+, [0,∞)2\{O}) with (x, y) > (0, 0) onN and ‖(x, y)‖ < r.
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Proof Choose ε > 0, and ε < r with

1

φ−1
(

1 + h1(r,r)
g1(r,r)

)

∫ r

ε

du

φ−1(g1(u, 0))
> b10,

1

φ−1
(

1 + h2(r,r)
g2(r,r)

)

∫ r

ε

dv

φ−1(g2(0, v))
> b20. (3.3)

Let n0 ∈ {1, 2, . . .} be chosen so that 1
n0

< ε and let N0 = {n0, n0 + 1, . . .}. We will show that

the following boundary value problem










∆[φ(∆x(i − 1))] + q1(i)f1(i, x(i), y(i)) = 0, i ∈ N

∆[φ(∆y(i− 1))] + q2(i)f2(i, x(i), y(i)) = 0,

x(0) = y(0) = 1
n
, x(T + 1) = y(T + 1) = 1

n
, n ∈ N0

(3.1)n

has a solution (xn(i), yn(i)) for n ∈ N0 such that for i ∈ N , (xn(i), yn(i)) > ( 1
n
, 1

n
) and

‖(xn, yn)‖ < r.

To see this, we will deal with the modified boundary value problem










∆[φ(∆x(i − 1))] + q1(i)F1(i, x(i), y(i)) = 0, i ∈ N

∆[φ(∆y(i− 1))] + q2(i)F2(i, x(i), y(i)) = 0,

x(0) = y(0) = 1
n
, x(T + 1) = y(T + 1) = 1

n
, n ∈ N0

(3.4)n

where (∀i ∈ N)

F1(i, x, y) = f1(i,max{x, 1

n
},max{0, y}), F2(i, x, y) = f2(i,max{x, 0},max{y, 1

n
}).

To show that (3.4)n has a solution for n ∈ N0, we will apply Theorem 2.2. Consider the

family of problems










−∆[φ(∆x(i − 1))] = λp−1q1(i)F1(i, x(i), y(i)), i ∈ N

−∆[φ(∆y(i− 1))] = λp−1q2(i)F2(i, x(i), y(i)),

x(0) = y(0) = 1
n
, x(T + 1) = y(T + 1) = 1

n
, n ∈ N0

(3.5)n
λ

where λ ∈ (0, 1). Let (x, y) be a solution of (3.5)n
λ. Since

{

∆[φ(∆x(i − 1))] ≤ 0, i ∈ N

∆[φ(∆y(i − 1))] ≤ 0,

i.e.,
{

∆2x(i− 1) ≤ 0, i ∈ N

∆2y(i− 1) ≤ 0,

then (x(i), y(i)) ≥ ( 1
n
, 1

n
) onN+ and there exists i0 ∈ N with ∆x(i) ≥ 0 on [0, i0) = {0, 1, . . . , i0−

1} and ∆x(i) ≤ 0 on [i0, T + 1) = {i0, i0 + 1, . . . , T}, and x(i0) = ||x||; there exists i′0 ∈ N with

∆y(i) ≥ 0 on [0, i′0) = {0, 1, . . . , i′0 − 1}, ∆y(i) ≤ 0 on [i′0, T + 1) = {i′0, i′0 + 1, . . . , T}, and

y(i′0) = ‖y‖. Also notice that

F1(i, x(i), (y(i)) = f1(i, x(i), (y(i)) ≤ g1(x(i), (y(i)) + h1(x(i), (y(i)), i ∈ N

so for z ∈ N , we have

−∆[φ(∆x(z − 1))] ≤ g1(x(z), y(z))
(

1 +
h1(x(i0), y(i

′
0)

g1(x(i0), y(i′0)

)

q1(z). (3.6)



Existence of positive solutions for singular P -Laplace BVP of the second-order difference systems 195

Summing the equation (3.6) from s+ 1 (0 ≤ s < i0) to i0, we obtain

φ[∆x(s)] ≤ φ[∆x(i0)] +
(

1 +
h1(x(i0), y(i

′
0)

g1(x(i0), y(i′0)

)

i0
∑

z=s+1

g1(x(z), y(z))q1(z).

