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1. Preliminaries

Earlier investigations in [1] studied ∗-bisimple type A ω2-semigroups whose equivalence D∗

and D̃ coincide, characterizing them as the generalized Bruck-Reilly ∗-extensions of cancellative

monoids. The results of [1] generalize those of regular bisimple ω2-semigroups. In this paper, we

give necessary and sufficient conditions for two ∗-bisimple type A ω2-semigroups with D∗ = D̃

to be isomorphic. We complete this section with a summary of notions of type A semigroups,

the details of which can be found in [1], [2] and [3].

For any semigroup S we shall denote by ES the set of idempotents of S. Let S be a semigroup

whose set ES is non-empty. We define a partial ordering ≥ on ES by the rule that e ≥ f if and

only if ef = f = fe. Let N0 denote the set of all non-negative integers and N denote the set

of all positive integers. We define a partially order on N0 × N0 in the following manner: if

(m, n), (p, q) ∈ N0 × N0,

(m, n) ≤ (p, q) if and only if m > p or, m = p and n ≥ q.

The set N0 ×N0 with the above partially order is called an ω2-chain, and denoted by Cω2 . Any

partially ordered set order isomorphic to Cω2 is also called an ω2-chain. We say that a semigroup

S is an ω2-semigroup if and only if ES is order isomorphic to Cω2 . Thus, if S is an ω2-semigroup,

then we can write

ES = {em,n : m, n ∈ N0},
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where em,n ≤ ep,q if and only if (m, n) ≤ (p, q).

Let S be a semigroup. Let a, b ∈ S such that for all x, y ∈ S1, ax = ay if and only if bx = by.

Then a, b are said to be L∗-equivalent and written aL∗b. Dually, aR∗b if for all x, y ∈ S1, xa = ya

if and only if xb = yb. If S has an idempotent e, then the following characterisation is known.

Lemma 1.1 ([3]) Let S be a semigroup and e an idempotent in S. Then the following statements

are equivalent:

(i) eL∗a;

(ii) ae = a and for all x, y ∈ S1, ax = ay implies ex = ey.

By duality, a similar statement holds for R∗. A semigroup in which each L∗- and each R∗-

class contains an idempotent is called an abundant semigroup [2]. The join of the equivalence

relations L∗ and R∗ is denoted by D∗ and their intersection by H∗. Thus aH∗b if and only

if aL∗b and aR∗b. In general L∗ ◦ R∗ 6= R∗ ◦ L∗ and neither equals D∗. Basically, aD∗b if

and only if there exist x1, x2, . . . , x2n−1 in S such that aL∗x1R∗x2L∗ · · · L∗x2n−1R∗b. Let H∗

be an H∗-class in a semigroup S with e ∈ H∗, where e is an idempotent in S. Then H∗ is

a cancellative monoid. Denote by R,L the left and right Green’s relations respectively, on

S. Evidently L ⊆ L∗,R ⊆ R∗, and so, D ⊆ D∗,H ⊆ H∗. If S is a regular semigroup, then

L∗ = L,R∗ = R. An L∗-class containing an element a ∈ S will be denoted by L∗

a. Similarly R∗

a

is an R∗-class with an element a ∈ S. To avoid ambiguity we at times denote a relation K on

S by K(S). Let S be a semigroup with a semilattice E of idempotents. Then S is called a right

adequate semigroup if each L∗-class of S contains an idempotent. Dually, we have the notion of

a left adequate semigroup. If S is a right (left) adequate semigroup, then each L∗-(R∗-) class

of S contains a unique idempotent. For an element a of such a semigroup, the idempotent in

the L∗-(R∗-)class containing a will be denoted by a∗(a+). A semigroup which is both left and

right adequate will be called an adequate semigroup. A right (left) adequate semigroup S is

called a right (left) type A semigroup if ea = a(ea)∗(ae = (ae)+a) for all elements a in S and

all idempotents e in S. An adequate semigroup S is type A if it is both right and left type A.

