
Journal of Mathematical Research with Applications

May, 2013, Vol. 33, No. 3, pp. 297–311

DOI:10.3770/j.issn:2095-2651.2013.03.004

Http://jmre.dlut.edu.cn

Gorenstein Homological Dimensions and Auslander
Categories with Respect to a Semidualizing Module

Chunxia ZHANG∗, Limin WANG, Zhongkui LIU
Department of Mathematics, Northwest Normal University, Gansu 730070, P. R. China

Abstract Let R be a commutative noetherian local ring. In this paper, we study Gorenstein

projective, injective and flat modules with respect to a semidualizing R-module C, and we give
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1. Introduction

Throughout this paper, R will denote a commutative ring with nonzero identity and R̂ will
denote the M-adic completion of a local ring (R, M).

When R is two-sided noetherian, Auslander and Bridger [1] introduced the G-dimension,
G-dimRM , for every finitely generated R-module M . They proved the inequality G-dimRM ≤
pdRM , with equality G-dimRM = pdRM when pdRM is finite. Several decades later, Enochs
and Jenda extended the ideas of Auslander and Bridger and introduced three homological di-
mensions, called the Gorenstein projective, injective and flat dimensions. They proved that
these dimensions are similar to the classical homological dimensions, i.e., projective, injective
and flat dimensions, respectively. The Gorenstein projective, injective and flat dimensions of a
module are defined in terms of resolutions by Gorenstein projective, injective and flat modules,
respectively.

Let R be a noetherian ring with a dualizing complex D. The Auslander categories A(R)
and B(R) with respect to D are defined in [3, (3.1)]. In [6], it was shown that the modules
in A(R) are those of finite Gorenstein projective dimension (Gorenstein flat dimension) (see [6,
Thm. 4.1]) and the modules in B(R) are those of finite Gorenstein injective dimension (see [6,
Thm. 4.4]). Esmkhani and Tousi [9, 10] extended the characterization of finiteness of Gorenstein
projective, injective and flat dimensions in [6] to arbitrary local noetherian ring probably without
a dualizing complex. They proved over a local noetherian ring R, for an R-module M , the
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Gorenstein projective dimension of M is finite if and only if the Gorenstein flat dimension of
M is finite if and only if R̂ ⊗R M belongs to the Auslander category A(R̂) (see [9, Thm. 3.4,
Cor. 3.5]), and M is Gorenstein injective if and only if HomR(R̂, M) belongs to the Auslander
category B(R̂), M is cotorsion and Exti

R(E, M) = 0 for all injective R-modules E and all i > 0
(see [10, Thm. 2.5]).

Since the dualizing complexes (or modules) for a general ring usually do not exist, semidu-
alizing complexes and modules (see Def. 2.1) have received much attention in recent years, see,
for example, [5, 12, 13, 15–20, 22]. The examples of semidualizing modules include the rank 1 free
module and a dualizing module, when one exists.

Let R be a noetherian ring and C a fixed semidualizing R-module (or complex). The Auslan-
der categories AC(R) and BC(R) with respect to C are defined by Avramov, Foxby [3, (3.1)] (or
Christensen [5, Def. 4.1]). In [12], Holm, Jφrgensen proved that if R admits a dualizing complex
D, then an R-module M is in AC+(R) if and only if the C-Gorenstein projective dimension of M

is finite if and only if the C-Gorenstein flat dimension of M is finite, where C+ = RHomR(C, D).
Dually, M is in BC+(R) if and only if the C-Gorenstein injective dimension of M is finite [12,
Thm. 4.6].

Motivated by [9, 10], the main aim of this paper is to extend the characterization of C-
Gorenstein projective, injective and flat dimensions in [12] to arbitrary local noetherian ring,
possibly without a dualizing complex.

Let R be a local noetherian ring and C a fixed semidualizing R-module, and let D denote
the dualizing complex of R̂. Then by [5, Thm. 5.6], Ĉ = C ⊗R R̂ is a semidualizing module of R̂,
and by [5, Cor. 2.12], the complex Ĉ+ = RHomR̂(Ĉ, D) is semidualizing for R̂.

We define A′C(R) to be those R-modules M such that R̂ ⊗R M ∈ AĈ+(R̂) and B′
C(R) to

be those R-modules M such that HomR(R̂, M) ∈ BĈ+(R̂). In Section 3, we characterize C-
Gorenstein projective, injective and flat modules in terms of the classes A′C(R) and B′

C(R). Our
main results are Theorems 3.5, 3.7 and 3.10 which state, respectively, that:

Theorem A Let R be a local noetherian ring and M an R-module. Then M is C-Gorenstein

injective if and only if M ∈ B′
C(R), M is cotorsion and Exti

R(HomR(C,E),M) = 0 for all

injective R-modules E and all i > 0.

Theorem B Let R be a local noetherian ring, M an R-module, and n a non-negative integer.

Then the following conditions are equivalent:

(1) GFC-pdR(M) ≤ n.

(2) M ∈ A′C(R) and TorR
i (HomR(C, I),M) = 0 for all injective R-modules I and all i > n.

(3) M ∈ A′C(R) and Exti
R(M, C ⊗R L) = 0 for all cotorsion R-modules L with finite flat

dimension and all i > n.

(4) M ∈ A′C(R) and Exti
R(M, C⊗R F ) = 0 for all cotorsion flat R-modules F and all i > n.

Theorem C Let R be a local noetherian ring, M an R-module, and n a non-negative integer.

Then the following conditions are equivalent:
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(1) GPC-pdR(M) ≤ n.

(2) M ∈ A′C(R) and Exti
R(M, C ⊗R P ) = 0 for all projective R-modules P and all i > n.

(3) GFC-pdR(M) < ∞ and Exti
R(M, C ⊗R P ) = 0 for all projective R-modules P and all

i > n.

2. Semidualizing modules and associated categories

The homological dimensions of interest in this paper are built from semidualizing modules
and their associated projective, injective and flat classes, defined next. Semidualizing modules
have been considered by many authors [5, 12, 13, 15–20, 22].

