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Abstract In the first part of this note, we mainly prove that monotone metacompactness is

hereditary with respect to closed subspaces and open Fσ-subspaces. For a generalized ordered

(GO)-space X, we also show that X is monotonically metacompact if and only if its closed

linearly ordered extension X∗ is monotonically metacompact. We also point out that every

non-Archimedean space X is monotonically ultraparacompact. In the second part of this note,

we give an alternate proof of the result that McAuley space is paracompact and metacompact.

Keywords GO-space; paracompact; monotonically metacompact; monotonically ultrapara-

compact.
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1. Introduction

Recently, the monotone covering properties are investigated. The monotone Lindelöf prop-
erty was discussed firstly. In [2], it was proved that any separable generalized ordered (GO)-space
is hereditarily monotonically Lindelöf. In 2009, Popvassilev introduced the concept of monoton-
ically countable metacompact. In 2010, H. R. Bennett introduced the concept of monotonically
metacompact spaces and posed a question that whether McAuley space is monotonically meta-
compact. In the first part of this note, we mainly prove that monotonically metacompact spaces
are hereditary with respect to closed subspaces and open Fσ-subspaces. For a GO-space X, we
also show that X is monotonically metacompact if and only if its closed linearly ordered ex-
tension X∗ is monotonically metacompact. Futhermore, we give an example of a monotonically
metacompact space. By analysing the properties of this example, we introduce the concept of
monotonically ultraparacompact spaces, and prove that monotonically ultraparacompact spaces
are hereditary with respect to closed subspaces and any non-Archimedean space X is monoton-
ically ultraparacompact.

In [1], M. Amono and T. Mizokami showed that McAuley space is an M1-space. Thus we
can get that McAuley space is paracompact and metacompact. In the second part of this note,
we give an alternate proof of the result that McAuley space is paracompact and metacompact
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and get a conclusion on paracompact spaces. We hope it can be useful to solve the question
pointed above.

For two collections U and V of subsets of a space X, we say that U is a refinement of V, if
for each U ∈ U there is V ∈ V such that U ⊂ V and

⋃U =
⋃V. If

⋃U =
⋃V is not required

in above definition, we say that V is a weak refinement of U . We use U ≺ V to represent that U
is a refinement of V or U is a weak refinement of V. If U is a collection of subsets of a space X

and x ∈ X, then we define ord(x,U) = |{U : x ∈ U,U ∈ U}|. Let N, R and Z denote the set of
all positive integers, the set of all real numbers and the set of all integers, respectively. We will
follow [5] for other notations and terminology.

2. Monotonically metacompact spaces

Definition 2.1 ([3]) A space (X, T ) is monotonically metacompact if each open cover U of

the space X has a point-finite open refinement r(U) such that if U and V are open covers of

the space X and U ≺ V, then r(U) ≺ r(V). In this case, the operator r is called a monotone

metacompactness operator for the space X.

Lemma 2.2 Monotonically metacompact spaces are hereditary with respect to closed subspaces.

Proof Let X be a monotonically metacompact space and let r be a monotone metacompactness
operator for X. Suppose that Y ⊂ X is closed. Let U be any open cover of Y . For any U ∈ U ,
there exists an open set VU of X such that VU ∩ Y = U . The set Y is a closed subset of X,
so VU ∪ (X \ Y ) is open in X and (VU ∪ (X \ Y )) ∩ Y = U . Let OU = VU ∪ (X \ Y ) and
U∗ = {OU : U ∈ U}. Then X =

⋃{OU : U ∈ U}. So X =
⋃

r(U∗) and r(U∗) is a point-
finite open refinement of U∗. Let rY (U) = {V ∩ Y : V ∈ r(U∗)}. Then rY (U) is a point-finite
open refinement of U (in Y ). Obviously, if U and V are open covers of Y and U ≺ V, then
rY (U) ≺ rY (V). Thus Y is monotonically metacompact. ¤

Lemma 2.3 Let F be any Fσ-subspace of a monotonically metacompact space X. If there exist

open families U and V of X such that F ⊂ ⋃U =
⋃V, U ≺ V, and for any U ∈ U , V ∈ V,

U ∩ F 6= ∅, V ∩ F 6= ∅, then there exists an operator r of F such that r(U) ≺ U , r(V) ≺ V, r(U)
and r(V) are point-finite open covers of F and r(U) ≺ r(V).

Proof Let r′ be a monotone metacompactness operator of X and F =
⋃{Fn : n ∈ N},

where Fn is closed for each n ∈ N. If U is a family of open sets of X and F ⊂ ⋃U , then let
Un = {U : U ∈ U , U ∩ Fn 6= ∅}⋃{X\Fn} for each n ∈ N, thus Un covers X. So Un has a
point-finite open refinement r′(Un). If V is a family of open sets of X, F ⊂ ⋃U =

⋃V and
U ≺ V, then Un ≺ Vn, where Vn = {V : V ∈ V, V ∩ Fn 6= ∅}⋃{X \ Fn}. Thus r′(Un) ≺ r′(Vn).
Let r′′(U1) = {V ∩ F : V ∈ r′(U1), V ∩ F1 6= ∅} and l(U1) = r′′(U1). If n > 1, let r′′(Un) =
{V ∩ F : V ∈ r′(Un), V ∩ Fn 6= ∅} and l(Un) = {W\⋃i<n Fi : W ∈ r′′(Un)}.

