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Abstract Low-density parity-check (LDPC) codes were first presented by Gallager in 1962.

They are linear block codes and their bit error rate (BER) performance approaches remarkably

close to the Shannon limit. The LDPC codes created much interest after the rediscovery by

Mackay and Neal in 1995. This paper introduces some new LDPC codes by considering some

combinatorial structures. We present regular LDPC codes based on group divisible designs

which have Tanner graphs free of four-cycles.
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1. Introduction

Low-density parity-check (LDPC) codes were first presented by Gallager [1] in 1962. LDPC

codes can achieve near-optimum performance with iterative decoding when used for transmission
over white additive Gaussian noise (AWGN) channels. It became a challenge to construct codes
that would come as close as possible to the Shannon limit [2]. The LDPC codes created much
interest after the rediscovery by Mackay and Neal [3] in 1995. In recent years, these codes
have become strong competitor to Turbo codes for error control in many digital storage and
communication systems where high reliability is required.

Based on the methods of constructions, LDPC codes can be divided into two parts: random
codes [1, 3, 4] and structured codes [5–10]. Random LDPC codes are often constructed by
computer search while structured LDPC codes are constructed by algebra and combinatorial
methods.

Despite the excellent error-correcting properties of some known random LDPC codes, they
often have the high complexity. A large amount of information is necessary to specify the po-
sitions of the non-zero elements in the parity-check matrix. So the complexity drawbacks of
random LDPC codes can be overcome by structured LDPC codes. Several structured LDPC

codes have been known, including those based on combinatorial designs (such as BIBDs, mu-
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tually orthogonal Latin rectangles, partial geometries) [5–9], finite geometries (such as conics,
ovals [10]).

A binary regular LDPC code is defined as the null space of a sparse parity-check matrix
H over GF (2) with the following properties: 1) each row has weight ρ; 2) each column has
weight γ; 3) no two rows (or two columns) have more than one 1-component in common; 4)
both ρ and γ are small compared to the code length. The LDPC code defined above is called
(γ, ρ)-regular. If not all the columns or rows of H have constant weight, then the null space of H

gives an irregular LDPC code. A useful way to describe LDPC code is the Tanner graph which
displays the relationship between codeword bits and parity-checks. Each of the n code bits and
b parity-checks in the parity-check matrix H is represented by a vertex in the graph. An edge of
the graph joins a code bit vertex to the vertex of the parity-checks that include it. The girth of
a Tanner graph is the size of its smallest cycle. But the existence of short cycles in the Tanner
graph prevents an exact error-probability analysis of iterative decoding procedures. Without
4-cycles in the graph of codes, the iterative sum-product decoding algorithm can be performed
well. LDPC codes based on combinatorial designs, such as Steiner 2-designs has girth at least
6.

The aim of this paper is to design regular LDPC codes based on another combinatorial
design: group divisible design. The paper is organized as follows. In Section 2, we show the
connection between GDD and strongly regular (α, β)-geometry. In Section 3, we describe some
properties of such codes such as the minimum distance, the number of 6-girth of the Tanner
graph and the 2-rank of the parity-check matrix.

2. The connection with strongly regular (α, β)-geometry

A graph G is said to be regular if each vertex is connected to exactly k other vertices. If
any two connected vertices of G are both connected together to exactly λ other vertices, and
two unconnected vertices are both connected to exactly µ vertices together, the graph is called
strongly regular and specified by the parameters (v, k, λ, µ) (see [11]).

Next, we will give the definition of strongly regular (α, β)-geometries. A (finite) (α, β)-
geometry with parameters (s, t) is an incidence structure (P,L), where P is a finite non-empty
set of elements (called points), L is a family of subsets (called lines) of P, the incidence contains
the following properties:

(1) Any two distinct points are incident with at most one line;

(2) Each line is incident with exactly s + 1 points;

(3) Each point is incident with exactly t + 1 lines;

(4) For any point x ∈ P and any line L ∈ L not containing x there are exactly α or β

points on L collinear with x.