Definition 2.1 A finitely generated R-module C is semidualizing if

(a) The natural homothety morphism R → HomR(C,C) is an isomorphism, and

(b) Ext≥1
R (C, C) = 0.

Let C be a semidualizing R-module. We set

PC(R) = the subcategory of modules C ⊗R P where P is R-projective,

FC(R) = the subcategory of modules C ⊗R F where F is R-flat,

Fcot
C (R) = the subcategory of modules C ⊗R F where F is flat and cotorsion,

IC(R) = the subcategory of modules HomR(C, I) where I is R-injective.

Modules in PC(R), FC(R), Fcot
C (R) and IC(R) are called C-projective, C-flat, C-flat C-cotorsion

and C-injective, respectively. An R-module M is C-cotorsion if Ext1R(C ⊗R F, M) = 0 for all

flat R-modules F .

Lemma 2.2 (1) Every Ĉ-injective R̂-module is C-injective as an R-module.

(2) Every Ĉ-flat R̂-module is C-flat as an R-module.

Proof (1) Let I be any injective R̂-module. Then I is an injective R-module. By adjointness,
we have

HomR̂(Ĉ, I) ∼= HomR̂(C ⊗R R̂, I) ∼= HomR(C, HomR̂(R̂, I)) ∼= HomR(C, I).

It follows that HomR̂(Ĉ, I) is a C-injective R-module.

(2) Let F be any flat R̂-module. Then F is a flat R-module. So, we have

Ĉ ⊗R̂ F ∼= (C ⊗R R̂)⊗R̂ F ∼= C ⊗R F.

Hence Ĉ ⊗R̂ F is a C-flat R-module. ¤

Definition 2.3 Let X be a class of R-modules and M an R-module. An X -resolution of M is

a complex of R-modules in X of the form

X = · · · → Xn → Xn−1 → · · · → X1 → X0 → 0

such that H0(X) ∼= M and Hn(X) = 0 for n ≥ 1, and the following exact sequence is the
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augmented X -resolution of M associated to X:

X+ = · · · → Xn → Xn−1 → · · · → X1 → X0 → M → 0.

The X -projective dimension of M is the quantity

X -pdR(M) = inf{sup{n ≥ 0 | Xn 6= 0} | X is an X -resolution of M}.
In particular, one has X -pdR(0) = −∞. The modules of X -projective dimension 0 are the

nonzero modules of X .

An X -resolution X of M is proper if the augmented resolution X+ is HomR(X ,−)-exact.

We define (proper) X -coresolutions and X -injective dimension dually. And the X -injective

dimension of M is X -idR(M).
When X is the class of projective, injective and flat R-modules, we write pdRM , idRM ,

and fdRM for the classical homological dimensions of M . Similarly, the Gorenstein projective,

injective and flat dimensions of M are denoted GpdRM , GidRM and GfdRM , respectively.

By P̃C(R), ĨC(R) and F̃C(R) we denote the classes of R-modules with finite C-projective,
C-injective and C-flat dimension, respectively. Note that if R is a noetherian ring of finite Krull
dimension, then P̃(R) = F̃(R), and so P̃C(R) = F̃C(R) (see [21, Thm. 4.2.8]). We shall use
these facts without comment.

Definition 2.4 An R-module M is called C-Gorenstein injective if

(I1) Ext≥1
R (HomR(C, I),M) = 0 for any injective R-module I, and

(I2) there exist injective R-modules I0, I1, · · · together with an exact sequence:

X = · · · → HomR(C, I1) → HomR(C, I0) → M → 0

such that this sequence stays exact when we apply the functor HomR(HomR(C, E),−) to it for

any injective R-module E (i.e., M admits a proper IC(R)-resolution).

An R-module M is called C-Gorenstein projective if

(P1) Ext≥1
R (M, C ⊗R P ) = 0 for any projective R-module P , and

(P2) there exist projective R-modules P 0, P 1, · · · together with an exact sequence:

X = 0 → M → C ⊗R P 0 → C ⊗R P 1 → · · · ,

and also, this sequence stays exact when we apply the functor HomR(−, C ⊗R Q) to it for any

projective R-module Q (i.e., M admits a proper PC(R)-coresolution).

An R-module M is called C-Gorenstein flat if

(F1) TorR
≥1(HomR(C, I),M) = 0 for any injective R-module I, and

(F2) there exist flat R-modules F 0, F 1, · · · together with an exact sequence:

X = 0 → M → C ⊗R F 0 → C ⊗R F 1 → · · · ,

and furthermore, this sequence stays exact when we apply the functor HomR(C,E) ⊗R − to it

for any injective R-module E. We set

GIC(R) = the subcategory of C-Gorenstein injective R-modules,
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GPC(R) = the subcategory of C-Gorenstein projective R-modules,

GFC(R) = the subcategory of C-Gorenstein flat R-modules.

Fact 2.5 (1) By Holm-Jφrgensen [12, Ex. 2.8], if I is an injective R-module, then HomR(C, I)
and I are C-Gorenstein injective, and if P is a projective R-module, then C ⊗R P and P are
C-Gorenstein projective. Similarly, if F is a flat R-module, then C⊗R F and F are C-Gorenstein
flat.

(2) By [17], we know that an R-module M is C-Gorenstein injective if and only if there
exists an exact sequence of R-modules

X = · · · ∂X
2−−−−→ HomR(C, I1)

∂X
1−−−−→ HomR(C, I0)

∂X
0−−−−→ I−1

∂X
−1−−−−→ I−2

∂X
−2−−−−→ · · ·

such that M ∼= Coker∂X
1 , each Ii is injective and the complex HomR(IC(R), X) is exact. In

which case, X is called a complete ICI-resolution of M .
Similarly, M is C-Gorenstein flat if and only if there exists an exact sequence of R-modules

X = · · · ∂X
2−−−−→ F1

∂X
1−−−−→ F0

∂X
0−−−−→ C ⊗R F−1

∂X
−1−−−−→ C ⊗R F−2

∂X
−2−−−−→ · · ·

such that M ∼= Coker∂X
1 , each Fi is flat and the complex IC(R) ⊗R X is exact. In which case,

X is called a complete FFC-resolution of M .
It was shown in [13] that the Auslander categories AC(R) and BC(R) satisfy the two-of-

three property. Here, we can prove the similar results hold for A′C(R) and B′
C(R). Recall an

R-module M is cotorsion if Ext1R(F, M) = 0 for all flat R-modules F .