Let S be a type A semigroup with a semilattice of idempotents E. Then S is called type A

ω2-semigroup if E is an ω2-chain. Thus in a type A ω2-semigroup ES = {em,n : m, n ∈ N} and

em,n ≥ ep,q if and only if (m, n) ≥ (p, q). In such a semigroup S, we will denote by L∗

m,n (resp.

R∗

m,n) the L∗-class (resp. R∗-class) containing idempotent em,n. That is

R∗

m,n = {a ∈ S : aR∗em,n},

L∗

p,q = {a ∈ S : aL∗ep,q}.

Let H∗

(m,n),(q,p) denote the R∗

m,n ∩ L∗

p,q. That is

H∗

(m,n),(q,p) = {a ∈ S : aR∗em,n, aL∗ep,q}.

If H∗

(m,n),(q,p) 6= ∅, evidently H∗

(m,n),(q,p) is an H∗-class of S. Also, observe that a+ = em,n and

a∗ = ep,q. If S is a type A ω2-semigroup, then S is ∗-bisimple if and only if it has a single
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D∗-class. Let S be a type A semigroup, and let a, b ∈ S. The relation D̃ is defined on S by

aD̃b if and only if a∗Db∗ and a+Db+ for a∗, b∗, a+, b+ ∈ E(S).

D̃ is an equivalence relation and satisfies the inclusion D ⊆ D̃ ⊆ D∗ on a type A semigroup S

(see [4]).

Lemma 1.2 ([5]) Let S be an adequate semigroup. The following conditions are equivalent:

(i) D∗ = D̃;

(ii) Every nonempty H∗-class contains a regular element.

Furthermore, if (i) or (ii) holds, then D∗ = L∗ ◦ R∗ = R∗ ◦ L∗.

In [1], Shang and Wang introduced the generalized Bruck-Reilly ∗-extension. Consider a

monoid T with H∗

e and He as the H∗- and H-class which contains the identity e of T , respectively.

Let β, γ be two homomorphisms from T into H∗

e . Let u be an element in He and τu be the inner

automorphism of H∗

e defined by x → uxu−1 such that

γτu = βγ. (1.1)

We can make S = N0 × N0 × T × N0 × N0 into a semigroup by defining

(m, n, a, q, p)(m′, n′, a′, q′, p′)

=






(m, n − q + max(q, n′), aβmax(q,n′)−qa′βmax(q,n′)−n′

, q′ − n′ + max(q, n′), p′) if p = m′

(m, n, a(u−n′

a′γuq′

)γp−m′
−1βq, q, p′ − m′ + p) if p > m′

(m − p + m′, n′, (u−naγuq)γm′
−p−1βn′

a′, q′, p′) if p < m′

where β0, γ0 are interpreted as the identity map of T and u0 is interpreted as the identity e of

T. Then S is a semigroup with identity (0, 0, e, 0, 0). The semigroup S = N0×N0×T ×N0×N0

constructed above will be called the generalized Bruck-Reilly ∗-extension of T determined by β,

γ, u and will be denoted by S = GBR∗(T ; β, γ; u). Let (m, n, a, q, p) ∈ S. Then (m, n, a, q, p) is

an idempotent if and only if m = p, n = q and a is an idempotent.

Lemma 1.3 ([1]) Let S = GBR∗(T ; β, γ; u) be a generalized Bruck-Reilly ∗-extension of a

monoid T determined by β, γ, u. Suppose that (m, n, a, q, p) and (m′, n′, a′, q′, p′) are elements in

S. Then

(i) (m, n, a, q, p)L∗(S)(m′, n′, a′, q′, p′) if and only if q = q′, p = p′ and aL∗(T )a′.

(ii) (m, n, a, q, p)R∗(S)(m′, n′, a′, q′, p′) if and only if m = m′, n = n′ and aR∗(T )a′.