Since ∆x(i0) ≤ 0, and (x(z), y(z)) ≥ (x(s + 1), 0) when s+ 1 ≤ z ≤ i0, we have

φ[∆x(s)] ≤ g1(x(s+ 1), 0)
(

1 +
h1(x(i0), y(i

′
0)

g1(x(i0), y(i′0)

)

i0
∑

z=s+1

q1(z), s < i0

i.e.,

∆x(s)

φ−1(g1(x(s+ 1), 0))
≤ φ−1

(

1 +
h1(x(i0), y(i

′
0)

g1(x(i0), y(i′0)

)

φ−1(

i0
∑

z=s+1

q1(z)), s < i0. (3.7)

Since g1(x(s+ 1), 0) ≤ g1(u, 0) ≤ g1(x(s), 0) for (x(s), 0) ≤ (u, 0) ≤ (x(s+ 1), 0) when s < i0, we

have
∫ x(s+1)

x(s)

du

φ−1(g1(u, 0))
≤ ∆x(s)

φ−1(g1(x(s+ 1), 0))
, s < i0. (3.8)

It follows from (3.7) and (3.8) that

∫ x(s+1)

x(s)

du

φ−1(g1(u, 0))
≤ φ−1

(

1 +
h1(x(i0), y(i

′
0)

g1(x(i0), y(i′0)

)

φ−1(

i0
∑

z=s+1

q1(z)), s < i0

and then, we sum the above from 0 to i0 − 1 to obtain

∫ x(i0)

1
n

du

φ−1(g1(u, 0))
≤ φ−1

(

1 +
h1(x(i0), y(i

′
0)

g1(x(i0), y(i′0)

)

i0−1
∑

s=0

φ−1(

i0
∑

z=s+1

q1(z))

= φ−1
(

1 +
h1(x(i0), y(i

′
0)

g1(x(i0), y(i′0)

)

i0
∑

s=1

φ−1(

i0
∑

z=s

q1(z)). (3.9)

Similarly, we sum the equation (3.6) from i0 to s (i0 ≤ s < T + 1) to obtain

−φ[∆x(s)] ≤ −φ[∆x(i0 − 1)] +
(

1 +
h1(x(i0), y(i

′
0)

g1(x(i0), y(i′0)

)

s
∑

z=i0

g1(x(z), y(z))q1(z), s ≥ i0.

Since ∆x(i0 − 1) ≥ 0, and (x(z), y(z)) ≥ (x(s), 0) when i0 ≤ z ≤ s, we have

−φ[∆x(s)] ≤ g1(x(s), 0)
(

1 +
h1(x(i0), y(i

′
0)

g1(x(i0), y(i′0)

)

s
∑

z=i0

q1(z), s ≥ i0

i.e.,

−∆x(s)

φ−1(g1(x(s), 0))
≤ φ−1

(

1 +
h1(x(i0), y(i

′
0)

g1(x(i0), y(i′0)

)

φ−1(

s
∑

z=i0

q1(z)), s ≥ i0.

So we have
∫ x(s)

x(s+1)

du

φ−1(g1(u, 0))
≤ −∆x(s)

φ−1(g1(x(s), 0))
≤ φ−1

(

1 +
h1(x(i0), y(i

′
0)

g1(x(i0), y(i′0)

)

φ−1(
s

∑

z=i0

q1(z)), s ≥ i0

and then we sum the above from i0 to T to obtain
∫ x(i0)

1
n

du

φ−1(g1(u, 0))
≤ φ−1

(

1 +
h1(x(i0), y(i

′
0)

g1(x(i0), y(i′0)

)

T
∑

s=i0

φ−1(

s
∑

z=i0

q1(z)), s ≥ i0. (3.10)
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Now (3.9) and (3.10) imply

∫ x(i0)

ε

du

φ−1(g1(u, 0))
≤

∫ x(i0)

1
n

du

φ−1(g1(u, 0))
≤ b10φ

−1
(

1 +
h1(x(i0), y(i

′
0)

g1(x(i0), y(i′0)

)

.