We call a line L not incident with a point x an α-line with respect to x if there are exactly α

lines joining x to a point of L. β-lines are defined similarly. (α, β)-geometries were first defined
in [12] where the problem of linear embedding was examined. We say an (α, β)-geometry is
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strongly regular if there exist integers p and r such that the following conditions are satisfied.

(1) If points x and y are collinear, there exist p lines on x that are α-lines with respect to
y.

(2) If points x and y are not collinear, there exist r lines on x that are α-lines with respect
to y.

We call s, t, p and r the parameters of the strongly regular (α, β)-geometry. A simple count
shows that the number of lines of the geometry is b = v(t + 1)/(s + 1), where v is the number of
points.

N. Hamilton and R. Mathon [13] had shown that the point graph of a strongly regular
(α, β)-geometry with parameters s, t, p and r is strongly regular with

k = s(t + 1),

λ = p(α− 1) + (t− p)(β − 1) + s− 1,

µ = rα + β(t + 1− r),

v =
k(k − λ− 1)

µ
+ k + 1.

If for any point x ∈ P and any line L ∈ L not containing x there are exactly α points on L

collinear with x, then the (α, β)-geometry is called a partial geometry of order (s, t) (see [14]).
It is clear that the point graph of a partial geometry is strongly regular.

A group divisible design (GDD) is a triple (X,G,B) which satisfies the following properties.

(1) G = {G1, G2, . . . , Gm} is a partition of a v-set X into subsets (called groups).

(2) B is a collection of subsets (called blocks) of X, such that a group and a block contain
at most one element in common.

(3) Each pair of elements from distinct groups occurs in precisely λ (called the index)
blocks. Each pair of elements from the same group does not appear in any block.

Let K = {|B| : B ∈ B}. The multiset {|G1|, |G2|, . . . , |Gm|} is called the type of the GDD.
We usually use exponential notation to describe the type: G has the type tu1

1 tu2
2 · · · tum

m if G
contains u1 groups of size t1, u2 groups of size t2, . . . , um groups of size tm. If K = {k}, such
GDD is often denoted as a k-GDD of type tu1

1 tu2
2 · · · tum

m . If each group |Gi| = 1 for 1 ≤ i ≤ m,
such GDD is just a (m, k, 1)-BIBD.

An automorphism of a GDD (X,G,B) is a permutation π on X with the property that
π(B) ∈ B for each B ∈ B. A GDD (X,G,B) is cyclic if it has an automorphism which permutes
the elements in each group G ∈ G in a |G|-cycle. A cyclic k-GDD is denoted by k-CGDD. For
further details, one can see [15].

Theorem 1 An l-GDD of type gu is a strongly regular (l − 1, l)-geometry with parameters

s = l − 1, t =
g(u− 1)

l − 1
− 1,

p = g − 1, r = t + 1,

λ = g(u− 2), µ = g(u− 1).
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Proof Let (X,B) be an l-GDD of type gu. The fact of s, t can be easily obtained by the
definition of GDD. For any point x ∈ X and any line L ∈ B not containing x, if L does not
meet the group containing x, there are exactly l points on L collinear with x, otherwise there
are exactly l − 1 points on L collinear with x. So (X,B) is an (l − 1, l)-geometry.

If points x and y are collinear with line L, i.e., x and y belong to different groups, denote
the lines containing x to be L,L1, L2, . . . , Lt. Here y 6∈ Li for 1 ≤ i ≤ t. If the line Li meets
the group containing y, Li is an (l − 1)-block with respect to y, otherwise an l-block with
respect to y. There are g − 1 (l − 1)-blocks with respect to y in all. Thus p = g − 1 and
λ = p(α− 1) + (t− p)(β − 1) + s− 1 = g(u− 2).

If points x and y are not collinear, i.e., x and y belong to the same group, y is not on each
line containing x. This means that each line on x is an l-block with respect to y. So r = t + 1
and µ = rα + β(t + 1− r) = g(u− 1).

