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Abstract This paper investigates the boundedness of a kind of hyper-chaotic systems that

have wide applications in the secure communications. In particular, an accurate bound esti-

mation is attained for this kind of hyper-chaotic systems. Then, the result is applied to the

chaos synchronization. Some numerical simulations are also given to verify the corresponding

theoretical results.
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1. Introduction

Chaos has been studied extensively since the Lorenz chaotic system was established in 1963
(see [1]). A hyper-chaotic system is a chaotic system with more than one positive Lyapunov ex-
ponents. Thus, hyper-chaotic systems have more complex dynamical behaviors than the ordinary
chaotic systems. At the same time, due to its theoretical and practical applications in techno-
logical fields, such as secure communications, lasers, nonlinear circuits, control, synchronization,
hyperchaos has recently become a central topic in the research of nonlinear sciences.

In particular, the boundedness of a chaotic system is important for the study of the qualita-
tive behavior of a chaotic system. If we can show that a chaotic system has a globally attractive
set, then we know that the system cannot have equilibrium points, periodic solutions, quasi-
periodic solutions, or other chaotic attractors outside the globally attractive set. This simplifies
the analysis of the dynamical properties for the chaotic system. The boundedness of a chaotic
system also plays an important role in chaos control and chaos synchronization [2, 3] and it is also
important for estimating the hausdorff dimension [4]. However, it is a very difficult task to get
the boundedness of a chaotic system. Ever since the Lorenz system was put forward, researchers
have been investigating its bound. From 1985 to 1987, Leonov gave the original results of glob-
ally ultimate bound of the Lorenz system [5, 6]. Then, Swinnerton-Dyer showed that Lyapunov
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functions can be used to study the bounds for trajectories of the Lorenz equations [7]. This
idea was further developed by Liao et al. to get the new globally attractive set and positively
invariant set of the Lorenz system by constructing a family of generalized Lyapunov functions,
and this result was applied to study chaos control and chaos synchronization [2]. In the recent
paper, Yu and Liao made a new survey of the global attractive and positively invariant set of the
Lorenz system [8]. Sun got an ultimate bound of a generalized Lorenz system [9]. And Zhang et
al. got the bounds for a synchronous motor system [10]. The estimation of the ultimate bound
of the smooth Chua’s system was given in [11]. And recently an ultimate bound and positively
invariant set for the Lorenz-Haken system was obtained in [12]. However, the ultimate bounds of
many other chaotic systems remain to be solved. Qin and Chen investigated the ultimate bound
of the Chen system, but the parameter values considered do not cover the most interesting case
of the Chen’s chaotic attractor [13]. And the boundedness of the Lü system was studied in [14]
only in the case of 2a > b > 2c > 0. Due to the complexity of hyper-chaotic systems, it is more
difficult to study the boundedness of hyper-chaotic systems. As far as the authors know, there is
only one paper [15] that discusses the ultimate bound of the hyper-chaotic L-S system. Moreover,
there is no unified approach for the bound estimation of the chaotic systems. Therefore, it is
necessary to study the boundedness of the new hyper-chaotic systems.

The structure of this paper is organized as follows. In Section 2, we study the boundedness
of a kind of hyper-chaotic systems (1.1). In Section 3, we study synchronization between the
driver system and the response system according to Theorem 1. Some numerical simulations are
given in Section 4. Section 5 contains conclusions.

Recently, Li et al. introduced a kind of hyper-chaotic systems in [16] as follows,




ẋ = −ax + ay + ω,

ẏ = −y + xz,

ż = b− xy − cz,

ω̇ = −dω − yz,

(1.1)

where a, b, c, d are positive parameters. When a = 5, b = 16, c = 1, d = 0.5, the system (1.1)
has the following four Lyapunov exponents, LE(1) = 1.4002400 > 0, LE(2) = 0.3132080 >

0, LE(3) = −0.968585, LE(4) = −3.327758 (see [16]). Since there are two positive Lapunov
exponents for the system (1.1), the system (1.1) is a hyper-chaotic system [16]. When a = 5, b =
16, c = 1, d = 0.5, the phase portrait of the hyper-chaotic system (1.1) in x-y-z space is illustrated
in Figure 1.

