
Journal of Mathematical Research with Applications

May, 2013, Vol. 33, No. 3, pp. 337–344

DOI:10.3770/j.issn:2095-2651.2013.03.008

Http://jmre.dlut.edu.cn

Negative Z-Homogeneous Derivations for Even Parts of
Odd Hamiltonian Superalgebras

Xiuying HUA1, Wende LIU2,∗

1. School of Applied Sciences, Harbin University of Science and Technology,

Heilongjiang 150080, P. R. China;

2. School of Mathematical Sciences, Harbin Normal University, Heilongjiang 150025, P. R. China

Abstract In this paper we mainly study the negative Z-homogeneous derivations from the

even part of the finite-dimensional odd Hamiltonian superalgebra HO into the odd part of

generalized Witt superalgebra W over a field of prime characteristic p > 3. Using the gener-

ating set of HO, by means of calculating actions of derivations on the generating set, we first

compute the derivations of Z-degree −1, then determine the derivations of Z-degree less than

−1.
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1. Introduction

The theory of Lie superalgebras has undergone a remarkable evolution in mathematics
because of its important applications in physics. For example, Kac [1, 2] has classified the finite-
dimensional simple Lie superalgebras and the infinite-dimensional simple linearly compact Lie
superalgebras over algebraically closed fields of characteristic zero, respectively. For modular
Lie superalgebras, as far as we know, [3] and [4] may be the earliest papers. We know that the
derivation algebras were determined for the finite-dimensional modular Lie algebras of Cartan
type [5–7]. In the super case, the superderivation algebras and outer superderivation algebras
were also sufficiently studied for the finite-dimensional modular Lie superalgebras of Cartan type
W, S, H, K, and HO (see [8–12]). The derivations for the even part of the Lie superalgebras of
Cartan type W, S and HO were studied in [13, 14].

2. Preliminaries

Throughout this paper the underlying field F is of characteristic p > 3. We write N for the
positive integers, and N0 for the nonnegative integers. Fix n ∈ N\{1, 2}. Put Y0 := {1, 2, . . . , n},
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Y1 := {n + 1, . . . , 2n} and Y := Y0 ∪ Y1. For α = (α1, . . . , αn) ∈ Nn
0 , put |α| = ∑n

i=1 αi. Fix

t := (t1, t2, . . . , tn) ∈ Nn and π := (π1, π2, . . . , πn) ,

where πi := pti − 1 for i ∈ Y0. Let A := A (n; t) = {α ∈ Nn
0 | αi ≤ πi, i ∈ Y0} . Following [7], let

O(n; t) be the divided power algebra over F with F-basis {x(α) | α ∈ A}. For εi = (δi1, . . . , δin),
write xi instead of x(εi) for i = 1, . . . , n. Let Λ(n) be the exterior algebra over F in n variables
xn+1, . . . , x2n. Take the tensor product O(n, n; t) = O(n; t) ⊗F Λ(n). Then O(n, n; t) is an as-
sociative superalgebra with a Z2-grading induced by the trivial Z2-grading of O(n; t) and the
natural Z2-grading of Λ(n). For g ∈ O(n; t), f ∈ Λ(n), write gf for g ⊗ f. Let

Bk := {〈i1, i2, . . . , ik〉 | n + 1 ≤ i1 < i2 < · · · < ik ≤ 2n}

be the set of k-tuples of strictly increasing integers between n + 1 and 2n, and put B := B(n) :=⋃n
k=0 Bk, where B0 := ∅. Put B0 := {u ∈ B | |u| even} and B1 := {u ∈ B | |u| odd}, where

for u = 〈i1, i2, . . . , ik〉 ∈ Bk, |u| := k, |∅| := 0, x∅ := 1. For u = 〈i1, i2, . . . , ik〉 ∈ Bk, we set
xu := xi1xi2 · · ·xik

; we also use u to stand for the set {i1, i2, . . . , ik} if no confusion occurs.
Clearly,

{
x(α)xu | α ∈ A, u ∈ B}

constitutes an F-basis of O(n, n; t). Let ∂1, ∂2, . . . , ∂2n be the
linear transformations of O (n, n; t) such that

∂r(x(α)xu) =

{
x(α−εr)xu, r ∈ Y0

x(α) · ∂xu/∂xr, r ∈ Y1.