Lemma 2.6 Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of R-modules over a local

noetherian ring R. The following assertions hold.

(1) If any two of M ′, M , M ′′ are in A′C(R), then so is the third.

(2) Assume that M ′ is a cotorsion R-module. If any two of M ′, M , M ′′ belong to B′
C(R),

then so does the third.

Proof (1) The exact sequence 0 → M ′ → M → M ′′ → 0 yields the exact sequence 0 →
R̂⊗R M ′ → R̂⊗R M → R̂⊗R M ′′ → 0. Now, the conclusion follows from [13, Cor. 6.3].

(2) The exact sequence 0 → M ′ → M → M ′′ → 0 yields the exact sequence 0 →
HomR(R̂, M ′) → HomR(R̂, M) → HomR(R̂, M ′′) → 0. Now, using [13, Cor. 6.3] again. ¤

Lemma 2.7 Let (R, M, k) be a local noetherian ring and M a cotorsion R-module. Then for

all i > 0, the following conditions are equivalent:

(1) Exti
R(HomR(C, E),M) = 0 for all injective R-modules E.

(2) Exti
R̂
(HomR̂(Ĉ, Ī), HomR(R̂, M)) = 0 for all injective R̂-modules Ī.

Proof Assume that L is an R̂-module and F. → HomR̂(Ĉ, L) is a free resolution of HomR̂(Ĉ, L).
By [8, Prop. 1.4.16] and the fact that M is cotorsion and every flat R̂-module is flat as an R-
module, then for every i > 0, we have

Exti
R̂
(HomR̂(Ĉ, L),HomR(R̂, M))
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= Hi(HomR̂(F.,HomR(R̂, M))) ∼= Hi(HomR(F.⊗R̂ R̂, M))
∼= Hi(HomR(F.,M)) ∼= Exti

R(HomR(C, L),M).

(1) ⇒ (2). By Lemma 2.2, every Ĉ-injective R̂-module is C-injective as an R-module. So,
the assertion holds from the above isomorphism.

(2) ⇒ (1). Let E be an injective R-module and let HomR(−, E(k)) be denoted by (−)∨,
where E(k) is the injective envelope of k. By [8, Thm. 3.4.1], E(k) is an injective cogenerator
for R and E(k) ∼= ER̂(R̂/M̂) as an R̂-module. The R-module (HomR(C, E)∨)∨ considered
with the R̂-module structure coming from E(k), that is, (r̂f)(x) = r̂(f(x)), for all r̂ ∈ R̂,
f ∈ HomR(HomR(C, E)∨, E(k)) and x ∈ HomR(C, E)∨. Since E is injective, HomR(C, E)∨ is a
C-flat R-module from [18, Lem. 3.3], and so HomR(C, E)∨ ∼= C ⊗R F for some flat R-module F .
Then we have HomR(C, E)∨ ⊗R R̂ ∼= (C ⊗R F )⊗R R̂ ∼= Ĉ ⊗R̂ (F ⊗R R̂), since F ⊗R R̂ is a flat
R̂-module by [8, p43, Ex. 9]. Consequently, HomR(C, E)∨ ⊗R R̂ is a Ĉ-flat R̂-module. By the
adjoint isomorphism, we have

HomR̂(HomR(C, E)∨ ⊗R R̂, E(k)) ∼= HomR(HomR(C, E)∨, E(k))

as R̂-module. Hence (HomR(C, E)∨)∨ is a Ĉ-injective R̂-module by [18, Lem. 3.3].
Consider the natural monomorphism HomR(C, E)

f→ (HomR (C, E)∨)∨. Note that HomR(C,
E) is a pure submodule of (HomR (C, E)∨)∨, see [21, Prop. 2.3.5]. Also, [7, Lem. 2.1] implies
that HomR(C, E) is pure injective, so HomR(C, E) is a direct summand of (HomR(C, E)∨)∨.
Thus, it suffices to show that Exti

R((HomR(C, E)∨)∨,M) = 0 for all i > 0. To this end, by the
assumption and the above isomorphism, for all i > 0, we have

Exti
R((HomR(C, E)∨)∨,M) ∼= Exti

R̂
((HomR(C, E)∨)∨,HomR(R̂, M)) = 0. ¤

Lemma 2.8 Let R be a noetherian ring. If TorR
i (HomR(C, I),M) = 0 for all i > 0 and all

injective R-modules I, then Exti
R(M, C ⊗R K) = 0 for all i > 0 and all cotorsion R-modules K

with finite flat dimension.

Proof We use induction on the finite number fdRK = n. First, assume that n = 0. Then K

is flat, and hence K is a summand of an R-module HomR(E, E′) by [7, Lem. 2.3], where E, E′

are injective. It suffices to show that Exti
R(M, C ⊗R HomR(E, E′)) = 0 for all i > 0. By [8,

Thms. 3.2.11, 3.2.1], we have

Exti
R(M, C ⊗R HomR(E, E′)) ∼= Exti

R(M, HomR(HomR(C,E), E′))
∼= HomR(TorR

i (HomR(C,E),M), E′)

= 0

for all i > 0. So Exti
R(M, C ⊗R K) = 0 for all i > 0. Now assume that fdRK = n > 0. Let

F → K be a flat cover of K with Kernel L. Then L is cotorsion and fdRL = n − 1. Since
fdRK = n < ∞, by [13, Cor. 6.2], we have K ∈ AC(R), so TorR

1 (C, K) = 0, then we obtain the
following exact sequence

0 → C ⊗R L → C ⊗R F → C ⊗R K → 0.
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Now, applying the induction hypothesis and the long exact sequence

· · · → 0 = Exti
R(M, C ⊗R F ) → Exti

R(M, C ⊗R K) → Exti+1
R (M, C ⊗R L) = 0 → · · · ,

we have the desired conclusion. ¤

3. C-Gorenstein homological dimensions and Auslander categories

This section focuses on the connections between C-Gorenstein homological dimensions and
the Auslander categories of R̂.