Some basic dynamical properties of the hyper-chaotic systems (1.1) were studied in [16], but
many properties of the systems (1.1) remain to be uncovered. In the following, we will discuss
the boundedness of the hyper-chaotic systems (1.1).

In the paper [15], the ultimate bound and positively invariant set were discussed for the
hyper-chaotic L-S system. Compared with the hyper-chaotic system in the paper [15], it is more
difficult to construct Lyapunov functions for the hyper-chaotic systems (1.1) in our paper. Syn-
chronization of hyper-chaotic systems has been studied with increasing interest in the last few
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years due to its potential technological applications. And many methods have been successfully
applied to study chaos synchronization such as PC method, linear feedback control, adaptive
control, backstepping design, active control, and nonlinear control, etc. Among them, the linear
feedback control is especially attractive. On the one hand, it can be easily applied to practical im-
plementation due to its simplicity in configuration. On the other hand, linear state error feedback
control is robust and easily implemented. The difference between our paper and other papers is
to show that two linear control inputs are enough to force synchronization for two identical hyper-
chaotic systems. Firstly, we have obtained limt→+∞ e1 = 0, limt→+∞ e2 = 0, limt→+∞ e3 = 0
according to Lyapunov function theory. Secondly, we have proved limt→+∞ |e4| = 0.
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Figure 1 Phase portrait of the system (1.1) in the x-y-z space with parameters

a = 5, b = 16, c = 1, d = 0.5 and the initial value (x0, y0, z0, w0) = (3.2; 8.5; 3.5; 2.0)

2. Main results

In this section, we will discuss the boundedness of the hyper-chaotic systems (1.1). Before
going into details, let us introduce the following Lemma 1.

Lemma 1 Define a set Γ = {(y, z)|y2

b2 + (z−c)2

c2 = 1, b > 0, c > 0}, and G = y2 + z2, H =
y2 + (z − 2c)2, (y, z) ∈ Γ, then we have

G1 = max
(y,z)∈Γ

G = H1 = max
(y,z)∈Γ

H =

{
b4

b2−c2 , b ≥ √
2c,

4c2, b <
√

2c.

Proof It can be easily calculated by the Lagrange multiplier method. ¤

Theorem 1 When a > 0, b > 0, c > 0, d > 0, the following set defined by

Ω =
{
(x, y, z, w)|y2 + z2 ≤ R2

1, w2 ≤ R4
1

d2
, x2 ≤ R2

1(ad + R1)2

a2d2

}
,

is the bound for systems (1.1), where

R2
1 =

{
b2

4(c−1) , c ≥ 2,
b2

c2 , c < 2.

Proof Define the following generalized positively definite and radially unbounded Lyapunov
function V1(y, z) = y2 + z2. Computing the derivative of V1(y, z) along the trajectory of systems
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(1.1), we have

V̇1 = 2yẏ + 2zż = 2y (xz − y) + 2z (b− xy − cz) = −2y2 − 2cz2 + 2bz.

Let V̇1 = 0. We can get the following two-dimensional surface Γ,

Γ =
{

(y, z)| y
2

b2

4c

+

(
z − b

2c

)2

b2

4c2

= 1, b > 0, c > 0
}

.

Outside Γ, V̇1 < 0, while inside Γ, V̇1 > 0. Since the function V1(y, z) = y2 + z2 is continuous on
the closed set Γ, V1(y, z) = y2 + z2 can reach its maximum on the surface Γ. In the following, we
will compute the maximum for V1(y, z) = y2 + z2 on the surface Γ. By Lemma 1, we can easily
get

V1 (X) ≤ max
X∈Γ

V1 (X) = R2
1 =

{
b2

4(c−1) , c ≥ 2,
b2

c2 , c < 2.
(2.1)

From the formula (2.1), we obtain

|y| ≤ R1, |z| ≤ R1. (2.2)

At the same time, the fourth equation of formula (1.1) and (2.2) yield

ẇ = −dw − yz ≤ −dw + |y| |z| ≤ −dw + R2
1. (2.3)

Integrating both sides of formula (2.3), we have

w (t) ≤ w (t0) e−d(t−t0) +
∫ t

t0

e−d(t−τ)R2
1dτ = w (t0) e−d(t−t0) +

R2
1

d
(1− e−d(t−t0)),

w (t) ≤ R2
1

d
+ (w (t0)− R2

1

d
)e−d(t−t0). (2.4)