Then ∂1, ∂2, . . . , ∂2n are superderivations of the superalgebra O (n, n; t) . Obviously, the parity
p(∂i) = µ(i), where

µ (i) :=

{
0, i ∈ Y0

1, i ∈ Y1.

Let

W (n, n; t) =
{ ∑

r∈Y

fr∂r | fr ∈ O (n, n; t) , r ∈ Y
}

.

Then W (n, n; t) is a finite-dimensional simple Lie superalgebra contained in the full superderiva-
tion algebra DerO (n, n; t) (see [15]). Note that O (n, n; t) is endowed with a natural Z-grading
structure O (n, n; t) =

⊕ξ
r=0O(n, n; t)r by putting

O(n, n; t)r := spanF{x(α)xu | |α|+ |u| = r}, ξ := |π|+ n.

Obviously, W (n, n; t) is a free O (n, n; t)-module with O (n, n; t)-basis {∂r | r ∈ Y }. Clearly,
W (n, n; t) possesses a standard F-basis {x(α)xu∂r | α ∈ A, u ∈ B, r ∈ Y }. Note that W (n, n; t) is
naturally graded by W (n, n; t) = ⊕ξ−1

i=−1W (n, n; t)i, where

W (n, n; t)i := spanF{f∂s | s ∈ Y, f ∈ O(n, n; t)i+1}.

Put

i′ =

{
i + n, i ∈ Y0

i− n, i ∈ Y1.
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Define a linear mapping TH : O(n, n; t) → W (n, n; t) by means of

TH(a) :=
∑

i∈Y

(−1)µ(i)p(a)∂i(a)∂i′ for all a ∈ O(n, n; t).

Then TH is odd and [11, Proposition 1]

[TH(a),TH(b)] = TH(TH(a)(b)) for a, b ∈ O(n, n; t).

Put

HO(n, n; t) := {TH(a) | a ∈ O(n, n; t)}.

Then HO(n, n; t) is a finite-dimensional simple Lie superalgebra [2]. Following [11], we call this
Lie superalgebra the odd Hamiltonian superalgebra.

For convenience, in the sequel we shorten W (n, n; t), HO(n, n; t), to W , HO, and the even
parts are simply denoted by W, HO, respectively.

Put G := spanF{xu∂r | p(xu∂r) = 1, r ∈ Y, u ∈ B}. Clearly, G is a Z-graded subspace of W1.

The proof of the following lemma is standard.

Lemma 1 Let φ ∈ Der(HO,W1), φ(HO−1) = 0 and E ∈ HO. Then [E,HO−1] ⊆ kerφ if and

only if φ(E) ∈ G.

Put

N := {TH(xkxlxq) | k, l, q ∈ Y1},

M := {TH(x(qiεi)xk) | i ∈ Y0, 0 ≤ qi ≤ πi, k ∈ Y1}.

Lemma 2 ([14, Proposition 2.1]) HO is generated by M ∪N.

3. Negative Z-homogeneous derivations

We first show that if a derivation φ ∈ Der−1(HO,W1) vanishes on HO0, then φ = 0.

Lemma 3 Let φ ∈ Der−1(HO,W1) satisfy φ(HO0) = 0. Then φ(TH(xkxlxq)) = 0 for all

k, l, q ∈ Y1.

Proof In view of Lemma 1 one may assume that φ(TH(xkxlxq)) =
∑

s∈Y1, r∈Y0
csrxs∂r, where

csr ∈ F. Direct computation shows that [TH(xk′xk),TH(xkxlxq)] = TH(xkxlxq). Applying φ

yields ∑

r∈Y0

ckrxk∂r +
∑

s∈Y1

csk′xs∂k′ =
∑

s∈Y1, r∈Y0

csrxs∂r.

A comparison of coefficients shows that

ckk′xk +
∑

s∈Y1

csk′xs =
∑

s∈Y1

csk′xs; ckrxk =
∑

s∈Y1

csrxs for r ∈ Y0 \ k′.