In the following result, the conclusion of (1) was proved in [22, Prop. 4.3(1)] under an extra
assumption that R̂ is a projective R-module.

Proposition 3.1 Let R be a local noetherian ring and M an R-module. Then the following

conclusions hold:

(1) If M is a C-Gorenstein injective R-module, then HomR(R̂, M) is Ĉ-Gorenstein injective

as an R̂-module.

(2) If M is a C-Gorenstein injective R-module, then M ∈ B′
C(R).

(3) If M is a C-Gorenstein injective R-module, then M is cotorsion.

Proof (1) If M is a C-Gorenstein injective R-module, then by Fact 2.5 (2), M admits a complete
ICI-resolution:

X = · · · ∂X
2−−−−→ HomR(C, I1)

∂X
1−−−−→ HomR(C, I0)

∂X
0−−−−→ I−1

∂X
−1−−−−→ I−2

∂X
−2−−−−→ · · ·

such that M ∼= Coker∂X
1 . As an R-module, R̂ has projective dimension at most dimR < ∞

(see [8, Cor. 2.4.31] and [21, Thm. 4.2.8]). We use induction on the finite number pdRR̂. If
pdRR̂ = 0, then R̂ is a projective R-module, and so HomR(R̂, X) is exact. Assume pdRR̂ ≥ 1.
Let 0 → K → P → R̂ → 0 be a projective resolution of R̂ with pdRK = pdRR̂ − 1. Then
it follows from [8, Thm. 3.2.1] that Ext1R(R̂, HomR(C, E)) ∼= HomR(TorR

1 (C, R̂), E) = 0 for any
injective R-module E since R̂ ∈ AC(R) (see [13, Cor. 6.2]), and so the following sequences

0 → HomR(R̂, HomR(C, Ii)) → HomR(P, HomR(C, Ii))

→ HomR(K, HomR(C, Ii)) → 0, (∗i)

and

0 → HomR(R̂, I−j) → HomR(P, I−j) → HomR(K, I−j) → 0 (∗−j)

are exact for i = 0, 1, . . . and j = 1, 2, . . . . Thus 0 → HomR(R̂, X) → HomR(P, X) →
HomR(K, X) → 0 is exact, which gives that

HomR(R̂, X) = · · · → HomR̂(Ĉ, HomR(R̂, I0)) → HomR(R̂, I−1) → · · ·
is exact by induction and since HomR(R̂, HomR(C, Ii)) ∼= HomR̂(Ĉ, HomR(R̂, Ii)), where every
HomR(R̂, Ii) is an injective R̂-module. Note that

HomR(R̂, M) ∼= HomR(R̂, CX
1 ) ∼= HomR(R̂, ZX

−1) ∼= Z
HomR(R̂,X)
−1

∼= C
HomR(R̂,X)
1 .
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Let I be any injective R̂-module. Then I is an injective R-module, and so

HomR̂(HomR̂(Ĉ, I),HomR(R̂, X)) ∼= HomR(HomR(C, I), X)

is exact. Hence HomR(R̂, M) is a Ĉ-Gorenstein injective R̂-module.
(2) Let M be a C-Gorenstein injective R-module. By (1), HomR(R̂, M) is Ĉ-Gorenstein

injective as an R̂-module. Hence, by [12, Thm. 4.6], HomR(R̂, M) ∈ BĈ+(R̂), and so M ∈ B′
C(R),

by the definition.
(3) Let F be any flat R-module. By [21, Thm. 4.2.8], pdRF = n < ∞. Since M is a

C-Gorenstein injective R-module, we have an exact sequence

0 → Kn → HomR(C, In−1) → · · · → HomR(C, I1) → HomR(C, I0) → M → 0

with Ii injective. Breaking this sequence into short exact ones and noting that

Exti
R(F, HomR(C, Ii)) ∼= HomR(TorR

i (C,F ), Ii) = 0

for all i > 0 by [8, Thm. 3.2.1], by dimension shifting, we have

Extm
R (F, M) ∼= Extm+n

R (F, Kn) = 0

for all m > 0. ¤
Dually, we get the next result.

Proposition 3.2 Let R be a local noetherian ring and M an R-module. Then the following

conclusions hold:

(1) If M is a C-Gorenstein flat R-module, then R̂⊗RM is Ĉ-Gorenstein flat as an R̂-module.

(2) If M is a C-Gorenstein flat R-module, then M ∈ A′C(R).
Let X be any class of R-modules and M an R-module. An X -precover of M is an R-

homomorphism ϕ : X → M , where X ∈ X and such that the sequence

HomR(X ′, X)
HomR(X′,ϕ)−−−−−−−−→ HomR(X ′,M) −−−−→ 0

is exact for every X ′ ∈ X . If, moreover, ϕf = ϕ for f ∈ HomR(X, X) implies f is an automor-
phism of X, then ϕ is called an X -cover of M . Also, an X -preenvelope and X -envelope of M

are defined “dually”.

Lemma 3.3 Let R be a noetherian ring and M an R-module.

(1) If R is a local ring and M is a cotorsion R-module such that M ∈ B′
C(R), then there

exists an epimorphism L → M with IC-idR(L) < ∞.

(2) Assume ϕ : L → M is an epimorphism such that IC-idR(L) < ∞ and that

Exti
R(HomR(C, I),M) = 0

for all injective R-modules I and all i > 0. Then M has an epic ĨC(R)-precover E → M , in

which E is C-injective.