Similarly, we also have

∫ y(i′0)

ε

dv

φ−1(g2(0, v))
≤ b20φ

−1
(

1 +
h2(x(i0), y(i

′
0)

g2(x(i0), y(i′0)

)

.

This togethers with (3.3) implies ‖(x, y)‖ 6= r. In fact, if ‖(x, y)‖ = r, without loss of generality,

we assume that ‖x‖ = r, i.e., x(i0) = r, then
∫ r

ε

du

φ−1(g1(u, 0))
≤ b10φ

−1
(

1 +
h1(r, r)

g1(r, r)

)

.

If we assume that ‖y‖ = r, we have also
∫ r

ε

du

φ−1(g2(0, v))
≤ b20φ

−1
(

1 +
h2(r, r)

g2(r, r)

)

.

This contradicts (3.3). Then Theorem 2.2 implies that (3.4)n has a solution (xn, yn) with

‖(xn, yn)‖ ≤ r. In fact (as above)

1

n
≤ xn(i) < r,

1

n
≤ yn(i) < r, for i ∈ N+

i.e.,

(
1

n
,
1

n
) ≤ (xn(i), yn(i)) < (r, r), for i ∈ N+.

Thus, (xn(i), yn(i)) is also a solution of (3.1)n.

Next, we obtain a sharper lower bound on (xn(i), yn(i)), namely, we will show that there

exists a constant C > 0, independent of n, with

xn(i) ≥ Cµ(i), yn(i) ≥ Cµ(i), for i ∈ N+ (3.11)

where µ(i) is as in Lemma 3.1.

To see this, notice (H4) guarantees the existence of functions ψ
(k)
r (i) continuous on N+ and

positive on N with fk(i, x, y) ≥ ψ
(k)
r (i) for (i, x, y) ∈ N × (0, r]2, k = 1, 2. Let (u(i), v(i)) ∈

C(N+,R2) be a unique solution to the problem










∆[φ(∆u(i− 1))] + q1(i)ψ
(1)
r (i) = 0, i ∈ N

∆[φ(∆v(i − 1))] + q2(i)ψ
(2)
r (i) = 0,

u(0) = v(0) = 0, u(T + 1) = v(T + 1) = 0.

(3.12)

Since ∆[φ(∆u(i− 1))] ≤ 0 on N , with u(0) = u(T + 1) = 0, we have ∆2u(i− 1) ≤ 0 on N , and

so Lemma 3.1 implies

u(i) ≥ µ(i)||u||, v(i) ≥ µ(i)||v||, ∀i ∈ N+. (3.13)

Since fk(i, x, y) ≥ ψ
(k)
r (i) for (i, x, y) ∈ N × (0, r]2, k = 1, 2, similarly to the proof in [15], we

have

(xn(i), yn(i)) ≥ (u(i), v(i)), i ∈ N+. (3.14)
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Now (3.14) togethers with (3.13) implies that (3.11) holds for C = mini∈N+{‖u‖, ‖v‖}.
The Arzela-Ascoli theorem guarantees the existence of a subsequence N1 ⊂ N0 and functions

(x, y) ∈ C(N+,R2) with (xn, yn) → (x, y) in C(N+,R2) as n→ ∞ through N1.

Also, for x(0) = x(T + 1) = 0, y(0) = y(T + 1) = 0, ‖(x, y)‖ ≤ r for i ∈ N+. In particular

x(i) ≥ Cµ(i) ≥ C
T+1 and y(i) ≥ Cµ(i) ≥ C

T+1 on N .

Fix i ∈ N , we obtain

∆[φ(∆xn(i− 1))] = φ(∆xn(i)) − φ(∆xn(i− 1))

= φ(xn(i+ 1) − xn(i)) − φ(xn(i) − xn(i− 1))

→ ∆[φ(∆x(i − 1))], i ∈ N, n ∈ N1, n→ ∞,

∆[φ(∆yn(i− 1))] → ∆[φ(∆y(i− 1))], i ∈ N, n ∈ N1, n→ ∞

and

fk(i, xn(i), yn(i)) → fk(i, x(i), y(i)), i ∈ N, n ∈ N1, n→ ∞, k = 1, 2,

i.e.,










∆[φ(∆x(i − 1))] + q1(i)f1(i, x(i), y(i)) = 0, i ∈ N

∆[φ(∆y(i− 1))] + q2(i)f2(i, x(i), y(i)) = 0,

x(0) = y(0) = 0, x(T + 1) = y(T + 1) = 0.