It follows that ckk′ = 0, csr = 0 for r ∈ Y0 \ k′, s ∈ Y1 \ k. Thus

φ(TH(xkxlxq)) =
∑

r∈Y0\k′
ckrxk∂r +

∑

s∈Y1\k
csk′xs∂k′ .
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Note that [TH(xkxlxq),TH(xk′xl)] = 0. Applying φ, we have

−
∑

s∈Y1\k
csk′xs∂l′ −

∑

r∈Y0\k′
ckrxl∂r = 0,

and therefore,

csk′ = 0 for s ∈ Y1 \ {k, l}; ckr = 0 for r ∈ Y0 \ {k′, l′}; clk′ + ckl′ = 0.

Hence,

φ(TH(xkxlxq)) = ckl′xk∂l′ + clk′xl∂k′ = ckl′xk∂l′ − ckl′xl∂k′ .

Applying φ to [TH(xkxlxq), TH(xl′xq)] = 0, one gets −ckl′xk∂q′ + ckl′xq∂k′ = 0. It follows that
ckl′ = 0. Therefore, φ(TH(xkxlxq)) = 0.

Lemma 4 Let φ ∈ Der−1(HO,W1) satisfy φ(HO0) = 0. Then φ(TH(x(aεi)xk)) = 0 for all

0 ≤ a ≤ πi, i ∈ Y0, k ∈ Y1.

Proof The proof is similar to that of [14, Lemma 4.2].

By Lemmas 2, 3 and 4 we have the following proposition.

Proposition 1 Let φ ∈ Der−1(HO,W1) satisfy φ(HO0) = 0. Then φ = 0.

Theorem 1 Der−1(HO,W1) = ad(W1)−1.

Proof Let φ ∈ Der−1(HO,W1). By Lemma 1, assume that φ(TH(xixk)) =
∑

r∈Y1
cikr∂r, where

cikr ∈ F, i ∈ Y0, k ∈ Y1. Applying φ to [TH(xixk),TH(xkxk′)] = −TH(xixk), i ∈ Y0 \k′, one gets
cikk∂k − ckk′k∂i′ = −∑

r∈Y1
cikr∂r. Consequently,

cikk = 0 for k ∈ Y1 \ i′; cikr = 0, for r ∈ Y1 \ {k, i′}; ciki′ = ckk′k.

Therefore, φ(TH(xixk)) = ciki′∂i′ = ckk′k∂i′ . Put

ψ := φ−
∑

r∈Y1

crr′rad∂r where crr′r ∈ F.

Then ψ(TH(xixk)) = 0. For arbitrary j′ ∈ Y1 \k, [TH(xkxk′), TH(xjxj′)] = 0. Applying φ yields
that ckk′j′∂j′ − cjj′k∂k = 0 and consequently, ckk′j′ = 0. Thus, φ(TH(xkxk′)) = ckk′k∂k and
ψ(TH(xkxk′)) = 0. Hence, ψ(HO0) = 0. By Proposition 1, ψ = 0; that is, φ =

∑
r∈Y1

crr′rad∂r ∈
ad(W1)−1.

Lemma 5 Let φ ∈ Der−t(HO,W1) where t > 1. If φ(TH(x(tεi)xk)) = 0 for all i ∈ Y0, k ∈ Y1,

then φ = 0.

Proof Similarly to the proof of [14, Lemma 4.5], one may show that φ(TH(xkxlxq)) = 0 for
k, l, q ∈ Y1. In the following we use induction on a to show that φ(TH(x(aεi)xk)) = 0 for i ∈ Y0,

k ∈ Y1. Similarly to the proof of [14, Lemma 4.5], one may show that in case a ≤ t and a− t ≥ 2,

φ(TH(x(aεi)xk)) = 0.
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Case a− t < 2. Clearly, a− t = 1, that is, |u| = 1. Thus

φ(TH(x(aεi)xk)) =
∑

q∈Y1, r∈Y0

cqrxq∂r.

First consider the situation k 6= i′. Note that [TH(x(aεi)xk), TH(xixi′)] = aTH(x(aεi)xk). Apply-
ing φ, one gets

−
∑

q∈Y1

cqixq∂i −
∑

r∈Y0

ci′rxi′∂r = a
∑

q∈Y1, r∈Y0

cqrxq∂r.