Proof (1) Note that M ∈ B′
C(R), then HomR(R̂, M) ∈ BĈ+(R̂). By [12, Thm. 4.6],

GIĈ-idR̂(HomR(R̂, M)) < ∞.
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It follows from [19, Lem. 1.9], there are an R̂-module L and an R̂-epimorphism L → HomR(R̂, M)
such that IĈ-idR̂(L) = GIĈ-idR̂(HomR(R̂, M)) < ∞. Note that every Ĉ-injective R̂-module is
C-injective as an R-module by Lemma 2.2, and hence IC-idR(L) < ∞. So, it suffices to show
that the natural R-homomorphism HomR(R̂, M) → M is epic.

The natural exact sequence 0 → R → R̂ → R̂/R → 0 yields an exact sequence

HomR(R̂, M) → HomR(R, M) → Ext1R(R̂/R, M).

The last module is zero because R̂/R is a flat R-module and M is a cotorsion R-module. These
considerations prove that HomR(R̂, M) → M is epic.

(2) By [13, Prop. 5.3 (e)], there exists an IC(R)-precover f : HomR(C, E) → M . At first,
we show that f is an ĨC(R)-precover. To this end, let ϕ′ : L′ → M be an R-homomorphism such
that IC-idR(L′) < ∞. By [15, Cor. 2.9], we have L′ ∈ AC(R), and so L′ ∼= HomR(C, C⊗RL′) and
Ext1R(C, C⊗R L′) = 0. On the other hand, by [15, Thm. 2.11], idR(C⊗R L′) = IC-idR(L′) < ∞,
there in particular exists an exact sequence 0 → C ⊗R L′ → E′ → K → 0 with E′ injective and
idRK < ∞. Applying HomR(C,−), we get an exact sequence

0 −−−−→ L′
g−−−−→ HomR(C,E′) −−−−→ HomR(C, K) −−−−→ 0

with IC-idR(HomR(C, K)) = idRK < ∞ (see [15, Thm. 2.11]). From the assumption and [16,
Lem. 1.7], we have Ext1R(HomR(C, K),M) = 0. Now, applying the functor HomR(−,M) to the
above exact sequence, we obtain the following exact sequence

HomR(HomR(C,E′),M) → HomR(L′,M) → Ext1R(HomR(C, K),M) = 0.

So, there exists an R-homomorphism φ : HomR(C,E′) → M such that ϕ′ = φg. Also as f is an
IC(R)-precover, there exists an R-homomorphism h : HomR(C, E′) → HomR(C, E) such that
φ = fh. Then there exists an R-homomorphism hg : L′ → HomR(C,E) such that f(hg) = ϕ′,
which means f is an ĨC(R)-precover.

Since f is an ĨC(R)-precover, then there is an R-homomorphism ψ : L → HomR(C, E) such
that ϕ = fψ. Since ϕ is epic, f is also epic. ¤

Dually, we can prove the conclusions (1) and (2) of the next lemma using Lemma 2.8 and
[18, Cor. 5.10].

Lemma 3.4 Let R be a noetherian ring and M an R-module.

(1) If R is a local ring and M ∈ A′C(R), then there exists a monomorphism M → L with

FC-pdR(L) < ∞.

(2) Assume ϕ : M → L is a monomorphism such that FC-pdR(L) < ∞ and that

TorR
i (HomR(C, I),M) = 0 for all injective R-modules I and all i > 0. Then M has a monic

F̃C(R)-preenvelope M → F , in which F is C-flat.

(3) Let R-homomorphism f : M → L′ be a P̃C(R)-preenvelope. Assume ψ : M → L is

a monomorphism such that PC-pdR(L) < ∞ and that Exti
R(M, C ⊗R Q) = 0 for all projective

R-modules Q and all i > 0. Then M has a monic P̃C(R)-preenvelope M → P , in which P is

C-projective.
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Proof We should only prove (3). By assumption, ψ : M → L is monic, then f : M → L′

is also monic. It follows from [15, Cor. 2.9], L′ ∈ BC(R). Now, there exists an exact sequence

0 −−−−→ K −−−−→ C ⊗R P
π−−−−→ L′ −−−−→ 0 such that P is a projective R-module by [15,

Cor. 2.4]. It is easy to see that PC-pdR(K) < ∞. So from the assumption and [16, Lem. 1.7], we
have Ext1R(M, K) = 0, and thus a lifting µ : M → C ⊗R P with f = πµ. The injectivity of f

gives also µ is monic. It is easy to see that µ is also a P̃C(R)-preenvelope. ¤

Theorem 3.5 Let R be a local noetherian ring and M an R-module. Then the following

conditions are equivalent:

(1) M is C-Gorenstein injective.

(2) M is cotorsion and HomR(R̂, M) is Ĉ-Gorenstein injective as an R̂-module.

(3) M ∈ B′
C(R), M is cotorsion and Exti

R(HomR(C,E),M) = 0 for all injective R-modules

E and all i > 0.

Proof (1) ⇒ (2). It follows from Proposition 3.1.
(2) ⇒ (3). By Definition 2.4 and Lemma 2.7, we have Exti

R(HomR(C, E),M) = 0 for
all injective R-modules E and all i > 0. On the other hand, [12, Thm. 4.6] implies that
HomR(R̂, M) ∈ BĈ+(R̂), so M ∈ B′

C(R).
(3) ⇒ (1). By the definition of C-Gorenstein injective R-modules, it suffices to show that

M admits a proper IC(R)-resolution. By Lemma 3.3, there exists an exact sequence

0 −−−−→ N −−−−→ HomR(C, E)
f−−−−→ M −−−−→ 0 (∗)

with f an ĨC(R)-precover and E injective. If we have proved that N satisfies the given assumption
on M , then the result is obtained because one can obtain the sequence in Definition 2.4 (I2) by
iterating (∗).

Let I be an injective R-module. Applying the functor HomR(HomR(C, I),−) to the exact
sequence (∗) yields an exact sequence

· · · → Exti
R(HomR(C, I),M) → Exti+1

R (HomR(C, I), N)

→ Exti+1
R (HomR(C, I),HomR(C,E)) → · · · .