Lemma 1.4 ([1]) Let S = GBR∗(T ; β, γ; u). Then an element (m, n, a, q, p) in S has an inverse

(x, y, b, z, w) ∈ S if and only if b is the inverse of a in T, x = p, y = q, z = n and w = m.

Lemma 1.5 ([1]) Let M be a cancellative monoid with identity e and S = GBR∗(M ; β, γ; u)

the generalized Bruck-Reilly ∗-extension of M determined by β, γ, u, where β : M → H∗

e , γ :

M → H∗

e , u ∈ He and H∗

e , He are the H∗-class and H-class of M containing the identity

e of M , respectively. Then S = GBR∗(M ; β, γ; u) is a ∗-bisimple type A ω2-semigroup such

that D∗(S) = D̃(S). Conversely, every ∗-bisimple type A ω2-semigroup such that D∗ = D̃ is
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isomorphic to some GBR∗(M ; β, γ; u).

2. The isomorphism theorem

In this section, we give necessary and sufficient conditions for two ∗-bisimple type A ω2-

semigroups with D∗ = D̃ to be isomorphic. Let S, and S′ be ∗-bisimple type A ω2-semigroups

satisfying D∗ = D̃. Suppose that σ : S → S′ is a mapping between them. We prove the following

theorem.

Theorem 2.1 Let S = GBR∗(M ; β, γ; u) and S′ = GBR∗(M ′; β′, γ′; u′) be ∗-bisimple type

A ω2-semigroups such that D∗ = D̃. Then S ∼= S′ if and only if there exist isomorphism α of

M onto M ′ and two inner automorphisms τv and τw of M ′ such that

βα = αβ′τw, γα = αγ′τv, uα = (wγ′u′)τv (2.1)

where v and w are two units of M ′.

Proof Let σ be an isomorphism of S onto S′. Then σ must induce a one-to-one order preserving

mapping of ES onto ES′ . Thus (m, n, e, n, m)σ = (m, n, e′, n, m), for all m and n in N0, where

we have denoted the identities of both M and M ′ by e and e′, respectively.

Let s = (m, n, x, q, p) ∈ S and sσ = (m, n, x, q, p)σ = (i, j, y, l, k) = r. Then

s∗σ = (sσ)∗ = r∗, s+σ = (sσ)+ = r+,

which implies that (p, q, e, q, p)σ = (k, l, e′, l, k), and (m, n, e, n, m)σ = (i, j, e′, j, i); consequently

p = k, q = l, m = i and n = j.

Now H∗

(0,0),(0,0)(S)σ = H∗

(0,0),(0,0)(S
′) so that M ∼= M ′ where M = H∗

(0,0),(0,0)(S) and

M ′ = H∗

(0,0),(0,0)(S
′). Denote the isomorphism between M and M ′ by α. By definition then

(0, 0, x, 0, 0)σ = (0, 0, xα, 0, 0).

As (0, 0, e, 1, 0) is a regular element in S, so is its image (0, 0, e, 1, 0)σ in S′. Suppose that

(0, 0, e, 1, 0)σ = (0, 0, w, 1, 0). Then w is evidently a unit in M ′ and (0, 1, e, 0, 0)σ = (0, 1, w−1, 0, 0).

Thus for all x ∈ M,

(0, 1, xβ, 1, 0)σ = (0, 1, e, 1, 0)σ(0, 0, x, 0, 0)σ = (0, 1, e′, 1, 0)(0, 0, xα, 0, 0) = (0, 1, xαβ′, 1, 0).

Also

(0, 1, xβ, 1, 0)σ = (0, 1, e, 0, 0)σ(0, 0, xβ, 0, 0)σ(0, 0, e, 1, 0)σ

= (0, 1, w−1, 0, 0)(0, 0, xβα, 0, 0)(0, 0, w, 1, 0)

= (0, 1, w−1xβα, 0, 0)(0, 0, w, 1, 0)

= (0, 1, w−1xβαw, 1, 0).