A comparison of coefficients shows that

(a + 1)
∑

q∈Y1

cqixq + ci′ixi′ = 0; a
∑

q∈Y1

cqrxq + ci′rxi′ = 0 for r ∈ Y0 \ i.

Consequently,
(a + 2)ci′i = 0; (a + 1)cqi = 0 for q ∈ Y1 \ i′;

(a + 1)ci′r = 0 for r ∈ Y0 \ i; acqr = 0 for r ∈ Y0 \ i, q ∈ Y1 \ i′.

If a ≡ 0 (mod p), Similarly to the proof of [14, Lemma 4.5, the case a ≡ 0 (mod p)], one may
show that φ(TH(x(aεi)xk)) = 0.

If a 6≡ 0 (mod p), the discussion is divided into the following three parts.
(i) Suppose a ≡ −1 (mod p). Then

ci′i = 0; cqr = 0 for r ∈ Y0 \ i, q ∈ Y1 \ i′.

Thus
φ(TH(x(aεi)xk)) =

∑

q∈Y1\i′
cqixq∂i +

∑

r∈Y0\i
ci′rxi′∂r.

Applying φ to [TH(x(aεi)xk), TH(xkxk′)] = −TH(x(aεi)xk), we have

−ci′k′xi′∂k′ − ckixk∂i = −
∑

q∈Y1\i′
cqixq∂i −

∑

r∈Y0\i
ci′rxi′∂r.

A comparison of coefficients yields

ckixk =
∑

q∈Y1\i′
cqixq; ci′rxi′ = 0 for r ∈ Y0 \ {i, k′}.

Consequently,
cqi = 0 for q ∈ Y1 \ {i′, k}; ci′r = 0 for r ∈ Y0 \ {i, k′}.

It follows that
φ(TH(x(aεi)xk)) = ci′k′xi′∂k′ + ckixk∂i.

Suppose
φ(TH(xixl′xl)) =

∑

r∈Y1

ar∂r where ar ∈ F.

For l ∈ Y1 \ {i′, k}, one computes [TH(x(aεi)xk), TH(xixl′xl)] = 0. Applying φ, one gets

ckixkxl∂l − ckixkxl′∂l′ − ci′k′xl′xl∂k′ − akTH(x(aεi)) = 0.
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It follows that cki = ci′k′ = 0. Thus, φ(TH(x(aεi)xk)) = 0.

(ii) Suppose a ≡ −2 (mod p). Then φ(TH(x(aεi)xk)) = ci′ixi′∂i. Applying φ to

[TH(x(aεi)xk), TH(xkxi)] = 0,

we have −ci′ixi′∂k′ − ci′ixk∂i = 0. Then ci′i = 0. Hence φ(TH(x(aεi)xk)) = 0.

(iii) Suppose a 6≡ −1, −2 (mod p). Then it is clear that φ(TH(x(aεi)xk)) = 0.

It remains to consider the situation k = i′. Direct computation yields [TH(x(aεi)xi′), TH(xixi′)] =
(a− 1)TH(x(aεi)xi′). Applying φ, one gets

−
∑

q∈Y1

cqixq∂i −
∑

r∈Y0

ci′rxi′∂r = (a− 1)
∑

q∈Y1, r∈Y0

cqrxq∂r.

Then
a

∑

q∈Y1

cqixq + ci′ixi′ = 0; (a− 1)
∑

q∈Y1

cqrxq + ci′rxi′ = 0 for r ∈ Y0 \ i.

Consequently,
(a + 1)ci′i = 0; acqi = 0 for q ∈ Y1 \ i′;

aci′r = 0 for r ∈ Y0 \ i; (a− 1)cqr = 0 for q ∈ Y1 \ i′, r ∈ Y0 \ i.

We proceed in several steps. First suppose a ≡ 0 (mod p). Then ci′i = 0, cqr = 0, q ∈ Y1 \ i′, r ∈
Y0 \ i. It follows that

φ(TH(x(aεi)xi′)) =
∑

q∈Y1\i′
cqixq∂i +

∑

r∈Y0\i
ci′rxi′∂r.