So we get

lim
t→+∞

w (t) ≤ R2
1

d
. (2.5)

That is to say, the inequality ω2 ≤ R4
1

d2 holds as t −→ +∞. Similarly, according to the first
equation of formula (1.1), (2.2) and (2.5), we obtain

ẋ = −ax + ay + w ≤ −ax + aR1 +
R2

1

d
= −ax +

adR1 + R2
1

d
. (2.6)

Integrating both sides of formula (2.6) gives

x (t) ≤ x (t0) e−a(t−t0) +
∫ t

t0

e−a(t−τ) adR1 + R2
1

d
dτ

= x (t0) e−a(t−t0) +
adR1 + R2

1

ad
(1− e−a(t−t0)),

x (t) ≤ adR1 + R2
1

ad
+ (x (t0)− adR1 + R2

1

ad
)e−a(t−t0).

So we get

lim
t→+∞

x (t) ≤ adR1 + R2
1

ad
. (2.7)
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According to the formulae (2.2), (2.5) and (2.7), we have the conclusion that

Ω =
{

(x, y, z, w)| y2 + z2 ≤ R2
1, w

2 ≤ R4
1

d2
, x2 ≤ R2

1 (ad + R1)
2

a2d2

}

is the bound for the hyper-chaotic systems (1.1). This completes the proof. ¤

3. Synchronization of the hyper-chaotic system

In this section, the boundedness of (1.1) will be applied to study chaos synchronization. Let
the system (1.1) be the driver system, and the response system be





ẋ1 = −ax1 + ay1 + w1 − k1 (w1 − w) ,

ẏ1 = −y1 + x1z1 − k2 (y1 − y) ,

ż1 = b− x1y1 − cz1,

ẇ1 = −dw1 − y1z1,

(3.1)

where k1 > 0 and k2 > 0 are control coefficients. System (1.1) can synchronize the system (3.1)
by adjusting parameters k1 > 0 and k2 > 0. We have the following theorem for (1.1) and (3.1).

Theorem 2 Systems (1.1) and (3.1) are globally complete synchronization when k2 > (aρ+M3)
2

2aρ −
1, k1 = 1 (ρ = M2

2
2ac > 0).

Proof Let the state errors be e1 = x1 − x, e2 = y1 − y, e3 = z1 − z, e4 = ω1 − ω. Then the
error dynamics of systems (1.1) and (3.1) is described as





ė1 = −ae1 + ae2,

ė2 = ze1 + xe3 + e1e3 − (1 + k2) e2,

ė3 = −ye1 − xe2 − e1e2 − ce3,

ė4 = −de4 − ye3 − ze2 − e2e3.

(3.2)

Let us take the Lyapunov function

V (e1, e2, e3) = ρe2
1 + e2

2 + e2
3, ρ =

M2
2

2ac
> 0.

Then, its derivative with respect to time t along the trajectory of the system (3.2) is

1
2
V̇ =ρe1ė1 + e2ė2 + e3ė3

=ρe1 (−ae1 + ae2) + e2 (ze1 + xe3 + e1e3 − (1 + k2) e2) + e3 (−ye1 − xe2 − e1e2 − ce3)

=− aρe2
1 − (k2 + 1) e2

2 − ce2
3 + (aρ + z) e1e2 − ye1e3

≤− aρe2
1 − (k2 + 1) e2

2 − ce2
3 + (aρ + M3) |e1| |e2|+ M2 |e1| |e3|

=− ET PE,

where,

E = [|e1| , |e2| , |e3|]T , P =




aρ −aρ+M3
2 −M2

2

−aρ+M3
2 1 + k2 0

−M2
2 0 c


 .