Therefore, for all x ∈ M, xαβ′ = w−1xβαw and hence

xβα = wxαβ′w−1 = xαβ′τw,
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where τw : M ′ → M ′ is the automorphism defined by yτw = wyw−1. Thus we obtain

βα = αβ′τw.

Similarly, suppose that (0, 0, e, 0, 1)σ = (0, 0, v, 0, 1) for some v ∈ M ′. Then v is evidently a

unit in M ′ and (1, 0, e, 0, 0)σ = (1, 0, v−1, 0, 0). Thus, for all x in M, we have

(1, 0, xαγ′, 0, 1) = (1, 0, e′, 0, 1)(0, 0, xα, 0, 0)

= (1, 0, e, 0, 1)σ(0, 0, x, 0, 0)σ = (1, 0, xγ, 0, 1)σ

= (1, 0, e, 0, 0)σ(0, 0, xγ, 0, 0)σ(0, 0, e, 0, 1)σ

= (1, 0, v−1, 0, 0)(0, 0, xγα, 0, 0)(0, 0, v, 0, 1)

= (1, 0, v−1xγα, 0, 0)(0, 0, v, 0, 1)

= (1, 0, v−1xγαv, 0, 1).

Hence, for all elements x of M, we have xαγ′ = v−1xγαv; that is vxαγ′v−1 = xγα. Thus we

obtain

γα = αγ′τv.

Now,

(0, 0, uα, 0, 0) = (0, 0, u, 0, 0)σ = (0, 0, e, 0, 1)σ(0, 0, e, 1, 0)σ(1, 0, e, 0, 0)σ

= (0, 0, v, 0, 1)(0, 0, w, 1, 0)(1, 0, v−1, 0, 0)

= (0, 0, vwγ′u′, 0, 1)(1, 0, v−1, 0, 0)

= (0, 0, vwγ′u′v−1, 0, 0)

and so uα = vwγ′u′v−1. Thus uα = (wγ′u′)τv.

Conversely, suppose that there exists an isomorphism α of M onto M ′ such that βα =

αβ′τw, γα = αγ′τv and uα = (wγ′u′)τv for some unit w of M ′ and some unit v of M ′.

For each positive integer m, let wm = w(wβ′) · · · (wβ′m−1) and vm = v(vγ′) · · · (vγ′m−1).

Then w−1
m = (w−1β′m−1) · · · (w−1β′)w−1 and v−1

m = (v−1γ′m−1) · · · (v−1γ′)v−1. Let w0 = v0 =

e′. Note that w1 = w and v1 = v. We claim that

βiα = αβ′iτwi
(2.2)

where i ∈ N0. Clearly this is true for i = 0. Suppose that it is true for i = m, and let x ∈ M ′.

Then

xτwβ′mτwm
= (wxw−1)β′mτwm

= (wβ′mxβ′mw−1β′m)τwm
= xβ′mτwm+1

and so τwβ′mτwm
= β′mτwm+1

. Thus, by virtue of (2.1), we have

βm+1α = βαβ′mτwm
= αβ′τwβ′mτwm

= αβ′m+1τwm+1

and so (2.2) holds by induction. Similarly, we have that

γiα = αγ′iτvi
(2.3)

where i ∈ N0.
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We note that

urα = (wrγ
′u′r)τv (2.4)

where r ∈ N0. Clearly this is true for r = 0. Assume that it holds for r = n. Then, by (1.1), we

have γ′τu′ = β′γ′ and so

u′nwγ′ = u′n−1wβ′γ′u′ = u′n−2wβ′2γ′u′2 = · · · = wβ′nγ′u′n

and

un+1α = unαuα = (wnγ′u′n)τv(wγ′u′)τv = (wnγ′u′nwγ′u′)τv

= (wnγ′wβ′nγ′u′nu′)τv = (wn+1γ
′u′n+1)τv.