Since I ∈ BC(R), we have

Exti
R(HomR(C, I),HomR(C, E)) ∼= HomR(TorR

i (C, HomR(C, I)), E) = 0.

Also Exti
R(HomR(C, I),M) = 0 for all i > 0 by the assumption. Thus Extj

R(HomR (C, I), N) = 0
for all j ≥ 2. From (∗) we also have the following exact sequence

HomR(HomR(C, I),M) → Ext1R(HomR(C, I), N) → Ext1R(HomR(C, I),HomR(C, E)).

It is clear that Ext1R(HomR(C, I),HomR(C, E)) = 0. On the other hand, since f is an ĨC(R)-
precover, HomR(HomR(C, I), f) is an epimorphism. So Ext1R(HomR(C, I), N) = 0 by “Five
Lemma”.

Next, we show that N is a cotorsion R-module. Since M ∈ B′
C(R), HomR(R̂, M) ∈ BĈ+(R̂),

and so GIĈ-idR̂(HomR(R̂, M)) < ∞. By [19, Lem. 1.9], there exists an exact sequence of R̂-
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modules

0 −−−−→ K −−−−→ E′ α−−−−→ HomR(R̂, M) −−−−→ 0

such that IĈ-idR̂(E′) = GIĈ-idR̂(HomR(R̂, M)) < ∞ and K is a Ĉ-Gorenstein injective R̂-
module. By Proposition 3.1, K is a cotorsion R̂-module, which implies that K is cotorsion as an
R-module by [10, Lem. 2.4]. Now, let ϕ : HomR(R̂, M) → M be the natural R-homomorphism.
Since IĈ-idR̂(E′) < ∞, by Lemma 2.2, IC-idR(E′) < ∞. Note that f is an ĨC(R)-precover of
M , then there exists an R-homomorphism ψ : E′ → HomR(C, E) such that ϕα = fψ. Thus
there exists an R-homomorphism θ : K → N such that the following diagram is commutative

0 // K //

θ

²²

E′ α //

ψ

²²

HomR(R̂, M) //

ϕ

²²

0

0 // N // HomR(C, E)
f // M // 0.

Let F be any flat R-module. Since Ext1R(F, HomR(C, E)) ∼= HomR(TorR
1 (C, F ), E) = 0, we

obtain the following commutative diagram

· · · // HomR(F, HomR(R̂, M))
β //

HomR(F,ϕ)

²²

Ext1R(F, K) = 0 //

θ1

²²

· · ·

· · · // HomR(F, M)
γ // Ext1R(F, N) // 0.

(∗∗)

Note that R̂/R is a flat R-module and M is a cotorsion R-module, then we have Ext1R(R̂/R, M) =
0. Thus the natural exact sequence 0 → R → R̂ → R̂/R → 0 yields the following exact sequence

0 −−−−→ HomR(R̂/R, M) −−−−→ HomR(R̂, M)
ϕ−−−−→ M −−−−→ 0.

Now, applying the functor HomR(F,−) to it yields an exact sequence

HomR(F, HomR(R̂, M))
HomR(F,ϕ)−−−−−−−→ HomR(F, M)

−−−−→ Ext1R(F, HomR(R̂/R, M)) −−−−→ Ext1R(F, HomR(R̂, M)) −−−−→ 0 (])

since M is cotorsion. Also, [14, Lem. 2.16] implies that HomR(R̂, M) is a cotorsion R-module,
so Ext1R(F, HomR(R̂, M)) = 0. On the other hand, since F is a flat R-module, we get that the
sequence 0 → F → F ⊗R R̂ → F ⊗R R̂/R → 0 is exact. Thus the sequence

HomR(F ⊗R R̂, M) → HomR(F, M) → Ext1R(F ⊗R R̂/R, M) → Ext1R(F ⊗R R̂, M) → 0 (]])

is exact and since F ⊗R R̂ is a flat R-module and M is cotorsion, Ext1R(F ⊗R R̂, M) = 0.
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Now, from (]) and (]]) we obtain the following commutative diagram

HomR(F, HomR(R̂, M))
∼= //

²²

HomR(F ⊗R R̂, M)

²²
HomR(F, M) = //

²²

HomR(F, M)

²²
Ext1R(F, HomR(R̂/R, M)) //

²²

Ext1R(F ⊗R R̂/R, M)

²²
0

= // 0.

By “Five Lemma”, Ext1R(F, HomR(R̂/R, M)) ∼= Ext1R(F ⊗R R̂/R, M). Since F ⊗R R̂/R is a flat
R-module and M is cotorsion, Ext1R(F, HomR(R̂/R, M)) = 0. Thus, from (]), HomR(F, ϕ) is an
epimorphism. Then by (∗∗), θ1β is epic and so θ1 is epic. Thus Ext1R(F, N) = 0. It follows that
N is cotorsion.

Finally, by Fact 2.5 and Proposition 3.1 (2), we have HomR(C, E) ∈ B′
C(R). So N ∈ B′

C(R)
by Lemma 2.6. ¤

Corollary 3.6 Let R be a local noetherian ring of Krull dimension d and assume that Exti
R(R̂, M) =

0 for all i > 0. Then the following conditions are equivalent: (1) M ∈ B′
C(R). (2) GIC-idR(M) <

∞. (3) GIC-idR(M) ≤ d.

Proof (1) ⇒ (3). Since M ∈ B′
C(R), HomR(R̂, M) ∈ BĈ+(R̂). So [12, Thm. 4.6] implies that

GIĈ-idR̂(HomR(R̂, M)) < ∞. On the other hand, [12, Thm. 2.16] gives that

GIĈ-idR̂(HomR(R̂, M)) = GidR̂∝Ĉ(HomR(R̂, M)).

By [11, Thm. 2.29], GidR̂∝Ĉ(HomR(R̂, M)) ≤ FID(R̂ ∝ Ĉ), where

FID(R) = sup{idRN |N is an R-module with finite injective dimension}.
Also, [4, Cor. 5.5] implies that FID(R̂ ∝ Ĉ) ≤ dim(R̂ ∝ Ĉ), and R̂ and R̂ ∝ Ĉ are finitely
generated as modules over each other, so dim(R̂ ∝ Ĉ) = dim(R̂) = d. This shows that
GIĈ-idR̂(HomR(R̂, M)) ≤ d.