350 Fuchen ZHANG, Yuhuan LI, Chunlai MU

By some elementary calculation, we know that the matrix P is positively definite if k2 >
(aρ+M3)

2

2aρ − 1. According to Lyapunov function theory, we get

lim
t→+∞

|e1| = 0, lim
t→+∞

|e2| = 0, lim
t→+∞

|e3| = 0. (3.3)

Next, we will prove limt→+∞ |e4| = 0. From formula (3.3), we can get limt→+∞ e1 = 0,
limt→+∞ e2 = 0, limt→+∞ e3 = 0. Hence, for any ε > 0, there is a sufficiently large T > t0

such that when t ≥ T , we have
∣∣ye3+ze2+e2e3

d

∣∣ < ε. At the same time, we can assume that
|y| ≤ M2 = R1, |z| ≤ M3 = R1 according to Theorem 1. For any ε > 0, when t ≥ T , from the
fourth equation of formula (3.2) with the variational technique to estimate e4(t), we can get

e4 (t) = e4 (t0) e−d(t−t0) + e−dt

∫ t

t0

[−y (τ)− z (τ) e2 (τ)− e2 (τ) e3 (τ)]edτdτ

≤ e4 (t0) e−d(t−t0) + e−dt

∫ t

t0

dεedτdτ,

= (e4 (t0)− ε) e−d(t−t0) + ε.

Thus, if the initial value e4(t0) > ε and t −→ +∞, we can get

e4(t)− ε ≤ (e4(t0)− ε)e−d(t−t0) → 0.

Similarly,

e4 (t) = e4 (t0) e−d(t−t0) + e−dt

∫ t

t0

[−y (τ)− z (τ) e2 (τ)− e2 (τ) e3 (τ)]edτdτ

≥ e4 (t0) e−d(t−t0) − e−dt

∫ t

t0

dεedτdτ,

= (e4 (t0) + ε) e−d(t−t0) − ε.

Thus, if the initial value e4(t0) < −ε and t −→ +∞, we have

e4 (t) + ε ≥ (e4 (t0) + ε) e−d(t−t0) → 0.

Therefore, when the initial value |e4(t0)| > ε and t −→ +∞, we have the distance ρ((e4(t), I) → 0,
where I = [−ε, ε]. Hence, for any sufficiently small ε > 0, there is a sufficiently large T > t0 such
that when t > T, we have |e4(t)| < ε. By the definition of limit, we get

lim
t→+∞

e4 (t) = 0. (3.4)

To summarize (3.3)-(3.4), we can get

lim
t→+∞

|e1| = 0, lim
t→+∞

|e2| = 0, lim
t→+∞

|e3| = 0, lim
t→+∞

|e4| = 0. (3.5)

This implies that the origin of the error system (3.2) is asymptotically stable, which is equivalent
to saying that the system (1.1) can synchronize system (3.1) completely. This completes the
proof. ¤

4. Simulation studies
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The numerical simulations are carried out with the MATLAB 7.4. The initial conditions of
the system (1.1) and the system (3.1) are chosen as (x(0), (y(0), (z(0), (ω(0)) = (0.1; 0.1; 0.1; 0.1),
(x1(0), (y1(0), (z1(0), (ω1(0)) = (1; 2; 3; 4), respectively. When parameters a = 5, b = 16, c =
1, d = 0.5 (see [16]), it is easy to obtain R1 = b

c = 16, |y| < M2 = R1 = 16, |z| < M3 =
R1 = 16, ρ = M2

2
2ac = 25.6, k2 > (aρ+M3)

2

2aρ − 1 = 39.5 according to Theorems 1 and 2. Choose
k2 = 40, the response system (1.1) synchronizes with the drive system (3.1) as shown in Figure
2. The trajectories of y(t) and z(t) of the system (1.1) are contained in the circle defined by
Ω1 = {(y, z)|y2 + z2 = 162} according to Theorem 1 as shown in Figure 3.
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Figure 2 Effectiveness of the chaos synchronization between the system (1.1) and the system (3.1)
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Figure 3 The trajectories of y(t) and z(t) of the system (1.1) are contained in the circle defined by

Ω1 = {(y, z)|y2 + z2 = 162}

5. Conclusions

In this paper, we have studied the boundedness of a kind of hyper-chaotic systems (1.1)
which have potential applications in secure communications. We have obtained the boundedness
of systems (1.1). Finally, the boundedness with respect to y, z of the system (1.1) is applied to
the chaos synchronization. Numerical simulations are presented to show the effectiveness of the
proposed scheme. But for the boundedness of the Chen system in [13], the parameter values
considered do not cover the most interesting case with the chaotic attractor of the Chen system.
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The future research on the boundedness of the Chen system in [13] and the Lü system in [14] is
still challenging and helpful.
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