Hence the result holds for r = n+1 and so, by induction, it holds for all positive non-negative r.

Write h = (0, 0, w, 1, 0). As w is a unit in M ′, then (0, 0, w, 1, 0), (0, 1, w−1, 0, 0) must be

mutually inverse regular elements of S′ and so h−1 = (0, 1, w−1, 0, 0). Let k = (0, 0, v, 0, 1).

Similarly, (0, 0, v, 0, 1), (1, 0, v−1, 0, 0) must be mutually inverse regular elements of S′ and so

k−1 = (1, 0, v−1, 0, 0). Write h0 = (0, 0, e′, 0, 0) and k0 = (0, 0, e′, 0, 0). A straightforward calcu-

lation shows that
hn = (0, 0, wn, n, 0), h−n = (0, n, w−1

n , 0, 0),

kn = (0, 0, vn, 0, n), k−n = (n, 0, v−1
n , 0, 0)

(2.5)

for all non-negative integers n.

Let σ be a mapping from S into S′, defined by

(m, n, x, q, p)σ = k−mh−n(0, 0, xα, 0, 0)hqkp.

Thus, applying (2.5), we see that

(m, n, x, q, p)σ = (m, n, (v−1
m β′nw−1

n )xα(wqvpβ
′q), q, p)

and so σ is a bijection.

Let (m, n, x, q, p), (m′, n′, x′, q′, p′) ∈ S. We shall show that

(m, n, x, q, p)σ(m′, n′, x′, q′, p′)σ = [(m, n, x, q, p)(m′, n′, x′, q′, p′)]σ. (2.6)

It is convenient to consider separately the following five cases.

Case I p = m′ and q = n′. In this case, we have

(m, n, x, q, p)σ(m′, n′, x′, q′, p′)σ

= k−mh−n(0, 0, xα, 0, 0)hqkpk−m′

h−n′

(0, 0, x′α, 0, 0)hq′

kp′

= k−mh−n(0, 0, (xx′)α, 0, 0)hq′

kp′

= (m, n, xx′, q′, p′)σ

= [(m, n, x, q, p)(m′, n′, x′, q′, p′)]σ.

Case II p = m′ and q > n′. In this case, by (2.2), we have

wq−n′x′αβ′q−n′

= x′βq−n′

αwq−n′ .
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Thus, using (2.5), we obtain

(m, n, x, q, p)σ(m′, n′, x′, q′, p′)σ

= k−mh−n(0, 0, xα, 0, 0)hqkpk−m′

h−n′

(0, 0, x′α, 0, 0)hq′

kp′

= k−mh−n(0, 0, xα, 0, 0)(0, 0, wq−n′ , q − n′, 0)(0, 0, x′α, 0, 0)hq′

kp′

= k−mh−n(0, 0, xαwq−n′ , q − n′, 0)(0, 0, x′α, 0, 0)hq′

kp′

= k−mh−n(0, 0, xαwq−n′x′αβ′q−n′

, q − n′, 0)hq′

kp′

= k−mh−n(0, 0, xαx′βq−n′

αwq−n′ , q − n′, 0)hq′

kp′

= k−mh−n(0, 0, (xx′βq−n′

)α, 0, 0)(0, 0, wq−n′ , q − n′, 0)hq′

kp′

= k−mh−n(0, 0, (xx′βq−n′

)α, 0, 0)hq′
−n′+qkp′

= (m, n, xx′βq−n′

, q′ − n′ + q, p′)σ

= [(m, n, x, q, p)(m′, n′, x′, q′, p′)]σ.

Case III p = m′ and q < n′. In this case, by (2.2), we have

w−1
n′

−qxβn′
−qα = xαβ′n′

−qw−1
n′

−q.