Finally, it is easy to see that ‖(x, y)‖ < r (note if ‖(x, y)‖ = r, then following essentially the

same argument from (3.6)–(3.10) will yield a contradiction).

This completes the proof of Theorem 3.1. �

Example 3.1 Consider the singular boundary value problem














∆[φ(∆x(i − 1))] + δ((
√

x(i)2 + y(i)2)−α + (
√

x(i)2 + y(i)2)β) = 0, i ∈ N,

∆[φ(∆y(i− 1))] + δ((
√

x(i)2 + y(i)2)−α + (
√

x(i)2 + y(i)2)β) = 0,

x(0) = y(0) = 0, x(T + 1) = y(T + 1) = 0, α > 0, β ≥ 0, γ = ( 1√
2
)α+β

(3.15)

with δ > 0 and also

δ <

[

p− 1

b1(α + p− 1)

]p−1

sup
c∈(0,∞)

cα+p−1

1 + cα+β
, (3.16)

here

b1 = max
i∈N

(

i
∑

s=1

(i− s+ 1)
1

p−1 ,

T
∑

s=i

(s− i+ 1)
1

p−1

)

=

T
∑

i=1

i
1

p−1 . (3.17)

Then (3.15) has a solutions (x, y) with (x(i), y(i)) > (0, 0) for i ∈ N .

To see this, we will apply Theorem 3.1 with

qk(s) = δ, gk(x, y) = (
√

(x2 + y2)−α, hk(x, y) = γ(
√

(x2 + y2)β , k = 1, 2.

Clearly (H1)–(H4) hold. Also notice

i
∑

s=1

φ−1(
i

∑

z=s

qk(z)) = δ
1

p−1

i
∑

s=1

(i− s+ 1)
1

p−1 ,
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T
∑

s=i

φ−1(

s
∑

z=i

qk(z)) = δ
1

p−1

i
∑

s=1

(s− i+ 1)
1

p−1 ,

and so

bk0 = max
i∈N

(

δ
1

p−1

i
∑

s=1

(i− s+ 1)
1

p−1 , δ
1

p−1

T
∑

s=i

(s− i+ 1)
1

p−1

)

= δ
1

p−1 b1, k = 1, 2.

Consequently (H5) holds since (3.16) implies there exists r > 0 such that

δ <

[

p− 1

b1(α+ p− 1)

]p−1
rα+p−1

1 + rα+β
,

and so
1

φ−1(1 + h1(r,r)
g1(r,r) )

∫ r

0

du

φ−1(g1(u, 0))
=

p− 1

p− 1 + α
φ−1

( rα+p−1

1 + rα+β

)

> b10.

Similarly, we also have

1

φ−1(1 + h2(r,r)
g2(r,r) )

∫ r

0

dv

φ−1(g2(0, v))

p− 1

p− 1 + α
φ−1

( rα+p−1

1 + rα+β

)

> b20.

Thus all the conditions of Theorem 3.1 are satisfied, and then, the existence is guaranteed.

Remark 3.1 If β < p− 1, then (3.16) is automatically satisfied.

Next we establish the existence of two positive solutions to (3.1). First, we state the fixed

point result we will use to establish multiplicity.

Lemma 3.2 ([5]) Let E = (E, ‖ · ‖) be a Banach space, K ⊂ E be a cone in E, and ‖ · ‖
be increasing with respect to K. Moreover, let r,R be constants with 0 < r < R. Suppose

Φ : Ω̄R ∩K → K (here ΩR = {x ∈ E, ‖x‖ < R}) is a continuous, compact map and assume the

conditions

x 6= λΦ(x), for λ ∈ [0, 1) and x ∈ ∂Ωr ∩K (3.18)

and also,

‖Φx‖ > ‖x‖, for x ∈ ∂ΩR ∩K (3.19)

hold. Then Φ has a fixed point in K ∩ {x ∈ E : r ≤ ‖x‖ ≤ R}.