Denote r(U) =
⋃{l(Un) : n ∈ N}. We prove that r(U) is a point-finite open cover of F and

r(U) is a weak refinement of U .
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(1) For any A ∈ r(U), there exists some n ∈ N such that A ∈ l(Un). Thus there exists some
V ∈ r′(Un) such that A = (V ∩ F )\⋃i<n Fi. Since r′(Un) ≺ Un, there exists some U ∈ Un such
that V ⊂ U . Then A ⊂ V ⊂ U . So r(U) is a weak refinement of U .

(2) For any x ∈ F , there exists a minimal number m ∈ N such that x ∈ Fm. If n > m,
then x 6∈ V \⋃

i<n Fi for any V ∈ r′(Un). Thus x 6∈ ⋃
l(Un), if n > m. For any n ≤ m, l(Un) is

point-finite. Thus |{O : x ∈ O, O ∈ r(U)}| < ω, hence r(U) is point-finite.
(3) Since F ⊂ ⋃U =

⋃V, and U ≺ V, we have r′(Un) ≺ r′(Vn) for each n ∈ N. Thus
r′′(Un) ≺ r′′(Vn). So l(Un) ≺ l(Vn) and

⋃
r(U) =

⋃
r(V) = F , hence r(U) ≺ r(V). ¤

By Lemma 2.3, it is easy to get the following theorem.

Theorem 2.4 Monotone metacompactness is hereditary with respect to open Fσ-subspaces.

For a GO-space X and Y ⊂ X, if for any a, b ∈ Y and a < b, (a, b) = {x ∈ X : a < x <

b} ⊂ Y , then Y is called a convex subset of X. For any non-empty open subset G of a GO-space
X, if we let UG = {P : P ⊂ G,P is a convex open subset of X}, then G =

⋃UG. For each
P ∈ UG, let st(P,UG) =

⋃{A : A ∩ P 6= ∅, A ∈ UG}, sti+1(P,UG) = st(sti(P,UG),UG), i ∈ N.
For each P ∈ UG, let SP =

⋃{stn(P,UG) : n ∈ N}. Obviously, SP is a convex open set for
each P ∈ UG, and for any P1, P2 ∈ UG, SP1 = SP2 or SP1 ∩ SP2 = ∅. The set G =

⋃U , where
U = {SP : P ⊂ G,P is a convex set of X}. The set SP is called a maximal convex open set of G.
Thus any non-empty open subset G of a GO-space X can be uniquely represented as the union
of some maximal convex open sets. For a GO-space X, a maximal convex set of an open set is
also called a maximal convex component of this open set.

If a GO-space X can be topologically embedded in a linearly ordered topological space
(LOTS) X∗, then the LOTS X∗ is called an ordered extension of X. If the embedding is
order-preserving, then the LOTS X∗ is called a linearly ordered extension of X. Let X be
a GO-space with the topology τ and let λ be the usual open interval topology on X. Put
R = {x ∈ X : [x,→) ∈ τ\λ}, L = {x ∈ X : (←, x] ∈ τ\λ}. Define X∗ ⊂ X × Z as follows:
X∗ = (X × {0}) ∪ (R × {k : k ∈ Z, k < 0}) ∪ (L × {k : k ∈ Z, k > 0}). Let X∗ have the
open interval topology generated by the lexicographical order. Then e(x) = 〈x, 0〉 defined by
e : X → X∗ is an order-preserving homeomorphism from X onto the closed subspace X × {0}
of X∗. So the space X∗ is called a closed linearly ordered extension of X (see [8]).

For a convex set S of a GO-space X, put I(S) = {x ∈ S : ∃a, b ∈ S with a < x < b}, and
define the subset S∼ of X∗ as follows: S∼ = {〈x, k〉 ∈ X∗ : x ∈ I(S)} ∪ {〈x, 0〉 : x ∈ S\I(S)}
(see [8]).

For a GO-space X, it was proved that X is monotonically meta-Lindelöf if and only if its
closed linearly ordered extension X∗ is monotonically meta-Lindelöf in [7]. By a proof which
is similar to that of Proposition 5 in [7], we can get Theorem 2.7. Firstly, we introduce some
lemmas.

Lemma 2.5 ([8]) Let X be a GO space.

(a) If S ⊂ T is convex in X, then S∼ ⊂ T∼.

(b) If S is convex in X, then S∼ is open in X∗ iff S is open in X.
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(c) If J is convex in X∗ and if S ⊂ J , where S is convex in X, then S∼ ⊂ J .

Lemma 2.6 For a GO-space X, the following are equivalent:

(1) X is monotonically metacompact;

(2) Each open cover U of X by convex sets has a point-finite open refinement r(U) such

that if U and V are open covers of X by convex sets and U ≺ V, then r(U) ≺ r(V);

(3) Each open cover U of X by convex sets has a point-finite open refinement r(U), where

each member of r(U) is a convex set such that if U and V are open covers of X by convex sets

and U ≺ V, then r(U) ≺ r(V).