Thus, using (2.5), we obtain

(m, n, x, q, p)σ(m′, n′, x′, q′, p′)σ

= k−mh−n(0, 0, xα, 0, 0)hqkpk−m′

h−n′

(0, 0, x′α, 0, 0)hq′

kp′

= k−mh−n(0, 0, xα, 0, 0)(0, n′ − q, w−1
n′−q, 0, 0)(0, 0, x′α, 0, 0)hq′

kp′

= k−mh−n(0, n′ − q, xαβ′n′
−qw−1

n′
−q, 0, 0)(0, 0, x′α, 0, 0)hq′

kp′

= k−mh−n(0, n′ − q, xαβ′n′
−qw−1

n′−qx
′α, 0, 0)hq′

kp′

= k−mh−n(0, n′ − q, w−1
n′

−qxβn′
−qαx′α, 0, 0)hq′

kp′

= k−mh−n(0, n′ − q, w−1
n′−q, 0, 0)(0, 0, (xβn′

−qx′)α, 0, 0)hq′

kp′

= k−mh−(n+n′
−q)(0, 0, (xβn′

−qx′)α, 0, 0)hq′

kp′

= (m, n + n′ − q, xβn′
−qx′, q′, p′)σ

= [(m, n, x, q, p)(m′, n′, x′, q′, p′)]σ.

Case IV p > m′. Utilizing (2.2), (2.3) and (2.4), it is easy to see that (u−n′

x′γuq′

)α =

(un′

α)−1x′γαuq′

α = vu′−n′

(w−1
n′ x′αwq′ )γ′u′q′

v−1 and so

(u−n′

x′γuq′

)αγ′p−m′
−1β′qτwq(vp−m′

−1β′q)

= [vu′−n′

(w−1
n′ x′αwq′ )γ′u′q′

v−1]γ′p−m′
−1β′qτwq(vp−m′

−1β′q)

= {vγ′p−m′
−1β′q[u′−n′

(w−1
n′ x′αwq′ )γ′u′q′

]γ′p−m′
−1β′qv−1γ′p−m′

−1β′q}τwq(vp−m′
−1β′q)

= [u′−n′

(w−1
n′ x′αwq′ )γ′u′q′

]γ′p−m′
−1β′qτvγ′p−m′

−1β′qτwq(vp−m′
−1β′q)

= [u′−n′

(w−1
n′ x′αwq′ )γ′u′q′

]γ′p−m′
−1β′qτwq(vp−m′β′q).
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By virtue of (2.2), (2.3) and (2.4) we have

(u−n′

x′γuq′

)γp−m′
−1βqαwq(vp−m′β′q)

= (u−n′

x′γuq′

)γp−m′
−1αβ′qτwq

wq(vp−m′β′q)

= (u−n′

x′γuq′

)αγ′p−m′
−1τvp−m′

−1
β′qτwq

wq(vp−m′β′q)

= (u−n′

x′γuq′

)αγ′p−m′
−1β′qτwq(vp−m′

−1β′q)wq(vp−m′β′q)

= [u′−n′

(w−1
n′ x′αwq′ )γ′u′q′

]γ′p−m′
−1β′qτwq(vp−m′β′q)wq(vp−m′β′q)

= wq(vp−m′β′q)(u′−n′

w−1
n′ γ′u′0)γ′p−m′

−1β′q

x′αγ′γ′p−m′
−1β′q(u′0wq′γ′u′q′

)γ′p−m′
−1β′q

and so

xαwq(vp−m′β′q)(u′−n′

w−1
n′ γ′)γ′p−m′

−1β′qx′αγ′p−m′

β′q(wq′γ′u′q′

)γ′p−m′
−1β′q

= (x(u−n′

x′γuq′

)γp−m′
−1βq)αwq(vp−m′β′q).