Remark 3.2 In Lemma 3.2 if (3.18) and (3.19) are replaced by

x 6= λΦ(x), for λ ∈ [0, 1) and x ∈ ∂ΩR ∩K (3.18)∗

and

‖Φx‖ > ‖x‖, for x ∈ ∂Ωr ∩K. (3.19)∗

Then Φ has a fixed point in K ∩ {x ∈ E : r ≤ ‖x‖ ≤ R}.
In this paper, let ‖u‖ = maxi∈N+ |u(i)|, u(i) ∈ C(N+, R). Then E1 = (C(N,R), ‖ · ‖) is a

Banach space. Let K1 = {u ∈ C(N+, [0,+∞)) : u(i) ≥ µ(i)||u||, i ∈ N+}.
Let E = E1 × E1, K = K1 ×K1, and ‖z‖ = ‖(x, y)‖ = max{||x||, ||y||}, ∀z = (x, y) ∈ E.

Then (E, ‖ · ‖) is a Banach space and K is a cone in E.
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Theorem 3.2 Assume that (H1), (H2), (H3) and (H5) hold. In addition, suppose






















(H6) : Let fk(i, x, y) ≥ ḡk(x, y) + h̄k(x, y) on N × ([0,+∞)2\{O}),
with ḡk > 0 continuous and nonincreasing on [0,∞)2\{O},
h̄k ≥ 0 continuous on [0,∞)2,
h̄k

ḡk
nondecreasing on [0,∞)2\{O}, k = 1, 2.

(3.20)

(H7) There exists a constant R > r such that

R

φ−1
(

ḡ1(R,R)(1 +
h̄1( R

T+1
, 0)

ḡ1( R
T+1

, 0)
)
) < ‖v‖, R

φ−1
(

ḡ2(R,R)(1 +
h̄2(0, R

T+1
)

ḡ2(0, R
T+1

)
)
) < ‖v‖, (3.21)

where v satisfies
{

∆[φ(∆v(i − 1))] + q(i) = 0, i ∈ N

v(0) = v(T + 1) = 0.
(3.22)

Then (3.1) has a solution (x(i), y(i)) ∈ C(N+,R2) with (x, y) > (0, 0) on N and r <

‖(x, y)‖ ≤ R.

Proof To show the existence of the solution described in the statement of Theorem 3.2, we will

apply Lemma 3.2. First, we choose ε > 0 (ε < r) with

1

φ−1
(

1 + h1(r,r)
g1(r,r)

)

∫ r

ε

du

φ−1(g1(u, 0))
> b10,

1

φ−1
(

1 + h2(r,r)
g2(r,r)

)

∫ r

ε

dv

φ−1(g2(0, v))
> b20. (3.23)

Let n0 ∈ {1, 2, . . .} be chosen so that 1
n0
< ε

2 and 1
n0
< r

T+1 and let N0 = {n0, n0 + 1, . . .}.
First we will show that











∆[φ(∆x(i − 1))] + q1(i)f1(i, x(i), y(i)) = 0, i ∈ N,

∆[φ(∆y(i− 1))] + q2(i)f2(i, x(i), y(i)) = 0,

x(0) = y(0) = 1
n
, x(T + 1) = y(T + 1) = 1

n
, n ∈ N0

(3.24)n

has a solution (xn, yn) for each n ∈ N0 with (xn(i), yn(i)) > ( 1
n
, 1

n
) onN and r < ‖(xn, yn)‖ ≤ R.

To show (3.24)n has such a solution for each n ∈ N0, we will deal with the modified boundary

value problem










∆[φ(∆x(i − 1))] + q1(i)F1(i, x(i), y(i)) = 0, i ∈ N

∆[φ(∆y(i− 1))] + q2(i)F2(i, x(i), y(i)) = 0,

x(0) = y(0) = 1
n
, x(T + 1) = y(T + 1) = 1

n
, n ∈ N0

(3.25)n

where ∀i ∈ N , and

F1(i, x(i), (y(i)) = f1(i,max{x, 1

n
},max{0, y}) and F2(i, x, y) = f2(i,max{x, 0},max{y, 1

n
}).