For j ∈ Y0 \ i, clearly, [TH(x(aεi)xi′), TH(xjxj′)] = 0. Applying φ yields −ci′jxi′∂j− cj′ixj′∂i = 0
and then ci′j = cj′i = 0. Since j′ is arbitrary, we obtain that φ(TH(x(aεi)xi′)) = 0. Secondly,
suppose a ≡ 1 (mod p). Then

φ(TH(x(aεi)xi′)) =
∑

q∈Y1\i′, r∈Y0\i
cqrxq∂r.

For any j ∈ Y0 \ i, it is easily seen that [TH(x(aεi)xi′), TH(xjxj′)] = 0. Applying φ, one gets

−
∑

q∈Y1\i′
cqjxq∂j −

∑

r∈Y0\i
cj′rxj′∂r = 0.

Then
cqj = 0 for q ∈ Y1 \ i′; cj′r = 0 for r ∈ Y0 \ {i, j}.

It follows that φ(TH(x(aεi)xi′)) = 0. Thirdly, suppose a ≡ −1 (mod p). Then

φ(TH(x(aεi)xi′)) = ci′ixi′∂i.

Note that for l ∈ Y1 \ i′, [TH(x(aεi)xi′), TH(xixl)] = −TH(x(aεi)xl). Applying φ yields ci′i = 0.

Thus φ(TH(x(aεi)xi′)) = 0. It remains to consider the case a 6≡ −1, 1, 0 (mod p), in which one
sees immediately that φ(TH(x(aεi)xi′)) = 0.

Define Φ : HO → W1 by means of TH(f) → TH(
∑

i∈Y0
∂i∂i′(f)), where f ∈ O(n, n; t)1.

Since ker(TH) = F, Φ is well defined. The proof of the following lemma is standard.
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Lemma 6 Φ ∈ Der(HO, W1) and zd(Φ) = −2.

Theorem 2 Suppose t > 1 is not any p-power. Then Der−t(HO,W1) = FΦ.

Proof Let φ ∈ Der−t(HO,W1). First suppose t 6≡ 0 (mod p). Since φ(TH(x(tεi)xk)) ∈ (W1)−1,

assume that
φ(TH(x(tεi)xk)) =

∑

r∈Y1

ar∂r where ar ∈ F.

Note tat
[TH(xixi′),TH(x(tεi)xk)] = (δk,i′ − t)TH(x(tεi)xk).

Applying φ, one gets

−ai′∂i′ =
[
xi′∂i′ − xi∂i,

∑

r∈Y1

ar∂r

]
= (δk,i′ − t)

∑

r∈Y1

ar∂r.

If k 6= i′, similarly to the proof of [14, Proposition 4.6], one may show that φ(TH(x(tεi)xk)) = 0.
If k = i′, then (t− 2)ai′ = 0 and (t− 1)ar = 0, r ∈ Y1 \ i′. If t ≡ 1 (mod p), then ai′ = 0 and it
follows that φ(TH(x(tεi)xi′)) =

∑
r∈Y1\i′ ar∂r. For j ∈ Y0\i, we have [TH(x(tεi)xi′), TH(xjxj′)] =

0. Applying φ, one gets aj′ = 0. Thus φ(TH(x(tεi)xi′)) = 0. If t 6≡ 1 (mod p), then ar = 0,
r ∈ Y1 \ i′. Here we proceed in two cases. First suppose t 6≡ 2 (mod p). Then ai′ = 0
and therefore, φ(TH(x(tεi)xi′)) = 0. Let us consider the other case t ≡ 2 (mod p). Clearly,
φ(TH(x(tεi)xi′)) = ai′∂i′ . Direct computation shows that

[TH(x((t−1)εi)xi′), TH(x(2εi)xi′)] =
[(t

2

)
− t

]
TH(x(tεi)xi′). (1)

Since φ(TH(x((t−1)εi)xi′)) = 0, assume that

φ(TH(x(2εi)xi′)) =
∑

r∈Y1

br∂r where br ∈ F.

Then applying φ to (1) yields
[
TH(x((t−1)εi)xi′),

∑

r∈Y1

br∂r

]
=

[(t

2

)
− t

]
φ(TH(x(tεi)xi′)).