Thus, by (2.5), we obtain

(m, n, x, q, p)σ(m′, n′, x′, q′, p′)σ

= k−mh−n(0, 0, xα, 0, 0)hqkp−m′

h−n′

(0, 0, x′α, 0, 0)hq′

kp′

= k−mh−n(0, 0, xα, 0, 0)(0, 0, wq, q, 0)(0, 0, vp−m′, 0, p − m′)(0, n′, w−1
n′ , 0, 0)

(0, 0, x′α, 0, 0)hq′

kp′

= k−mh−n(0, 0, xαwq, q, 0)(0, 0, vp−m′ , 0, p− m′)(0, n′, w−1
n′ , 0, 0)(0, 0, x′α, 0, 0)hq′

kp′

= k−mh−n(0, 0, xαwq(vp−m′ )β′q, q, p − m′)(0, n′, w−1
n′ , 0, 0)(0, 0, x′α, 0, 0)hq′

kp′

= k−mh−n(0, 0, xαwq(vp−m′ )β′q(u′−n′

w−1
n′ γ′u′0)γ′p−m′

−1β′q, q, p − m′)

(0, 0, x′α, 0, 0)hq′

kp′

= k−mh−n(0, 0, xαwq(vp−m′ )β′q(u′−n′

w−1
n′ γ′u′0)γ′p−m′

−1β′qx′αγ′γ′p−m′
−1β′q, q, p − m′)

(0, 0, wq′ , q′, 0)kp′

= k−mh−n(0, 0, xαwq(vp−m′β′q)(u′−n′

w−1
n′ γ′)γ′p−m′

−1β′qx′αγ′p−m′

β′q

(wq′γ′u′q′

)γ′p−m′
−1β′q, q, p − m′)kp′

= k−mh−n(0, 0, (x(u−n′

x′γuq′

)γp−m′
−1βq)αwq(vp−m′β′q), q, p − m′)kp′

= k−mh−n(0, 0, (x(u−n′

x′γuq′

)γp−m′
−1βq)αwq , q, 0)(0, 0, vp−m′, 0, p − m′)kp′

= k−mh−n(0, 0, (x(u−n′

x′γuq′

)γp−m′
−1βq)α, 0, 0)(0, 0, wq, q, 0)(0, 0, vp−m′ , 0, p− m′)kp′

= k−mh−n(0, 0, (x(u−n′

x′γuq′

)γp−m′
−1βq)α, 0, 0)hqkp−m′

kp′

= (m, n, x(u−n′

x′γuq′

)γp−m′
−1βq, q, p + p′ − m′)σ

= [(m, n, x, q, p)(m′, n′, x′, q′, p′)]σ.

Case V p < m′. Utilizing (2.2), (2.3) and (2.4), it is easy to see that

(u−nxγuq)α = (unα)−1xγαuqα = vu′−n(w−1
n xαwq)γ

′u′qv−1



The isomorphism theorem of ∗-bisimple type A ω
2-semigroups 239

and so

(u−nxγuq)αγ′m′
−p−1β′n′

τwn′ (vm′
−p−1β′n′)

= [vu′−n(w−1
n xαwq)γ

′u′qv−1]γ′m′
−p−1β′n′

τwn′ (vm′
−p−1β′n′ )

= {vγ′m′
−p−1β′n′

[u′−n(w−1
n xαwq)γ

′u′q]γ′m′
−p−1β′n′

v−1γ′m′
−p−1β′n′

}τwn′(vm′
−p−1β′n′ )

= [u′−n(w−1
n xαwq)γ

′u′q]γ′m′
−p−1β′n′

τvγ′m′
−p−1β′n′ τwn′(vm′

−p−1β′n′)

= [u′−n(w−1
n xαwq)γ

′u′q]γ′m′
−p−1β′n′

τwn′(vm′
−pβ′n′).