Fix n ∈ N0. Let Φ : K → C(N+,R2) be defined by

(w(i), u(i)) = (Φ(x, y))(i) =
(

{

1
n
, i = 0 or T + 1

B +
∑T

s=i φ
−1(τ +

∑s

r=1 F1(r, x(r), y(r)), i ∈ N,

{

1
n
, i = 0 or T + 1

B +
∑T

s=i φ
−1(τ ′ +

∑s

r=1 F2(r, x(r), y(r)), i ∈ N
)

,
(3.26)
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where τ and τ ′ are, respectively, the solutions of the equations

φ−1(τ) +

T
∑

s=1

φ−1(τ +

s
∑

r=1

F1(r, x(r), y(r))) = 0 (3.27)

and

φ−1(τ ′) +

T
∑

s=1

φ−1(τ ′ +

s
∑

r=1

F2(r, x(r), y(r))) = 0. (3.27)′

From Section 2, Φ : K → C(N+,R2) is completely continuous. Moreover, we have










∆[φ(∆w(i − 1))] + q1(i)F1(i, x(i), y(i)) = 0, i ∈ N,

∆[φ(∆v(i− 1))] + q2(i)F2(i, x(i), y(i)) = 0,

w(0) = v(0) = 1
n
, w(T + 1) = v(T + 1) = 1

n
, n ∈ N0.

(3.28)

This implies that ∆[φ(∆w(i − 1)) ≤ 0, i ∈ N . Thus ∆2w(i − 1) ≤ 0, i ∈ N , and w(i) ≥ 1
n
.

Consequently, w(i) − 1
n
≥ µ(i)||w − 1

n
|| (from Lemma 3.1), thus w(i) ≥ 1

n
+ µ(i)(||w|| − 1

n
) ≥

µ(i)||w||, i ∈ N+. Similarly, we also have v(i) ≥ µ(i)||v||, i ∈ N+, and so Φ : K → K.

First, we show

(x, y) 6= λΦ(x, y) for λ ∈ [0, 1), (x, y) ∈ ∂Ωr ∩K, (3.29)

where Ωr = {(x, y) ∈ E : ‖(x, y)‖ < r}.
Suppose this is false, i.e., there exists (x, y) ∈ ∂Ωr and λ ∈ [0, 1) with (x, y) = λΦ(x, y).

We can assume λ 6= 0. Now since (x, y) = λΦ(x, y), we have










−∆[φ(∆x(i− 1))] = λp−1q1(i)F1(i, x(i), y(i)), i ∈ N,

−∆[φ(∆y(i− 1))] = λp−1q2(i)F2(i, x(i), y(i)),

x(0) = y(0) = λ
n
, x(T + 1) = y(T + 1) = λ

n
, n ∈ N0.

(3.30)

Since ‖(x, y)‖ = r, without loss of generality, we assume that ‖x‖ = r. Clearly, there exists

i0 ∈ N with ∆x(i) ≥ 0 on [0, i0) = {0, 1, . . . , i0−1}, ∆x(i) ≤ 0 on [i0, T +1) = {i0, i0 +1, . . . , T}
and x(i0) = ‖x‖ = r.

Also notice x(i) ≥ µ(i)‖x(i)‖ = µ(i)r ≥ r
T+1 >

1
n0

, for i ∈ N , and so

F1(i, x(i), y(i)) = f1(i, x(i), y(i)) ≤ g1(x(i), y(i)) + h1(x(i), y(i)), i ∈ N.