Consider the following exact sequence of R-modules

0 → M → E0 → E1 → · · · → Ed−1 → L → 0

with Ei injective for 0 ≤ i ≤ d − 1. By Fact 2.5, it suffices to prove that L is a C-Gorenstein
injective R-module. From the assumption, we have the following exact sequence

0 → HomR(R̂, M) → HomR(R̂, E0) → · · · → HomR(R̂, Ed−1) → HomR(R̂, L) → 0.

Since GIĈ-idR̂(HomR(R̂, M)) ≤ d, HomR(R̂, L) is a Ĉ-Gorenstein injective R̂-module.
Let F be any flat R-module. Then by [21, Thm. 4.2.8], pdRF ≤ d. Thus Exti

R(F, L) ∼=
Exti+d

R (F, M) = 0 for i > 0. This means that L is a cotorsion R-module. Now the result follows
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from Theorem 3.5.
(3) ⇒ (2) is obvious.
(2) ⇒ (1). Let GIC-idR(M) = s < ∞. Then there exists an exact sequence of R-modules

0 → M → G0 → G1 → · · · → Gs → 0

such that G0, G1, . . . , Gs are C-Gorenstein injective R-modules. By [21, Thm. 4.2.8], pdRR̂ is
finite. Using hypothesis and [17, Lem. 4.8], we get an exact sequence

0 → HomR(R̂, M) → HomR(R̂, G0) → · · · → HomR(R̂, Gs) → 0.

This implies that GIĈ-idR̂(HomR(R̂, M)) ≤ s. So [12, Thm. 4.6] gives that HomR(R̂, M) ∈
BĈ+(R̂). Thus, M ∈ B′

C(R). ¤
The next result can be proved using a similar method as in Theorem 3.5.

Theorem 3.7 Let R be a local noetherian ring, M an R-module, and n a non-negative integer.

Then the following conditions are equivalent:

(1) GFC-pdR(M) ≤ n.

(2) M ∈ A′C(R) and TorR
i (HomR(C, I),M) = 0 for all injective R-modules I and all i > n.

(3) M ∈ A′C(R) and Exti
R(M, C ⊗R L) = 0 for all cotorsion R-modules L with finite flat

dimension and all i > n.

(4) M ∈ A′C(R) and Exti
R(M, C⊗R F ) = 0 for all cotorsion flat R-modules F and all i > n.

Corollary 3.8 Let (R, M, k) be a local noetherian ring. If M ∈ A′C(R), then

GF Ĉ-pdR̂(R̂⊗R M) = GFC-pdR(M).

Proof The inequality “≤” follows from Proposition 3.2 (1), then we should only prove the op-
posite inequality. Since M ∈ A′C(R), we have R̂⊗R M ∈ AĈ+(R̂), which implies GF Ĉ-pdR̂(R̂⊗R

M) < ∞ by [12, Thm. 4.6]. Set GF Ĉ-pdR̂(R̂⊗R M) = s. Then there exists an exact sequence of
R-modules

0 → Ks → Ps−1 → · · · → P1 → P0 → M → 0 (∗)

with Pi projective for 0 ≤ i ≤ s − 1. By Fact 2.5 (2), we need show that Ks is a C-Gorenstein
flat R-module. From (∗), we obtain the following exact sequence

0 → Ks ⊗R R̂ → Ps−1 ⊗R R̂ → · · · → P1 ⊗R R̂ → P0 ⊗R R̂ → M ⊗R R̂ → 0.

By Fact 2.5 (2) and Proposition 3.2 (1), Ks ⊗R R̂ is a Ĉ-Gorenstein flat R̂-module. Then
Ks ⊗R R̂ ∈ AĈ+(R̂) by [12, Thm. 4.6]. Thus, Ks ∈ A′C(R).

Let E be any injective R-module and let HomR(−, E(k)) be denoted by (−)∨, where E(k)
is the injective envelope of k. By the similar arguments to the proof of Lemma 2.7, we know
HomR(C, E) is a direct summand of (HomR(C, E)∨)∨. Thus, it suffices to show that

TorR
i ((HomR(C, E)∨)∨,Ks) = 0 for all i > 0.

Consequently, we have TorR
i (HomR(C, E),Ks) = 0 for all i > 0 and the assertions hold. While
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(HomR(C, E)∨)∨ is a Ĉ-injective R̂-module, we have TorR̂
i ((HomR(C, E)∨)∨, Ks ⊗R R̂) = 0 for

all i > 0 by Theorem 3.7.

Now, suppose F. → Ks is a flat resolution of Ks. Then F. ⊗R R̂ is a flat resolution of
Ks ⊗R R̂. So for every i > 0, we have

TorR
i ((HomR(C, E)∨)∨,Ks) = Hi((HomR(C, E)∨)∨ ⊗R F.)

∼= Hi((HomR(C, E)∨)∨ ⊗R̂ (F.⊗R R̂))

= TorR̂
i ((HomR(C, E)∨)∨,Ks ⊗R R̂)

= 0. ¤

Corollary 3.9 Let R be a local noetherian ring and M an R-module. Then the following

conditions are equivalent:

(1) M ∈ A′C(R).

(2) GFC-pdR(M) < ∞.

The next result contains Theorem C from the introduction.

Theorem 3.10 Let R be a local noetherian ring, M an R-module, and n a non-negative integer.

Then the following conditions are equivalent:

(1) GPC-pdR(M) ≤ n.

(2) M ∈ A′C(R) and Exti
R(M, C ⊗R P ) = 0 for all projective R-modules P and all i > n.

(3) GFC-pdR(M) < ∞ and Exti
R(M, C ⊗R P ) = 0 for all projective R-modules P and all

i > n.