By virtue of (2.2), (2.3) and (2.4) we have

v−1
m′−pβ

′n′

w−1
n′ (u−nxγuq)γm′

−p−1βn′

α

= v−1
m′

−pβ
′n′

w−1
n′ (u−nxγuq)γm′

−p−1αβ′n′

τwn′

= v−1
m′

−pβ
′n′

w−1
n′ (u−nxγuq)αγ′m′

−p−1τvm′
−p−1

β′n′

τwn′

= v−1
m′

−pβ
′n′

w−1
n′ (u−nxγuq)αγ′m′

−p−1β′n′

τwn′(vm′
−p−1β′n′)

= v−1
m′

−pβ
′n′

w−1
n′ [u′−n(w−1

n xαwq)γ
′u′q]γ′m′

−p−1β′n′

τwn′(vm′
−pβ′n′ )

= [u′−n(w−1
n xαwq)γ

′u′q]γ′m′
−p−1β′n′

v−1
m′

−pβ
′n′

w−1
n′

and so

{[u′−n(w−1
n xαwq)γ

′u′q]γ′m′
−p−1v−1

m′
−p}β

′n′

w−1
n′ x′α = v−1

m′
−pβ

′n′

w−1
n′ ((u−nxγuq)γm′

−p−1βn′

x′)α.

Thus, by (2.5), we obtain

(m, n, x, q, p)σ(m′, n′, x′, q′, p′)σ

= k−mh−n(0, 0, xα, 0, 0)hqk−(m′
−p)h−n′

(0, 0, x′α, 0, 0)hq′

kp′

= k−m(0, n, w−1
n , 0, 0)(0, 0, xα, 0, 0)(0, 0, wq, q, 0)(m′ − p, 0, v−1

m′
−p, 0, 0)(0, n′, w−1

n′ , 0, 0)

(0, 0, x′α, 0, 0)hq′

kp′

= k−m(0, n, w−1
n xα, 0, 0)(0, 0, wq, q, 0)(m′ − p, 0, v−1

m′
−p, 0, 0)(0, n′, w−1

n′ , 0, 0)

(0, 0, x′α, 0, 0)hq′

kp′

= k−m(0, n, w−1
n xαwq , q, 0)(m′ − p, 0, v−1

m′−p, 0, 0)(0, n′, w−1
n′ , 0, 0)

(0, 0, x′α, 0, 0)hq′

kp′

= k−m(m′ − p, 0, [u′−n(w−1
n xαwq)γ

′u′q]γ′m′
−p−1β′0v−1

m′−p, 0, 0)(0, n′, w−1
n′ , 0, 0)

(0, 0, x′α, 0, 0)hq′

kp′

= k−m(m′ − p, n′, {[u′−n(w−1
n xαwq)γ

′u′q]γ′m′
−p−1v−1

m′−p}β
′n′

w−1
n′ , 0, 0)

(0, 0, x′α, 0, 0)hq′

kp′

= k−m(m′ − p, n′, {[u′−n(w−1
n xαwq)γ

′u′q]γ′m′
−p−1v−1

m′−p}β
′n′

w−1
n′ x′α, 0, 0)hq′

kp′

= k−m(m′ − p, n′, v−1
m′

−pβ
′n′

w−1
n′ ((u−nxγuq)γm′

−p−1βn′

x′)α, 0, 0)hq′

kp′

= k−m(m′ − p, n′, v−1
m′

−pβ
′n′

w−1
n′ , 0, 0)(0, 0, ((u−nxγuq)γm′

−p−1βn′

x′)α, 0, 0)hq′

kp′

= k−m(m′ − p, 0, v−1
m′−p, 0, 0)(0, n′, w−1

n′ , 0, 0)(0, 0, ((u−nxγuq)γm′
−p−1βn′

x′)α, 0, 0)hq′

kp′
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= k−(m+m′
−p)h−n′

(0, 0, ((u−nxγuq)γm′
−p−1βn′

x′)α, 0, 0)hq′

kp′

= (m + m′ − p, n′, (u−nxγuq)γm′
−p−1βn′

x′, q′, p′)σ

= [(m, n, x, q, p)(m′, n′, x′, q′, p′)]σ.

This completes the proof. �
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