Fix z ∈ N , and then, we have

−∆[φ(∆x(z − 1))] ≤ g1(x(z), y(z)){1 +
h1(r, r)

g1(r, r)
}q1(z). (3.31)

By the arguments which were used to obtain (3.9) and (3.10) in Theorem 3.1, we have

∫ x(i0)

λ
n

du

φ−1(g1(u, 0)
≤ φ−1

(

1 +
h1(r, r)

g1(r, r)

)

i0
∑

s=1

φ−1(

i0
∑

r=s

q1(r)) (3.32)

and
∫ x(i0)

λ
n

du

φ−1(g1(u, 0)
≤ φ−1

(

1 +
h1(r, r)

g1(r, r)

)

T
∑

s=i0

φ−1(

s
∑

r=i0

q1(r)). (3.33)
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Now (3.32) and (3.33) imply
∫ r

ε

du

φ−1(g1(u, 0))
≤ b10φ

−1
(

1 +
h1(r, r)

g1(r, r)

)

. (3.34)

Similarly, we also have
∫ r

ε

dv

φ−1(g2(0, v))
≤ b20φ

−1
(

1 +
h2(r, r)

g2(r, r)

)

. (3.34)′

This contradicts (3.23) and consequently (3.29) is true.

Next, we show

‖(w, u)‖ = ‖Φ(x, y)‖ > ‖(x, y)‖, ∀(x, y) ∈ ∂ΩR ∩K,

where ΩR = {(x, y) ∈ E : ‖(x, y)‖ < R}.
To see this, let (x, y) ∈ ∂ΩR∩K such that ‖(x, y)‖ = R. Since ‖(x, y)‖ = maxi∈N+{‖x‖, ‖y‖} =

R, without loss of generality, we assume that ‖x‖ = R.

Also, since (x, y) ∈ K, we have

x(i) ≥ µ(i)‖x‖ ≥ µ(i)R ≥ R

T + 1
>

1

n0
, ∀i ∈ N.

Thus

F1(i, x(i), y(i)) = f1(i, x(i), y(i)) ≥ ḡ1(x(i), y(i)) + h̄1(x(i), y(i)), ∀i ∈ N,

so we have

−∆[φ(∆w(i − 1))] = q1(i)F1(i, x(i), y(i)) = q1(i)f1(x(i), y(i))

≥ ḡ1(x(i), y(i))
(

1 +
h̄1(x(i), y(i))

ḡ1(x(i), y(i))

)

q1(i)

≥ ḡ1(R,R)
(

1 +
h̄1(

R
T+1 , 0)

ḡ1(
R

T+1 , 0)

)

q1(i) := C1(R)q1(i), (3.35)

and

−∆[φ(∆u(i− 1))] ≥ ḡ2(R,R)
(

1 +
h̄2(0,

R
T+1 )

ḡ2(0,
R

T+1 )

)

q2(i) := C2(R)q2(i).

Then, we obtain

−∆
(

φ
(

∆
w(i− 1)

φ−1(C1(R))

))

≥ q1(i), w(0) = w(T + 1) =
λ

n
≥ 0. (3.36)

The argument used to get (3.22) yields

w(i)

φ−1(C1(R))
≥ v(i), i ∈ N+. (3.37)

Similarly, we have also
u(i)

φ−1(C2(R))
≥ v(i), i ∈ N+.

Now (3.21) and (3.37) yield

‖w‖ ≥ ‖v‖φ−1(C1(R)) > R, ‖u‖ ≥ ‖v‖φ−1(C2(R)) > R,
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i.e.,

‖(w, u)‖ = ‖Φ(x, y)‖ > R = ‖(x, y)‖, ∀(x, y) ∈ ∂ΩR ∩K.

This implies Φ has a fixed point (xn, yn) ∈ K ∩ (Ω̄R \ Ωr) i.e., r < ‖(xn, yn)‖ ≤ R. In fact

‖(xn, yn)‖ 6= r (note if ‖(xn, yn)‖ = r, then following essentially the same argument from

(3.31)–(3.34) will yield a contradiction). Consequently (3.25)n (and also (3.24)n) has a solu-

tion (xn, yn) ∈ C(N+,R2), (xn, yn) ∈ K, with

xn ≥ rµ(i), yn ≥ rµ(i), i ∈ N, r < ‖(xn, yn)‖ ≤ R. (3.38)

Essentially the same reason as before guarantees that there exists a subsequence N1 of N0,

and a function (x, y) ∈ C(N+,R2) with (xn(i), yn(i)) converging to (x(i), y(i)) as n→ ∞ through

N1. It is easy to show that (x(i), y(i)) ∈ C(N+,R2) is a solution of (3.1) and r < ‖(x, y)‖ ≤ R.