Consequently, −bi′x
((t−2)εi)∂i′ =

[(
t
2

) − t
]
ai′∂i′ . If t 6= 2, since t − (

t
2

) 6≡ 0 (mod p), we have

ai′ = 0. Then φ(TH(x(tεi)xi′)) = 0. By Lemma 5, φ = 0. If t = 2, then φ(TH(x(2εi)xi′)) = ai′∂i′ .
Similarly, we have φ(TH(x(2εk′ )xk)) = bk∂k for i′ 6= k, where bk ∈ F. One may assume that

φ(TH(x(εi+εk′ )xi′)) =
∑

r∈Y1

cr∂r where cr ∈ F.

Note that
[TH(x(εi+εk′ )xi′), TH(xkxk′)] = TH(x(εi+εk′ )xi′).

Applying φ, one can get φ(TH(x(εi+εk′ )xi′)) = ck∂k. Similarly, φ(TH(x(εi+εk′ )xk)) = di′∂i′ ,
where di′ ∈ F. Applying φ to [TH(x(2εi)xi′), TH(xi′xk′)] = TH(x(εi+εk′ )xi′), we have ai′ = ck.

Applying φ to [TH(x(2εk′ )xk), TH(xixk)] = TH(x(εi+εk′ )xk), we have bk = di′ . Note that

[TH(x(εi+εk′ )xi′), TH(xixk)] = 2TH(x(2εi)xi′)− TH(x(εi+εk′ )xk).
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Applying φ yields ai′ = bk for all i′ 6= k. Putting λ := ai′ = bk, one gets φ(TH(x(2εi)xi′)) = λ∂i′ .
Put ϕ := φ− λΦ. Then ϕ(TH(x(2εi)xi′)) = 0. By Lemmas 5, 6, ϕ = 0.

It remains to consider the case t ≡ 0 (mod p), in which just as in the proof of [14, Proposition
4.6, the case t ≡ 0 (mod p), p. 29], one may prove φ = 0.

Theorem 3 Let t = pr for some r ∈ N. Then Der−t(HO,W1) = 0.

Proof The proof is similar to the one of [14, Proposition 4.7].
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1970, 98(7): 126–134. (in Russian)

[6] H. STRADE, R. FARNSTEINER. Modular Lie Algebras and Their Representations. Marcel Dekker, Inc.,

New York, 1988.

[7] H. STRADE. Simple Lie Algebras over Fields of Positive Characteristic, I. Structure Theory. Walter de

Gruyter & Co., Berlin, 2004.

[8] Qingcheng ZHANG, Yongzheng ZHANG. Derivation algebras of the modular Lie superalgebras W and S of

Cartan-type. Acta Math. Sci. Ser. B Engl. Ed., 2000, 20(1): 137–144.

[9] Ying WANG, Yongzheng ZHANG. Derivation algebra Der(H) and central extensions of Lie superalgebras.

Comm. Algebra, 2004, 32(10): 4117–4131.

[10] Fengmin MA, Qingcheng ZHANG. Derivation algebras for K-type modular Lie superalgebras. J. Math.

(Wuhan), 2000, 20(4): 431–435. (in Chinese)

[11] Wende LIU, Yongzheng ZHANG, Xiuling WANG. The derivation algebra of the Cartan-type Lie superalgebra

HO. J. Algebra, 2004, 273(1): 176–205.

[12] Wende LIU, Yongzheng ZHANG. The outer derivation algebras of finite-dimensional Cartan-type modular

Lie superalgebras. Comm. Algebra, 2005, 33(7): 2131–2146.

[13] Wende LIU, Yongzheng ZHANG. Derivations of the even parts for modular Lie superalgebras of Cartan type

W and S. Internat. J. Algebra Comput., 2007, 17(4): 661–714.

[14] Wende LIU, Xiuying HUA, Yucai SU. Derivations of the even part of the odd Hamiltonian superalgebra in

modular case. Acta Math. Sin. (Engl. Ser.), 2009, 25(3): 355–378.

[15] Yongzheng ZHANG. Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic.

Chinese Sci. Bull., 1997, 42(9): 720–724.