3. GDD-LDPC codes

For constructing LDPC codes, we are only interested in GDDs with λ = 1 and equal group
size. Let (X,G,B) be an l-GDD of type gu with |X| = gu and |B| = b = g2u(u−1)

l(l−1) . Instead of a
list of the blocks, a GDD can be efficiently described by a gu× b matrix H = [hij ] over GF (2)
where each row in H represents an element x ∈ X and each column a block B ∈ B such that

hij =

{
1, if x ∈ B

0, otherwise.

It is easy to see from the properties of a GDD that the incidence matrix H has constant row
weight and constant column weight, and any two rows of H have exactly one 1-component in
common. So the incidence matrix H can be considered as a parity-check matrix of a binary
regular LDPC code defined earlier. Therefore, the null space of H gives a (γ, ρ)-regular LDPC

code, which is denoted by GDD-LDPC code of length b.

The GDD-LDPC codes can be presented by C = {c : cHT = 0, c ∈ GF (2)b} with v parity
checks and code length b. In the parity-check matrix H, all columns have weight l and all rows
have weight ρ = g(u−1)

l−1 . As in the case for random constructions of parity-check matrix, the H

constructed in this way is not necessarily of full rank. In this case the number of message bits
in the code is k = b−rank2(H) where rank2(H) is the rank of H over GF (2). But the rank of
H is usually difficult to determine. For given block length l, the codes quickly become high rate
since the code length b = gu(u−1)

l(l−1) increases with nearly square of the number of parity checks. It
would be useful to have codes with the properties of GDD but with a wider range of available
rates for each codeword length.

Next, we will use the properties of strongly regular graph to derive the minimum distance of
GDD-LDPC code, the number of 6-girth of its Tanner graph and the 2-rank of its parity-check
matrix.

The minimum distance of a code is equal to the minimum nonzero number of columns in the
parity-check matrix for which a nontrivial linear combination sums to zero [16]. The properties
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of the GDD ensure that all columns in the parity-check matrix have weight l, and that no two
columns share more than one element. Thus it needs at least l + 1 columns to sum to zero and
dmin ≥ l + 1 for the GDD-LDPC codes.

Since the index of the l-GDD of type gu is one, the Tanner graph of the GDD-LDPC code
cannot contain 4-cycle. So the girth is at least six. In fact, the number of 6-cycles N(6) in the
GDD-LDPC code can be enumerated exactly.

Theorem 2 The exact number of 6-cycles in the Tanner graph of the above GDD-LDPC code

is

N(6) =
g2u(u− 1)(gu− 2g − l + 2)

6
.

Proof Let (X,G,B) be an l-GDD of type gu. Suppose x, y are distinct points of X and appear
in the block B ∈ B. By Theorem 1, we have t = g(u−1)

l−1 − 1.

The point x is incident with t blocks B1, B2, . . . , Bt other than B, none of which contain
the point y. Without loss of generality, we assume that the first g − 1 blocks meet the group
containing y, i.e., B1, B2, . . . , Bg−1. On each of these g − 1 blocks, there are l − 2 points,
yi1, . . . , yi(l−2) (1 ≤ i ≤ g − 1), which lies in different groups with x and y. So the pair {yij , y}
must appear in another block B′

j . Then there are (g − 1)(l − 2) 6-cycles containing both x and
y, which is of the type (B, x, Bi, yij , B

′
j , y). Similarly, the rest t− g + 1 blocks Bg−1, Bg, · · · , Bt

must not meet the group containing y. On each of these t− g + 1 blocks, there are l − 1 points
which lie in different groups with x and y. There are (t− g + 1)(l − 1) 6-cycles in which points
x and y are connected. It is easy to see that there exist no other 6-cycles containing both x and
y. Since a 6-cycle includes three pairs of distinct points, the number of 6-cycles is

N(6) =
1
3
× u(u− 1)g2

l(l − 1)
× [(g − 1)(l − 2) + (t− g + 1)(l − 1)]× l(l − 1)

2

=
g2u(u− 1)(gu− 2g − l + 2)

6
.