Thus, the proof of Theorem 3.2 is completed. �

Remark 3.3 In (H7), if we have R < r, then (3.1) has a solution (x(i), y(i)) ∈ C(N+,R2)

with (x, y) > (0, 0) on N and R ≤ ‖(x, y)‖ < r. The argument is similar to that in Theorem 3.2

except for that here we use Remark 3.2.

Theorem 3.3 Assume (H1)–(H7) hold. Then (3.1) has two solutions (xk, yk) ∈ C(N+,R2), k =

1, 2 with (xk, yk) > (0, 0), k = 1, 2 on N and 0 < ‖(x1, y1)‖ < r < ‖(x2, y2)‖ ≤ R.

Proof The existence of (x1, y1) follows from Theorem 3.1, and the existence of (x2, y2) follows

from Theorem 3.2.

Example 3.2 The singular boundary value problem










∆[φ(∆x(i − 1))] + δ((
√

x(i)2 + y(i)2)−α + (1 + (
√

x(i)2 + y(i)2)β)) = 0, i ∈ N,

∆[φ(∆y(i− 1))] + δ((
√

x(i)2 + y(i)2)−α + (1 + (
√

x(i)2 + y(i)2)β)) = 0,

x(0) = y(0) = 0, x(T + 1) = y(T + 1) = 0,

(3.39)

has two solutions (x1, y1), (x2, y2) ∈ C(N+,R2) with (x1, y1) > (0, 0), (x2, y2) > (0, 0) on N

and ‖(x1, y1)‖ < r < ‖(x2, y2)‖. Here α > 0, β ≥ p− 1 and

0 < δ <
rp−1+α

1 + (
√

2r)α + (
√

2r)α+β

( p− 1

b1(p− 1 + α)

)p−1

, b1 :=

T
∑

t=1

t
1

p−1 . (3.40)

To see this, we will apply Theorem 3.3 with qk(i) = δ,

gk(x, y) = ḡk(x, y) = (
√

x2 + y2)−α and hk(x, y) = h̄1(x, y) = 1 + (
√

x2 + y2)β , k = 1, 2.

Clearly (H1)–(H4), (H6) hold. Also notice (see Example 3.1)

bk0 = max
i∈N

(

δ
1

p−1

i
∑

s=1

(i− s+ 1)
1

p−1 , δ
1

p−1

T
∑

s=i

(s− i+ 1)
1

p−1

)

= δ
1

p−1 b1, k = 1, 2.

Consequently (H5) holds, since

1

φ−1(1 + h1(r,r)
g1(r,r) )

∫ r

0

du

φ−1(g1(u, 0))
=

p− 1

p− 1 + α

( rp−1+α

1 + (
√

2r)α + (
√

2r)α+β

)
1

p−1

> b10
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and

1

φ−1(1 + h2(r,r)
g2(r,r) )

∫ r

0

du

φ−1(g2(0, v))
=

p− 1

p− 1 + α

( rp−1+α

1 + (
√

2r)α + (
√

2r)α+β

)
1

p−1

> b20.

Finally notice that (since β > p− 1)

lim
R→∞

R

φ−1
(

ḡ1(R,R)(1 +
h̄1(

R
T+1

, 0)

ḡ1( R
T+1

, 0)
)
) = lim

R→∞

R
(

(
√

2R)−α + (
√

2(T + 1))−α(1 + (T + 1)−βRβ)
) = 0

and

lim
R→∞

R

φ−1
(

ḡ2(R,R)(1 +
h̄2(0, R

T+1
)

ḡ2(0, R
T+1

)
)
) = lim

R→∞

R
(

(
√

2R)−α + (
√

2(T + 1))−α(1 + (T + 1)−βRβ)
) = 0.

So there exists R > 1 with (H7) holding. The result now follows from Theorem 3.3.
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