Proof (1) ⇒ (2). It follows from [17, Lem. (3.3)(a)] that GFC-pdR(M) ≤ GPC-pdR(M) ≤ n.
Then by Theorem 3.7, M ∈ A′C(R). Also, [20, Prop. 2.12] implies that Exti

R(M, C ⊗R P ) = 0
for all projective R-modules P and all i > n.

(2) ⇒ (3). It follows from Corollary 3.9.

(3) ⇒ (1). There exists an exact sequence

0 → Kn → Pn−1 → · · · → P1 → P0 → M → 0

with Pi projective for 0 ≤ i ≤ n−1. From Fact 2.5, we only need to show that Kn is C-Gorenstein
projective.

Let P be any projective R-module. Then Exti
R(Kn, C ⊗R P ) ∼= Exti+n

R (M, C ⊗R P ) = 0
for all i > 0. In view of Definition 2.4, it is enough to show that Kn admits a proper PC(R)-
coresolution.

[12, Thm. 2.16] and [11, Thm. 3.15] give that GFC-pdR(Kn) < ∞, thus there exists a
monomorphism Kn → L with FC-pdR(L) < ∞ by [18, Cor. 5.10]. From [8, Thms. 3.2.1, 3.2.11],
we have

Exti
R(Kn, C ⊗R HomR(E, E′)) ∼= HomR(TorR

i (HomR(C, E),Kn), E′)

for all i > 0 and all injective R-modules E and E′. Therefore, TorR
i (HomR(C, E), Kn) = 0 for all

injective R-modules E. Now using Lemma 3.4 (2), (3), there exists a monic P̃C(R)-preenvelope
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f : Kn → C ⊗R Q in which Q is projective. Let P be any projective R-module. Applying the
functor HomR(−, C ⊗R P ) to the exact sequence

0 → Kn
f→ C ⊗R Q → B → 0, (∗)

we have Exti
R(B,C⊗R P ) = 0 for all i > 0 since f : Kn → C⊗R Q is a P̃C(R)-preenvelope. Also,

GFC-pdR(B) < ∞ by [12, Thm. 2.16] and [11, Thm. 3.15]. Now iterating the above procedure,
we have the desired proper PC(R)-coresolution of M . ¤

Corollary 3.11 Let R be a local noetherian ring and M an R-module. Then the following

conditions are equivalent:

(1) GPC-pdR(M) < ∞.

(2) GFC-pdR(M) < ∞.

(3) M ∈ A′C(R).

References

[1] M. AUSLANDER, M. BRIDGER. Stable Module Theory. American Mathematical Society, Providence, R.I.

1969.

[2] L. L. AVRAMOV, H. B. FOXBY. Gorenstein local homomorphisms. Bull. Amer. Math. Soc.(N.S.), 1990,

23(1): 145–150.

[3] L. L. AVRAMOV, H. B. FOXBY. Ring homomorphisms and finite Gorenstein dimension. Proc. London

Math. Soc. (3), 1997, 75(2): 241–270.

[4] H. BASS. Injective dimension in Noetherian rings. Trans. Amer. Math. Soc., 1962, 102: 18–29.

[5] L.W. CHRISTENSEN. Semi-dualizing complexes and their Auslander categories. Trans. Amer. Math. Soc.,

2001, 353(5): 1839–1883.

[6] L. W. CHRISTENSEN, A. FRANKILD, H. HOLM. On Gorenstein projective, injective and flat dimensions-a

functorial description with applications. J. Algebra, 2006, 302(1): 231–279.

[7] E. E. ENOCHS. Flat covers and flat cotorsion modules. Proc. Amer. Math. Soc., 1984, 92(2): 179–184.

[8] E. E. ENOCHS, O. M. G. JENDA. Relative Homological Algebra. Walter de Gruyter & Co., Berlin, 2000.

[9] M. A. ESMKHANI, M. TOUSI. Gorenstein homological dimensions and Auslander categories. J. Algebra,

2007, 308(1): 321–329.

[10] M. A. ESMKHANI, M. TOUSI. Gorenstein injective modules and Auslander categories. Arch. Math.

(Basel), 2007, 89(2): 114–123.

[11] H. HOLM. Gorenstein homological dimensions. J. Pure Appl. Algebra, 2004, 189(1-3): 167–193.

[12] H. HOLM, P. J∅RGENSEN. Semi-dualizing modules and related Gorenstein homological dimensions. J.

Pure Appl. Algebra, 2006, 205(2): 423–445.

[13] H. HOLM, D. WHITE. Foxby equivalence over associative rings. J. Math. Kyoto Univ., 2007, 47(4):

781–808.

[14] Lixin MAO, Nanqing DING. Notes on cotorsion modules. Comm. Algebra, 2005, 33(1): 349–360.

[15] R. TAKAHASHI, D. WHITE. Homological aspects of semidualizing modules. Math. Scand., 2010, 106(1):

5–22.

[16] S. SATHER-WAGSTAFF, T. SHARIF, D. WHITE. Stability of Gorenstein categories. J. Lond. Math. Soc.

(2), 2008, 77(2): 481–502.

[17] S. SATHER-WAGSTAFF, T. SHARIF, D. WHITE. Comparison of relative cohomology theories with respect

to semidualizing modules. Math. Z., 2010, 264(3): 571–600.

[18] S. SATHER-WAGSTAFF, T. SHARIF, D. WHITE. AB-contexts and stability for Gorenstein flat modules

with respect to semidualizing modules. Algebr. Represent. Theory, 2011, 14(3): 403–428.

[19] S. SATHER-WAGSTAFF, S. YASSEMI. Modules of finite homological dimension with respect to a semidu-

alizing module. Arch. Math. (Basel), 2009, 93(2): 111–121.

[20] D. WHITE. Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra,

2010, 2(1): 111–137.

[21] Jinzhong XU. Flat Covers of Modules. Springer-Verlag, Berlin, 1996.

[22] Xiaoyan YANG, Zhongkui LIU. C-Gorenstein projective, injective and flat modules. Czechoslovak Math. J.,

2010, 60(135): 1109–1129.