The following two lemmas will help us to obtain the 2-rank of H.

Lemma 3 ([17]) Let G be a strongly regular graph with parameters (v, k, λ, µ) and A be the

adjacent matrix of G. Then the eigenvalues of A are k, r and m where

r =
(λ− µ) + ∆

2
, m =

(λ− µ)−∆
2

.

The multiplicities of k, r and m are 1, f and h, respectively, where

f =
1
2
[(v − 1) +

(v − 1)(µ− λ)− 2k

∆
], h =

1
2
[(v − 1)− (v − 1)(µ− λ)− 2k

∆
],

∆ =
√

(λ− µ)2 + 4k(k − µ).

Lemma 4 ([18]) For a strongly regular (α, β)-geometry D with incidence matrix N and adjacent

matrix A, A and N are related by the expression A = NNT − (t + 1)I.

From Lemma 3 it follows that if r is an eigenvalue of A with multiplicity f , then r + (t + 1)
is an eigenvalue of NNT with multiplicity f . For the case u = l, the GDD is the transversal
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design, which forms a partial geometry and has been discussed in [8]. Combining with Theorem
1 gives the following result.

Theorem 5 Let u 6= l. The rate of the LDPC code which is derived from an l-GDD of type

gu is 1− l(l−1)
g(u−1) .

Proof By Theorem 1, an l-GDD of type gu is a strongly regular (l−1, l)-geometry. Its adjacent
matrix A has three eigenvalues k = g(u − 1), r = 0, m = −g with multiplicity 1, f = u(g − 1),
h = u − 1, respectively. Let H be the incidence matrix of the GDD. Then, by Lemma 3
HHT = A + (t + 1)I has eigenvalues

θ0 =
lg(u− 1)

l − 1
, θ1 =

g(u− 1)
l − 1

, θ2 =
g(u− 1)

l − 1
− g

with multiplicities 1, f = u(g − 1), h = u − 1, respectively. If u 6= l, we must have u > l by
the definition of the GDD. And all the three eigenvalues are not zero. Thus rank2(HHT ) = gu.
Further, rank2(H) ≥ rank2(HHT ) = gu. The code rate of the derived GDD-LDPC code is
R = b−v

b = 1− l(l−1)
g(u−1) .

If the desired GDD is a cyclic l-GDD of type gu, the parity-check matrix of the GDD-
LDPC code has special structure formed by some circulant sub-matrices.

Example Let (X,G,B) be a 3-GDD of type g5 with X = Z5g and g = 12s + 3. The block set
B contains the following 8s + 2 base blocks [19]:

{0, 10s + 1, 20s + 4}, {0, 10s + 2, 30s + 8},
{0, 10s− 1− 10r, 20s + 3− 5r}, {0, 10s− 2− 10r, 30s + 6− 5r},
{0, 10s− 4− 10r, 20s + 2− 5r}, {0, 10s− 3− 10r, 30s + 4− 5r},
{0, 10s− 6− 10r, 20s + 1− 5r}, {0, 10s− 7− 10r, 30s + 2− 5r},
{0, 10s− 9− 10r, 20s− 1− 5r}, {0, 10s− 8− 10r, 30s + 3− 5r}

where r = 0, 1, . . . , s − 1. Each base block contributes to a distinct cirsulant matrix. Then the
incidence matrix contains row of circulants, as

H = [H1,H2, . . . , H8s+2],

where Hi is the 5g×5g circulant matrix. Thus we need not store the entire H matrix for decoder
action and hence the decoder memory requirement and implementation complexity reduces sig-
nificantly. The rate of the desired GDD-LDPC code is 1 − 1

8s+2 . For different values of s, a
sequence of codes with various lengths and rates can be implemented.
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