Proof (1)⇒(2). Obviously.

(2)⇒(3). For any open sets U and V of X, if U ⊂ V , then a maximal convex component of
U is a subset of some maximal convex component of V . Let r′ be an operator which satisfies the
condition of (2). For any open cover U of X by convex sets, we only need to let every element
of r(U) be a maximal convex component of some element of r′(U). Thus we complete the proof.

(3)⇒(1). Any non-empty open subset G of the GO-space X can be uniquely represented
as the union of some maximal convex open sets, that is G =

⋃{Si : i ∈ I}, where Si is the
maximal convex component of G. The set G is an open set, so each Si is open. If G ⊂ G

′
,

G
′
=

⋃{S′i : i ∈ I ′}, where {S′i : i ∈ I ′} is a set consisting of all the maximal convex component
of G′, then {Si : i ∈ I} ≺ {S′i : i ∈ I ′}. For any open cover U of X, let U∗ be a family consisting
of all the maximal convex component of some members of U . If U and V are open covers of X

and U ≺ V, then U∗ ≺ V∗ by the former analysis. If r is an operator which satisfies the condition
of (3), then r(U∗) ≺ U , r(V∗) ≺ V, and r(U∗) ≺ r(V∗). If we denote r′(U) = r(U∗), then r′ is a
monotone metacompactness operator for the space X. ¤

Theorem 2.7 For a GO-space X, the following are equivalent:

(1) X is monotonically metacompact;

(2) The closed linearly ordered extension X∗ of X is monotonically metacompact.

Proof (2)⇒(1). Suppose X∗ is monotonically metacompact. By Lemma 2.2, the closed sub-
space X × {0} of X∗ is monotonically metacompact. X × {0} is homeomorphic to X, so X is
monotonically metacompact.

(1)⇒(2). We will identify X with the subspace X × {0} of X∗. If U is an open cover of
X∗ by convex sets, then UX = {U ∩ X : U ∈ U} is an open cover of X by convex sets. Since
X is monotonically metacompact, UX has a point-finite open refinement rX(UX) by Lemma 2.6,
where rX is a monotone metacompactness operator for X and rX(UX) consists of convex sets of
X. For a convex set S of X, put

I(S) = {x ∈ S : ∃a, b ∈ S with a < x < b},

S∼ = {〈x, k〉 ∈ X∗ : x ∈ I(S)} ∪ {〈x, 0〉 : x ∈ S\I(S)},

ϕ∼ = {S∼ : S ∈ rX(UX)}.
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For any S∼ ∈ ϕ∼ with S ∈ rX(UX), there exists a U ∈ U such that S ⊂ U . Since S is an open
convex set and U ⊂ X∗ is convex, S∼ is open and S∼ ⊂ U by Lemma 2.5.

Let r(U) = ϕ∼∪{{〈x, k〉 : 〈x, k〉 ∈ X∗\X}}. For any x ∈ X, if S ∈ rX(UX) and x 6∈ S, then
〈x, 0〉 6∈ S∼. Since rX(UX) is a point-finite open cover of X∗, r(U) is point-finite at 〈x, 0〉. For
any 〈x, k〉 ∈ X∗ \X, x ∈ X, if x 6∈ S and S ∈ rX(UX), then 〈x, k〉 6∈ S∼, so r(U) is point-finite at
〈x, k〉. Each {〈x, k〉} with (k 6= 0) is an open set, then r(U) is a point-finite open cover of X∗ and
r(U) ≺ U . If U and V are open covers of X∗ by convex sets and U ≺ V, then rX(U) ≺ rX(V). For
any S ∈ rX(UX), there exists T ∈ rX(VX) such that S ⊂ T . By Lemma 2.5 we have S∼ ⊆ T∼,
so r(U) ≺ r(V). Hence X∗ is monotonically metacompact by Lemma 2.6. ¤

Example 2.8 Let X = ω1 + 1. We define a topology on the linearly ordered set X with a base

as follows: if x ∈ X\{ω1}, then B(x) = {{x}}; B(ω1) = {(α, ω1] : α < ω1}. Then the space X is

a monotonically metacompact space.

Proof For any open cover U of X, let α(U) =min{α′ : α′ ∈ [0, ω1), (α′, ω1] ⊂ U for some U ∈ U}
and r(U) = {(α(U), ω1]} ∪ {{β} : β ≤ α(U)}.

In what follows, we prove that r is a monotone metacompactness operator for the space X:

(1) For each x ∈ X, if x ≤ α(U), then |{U : x ∈ U ∈ r(U)}| = 1 < ω; if α(U) < x ≤ ω1,
then only the element (α(U), ω1] of r(U) contains the point x. So r(U) is a point-finite open
cover of X.

(2) For any V ∈ r(U): if V = (α(U), ω1], where α(U) =min{α′ : α′ ∈ [0, ω1), (α′, ω1] ⊂ U

for some U ∈ U}, then there exists some U ∈ U such that V ⊂ U ; if there is some β ∈ ω1 such
that V = {β}, then there is some U ∈ U such that V ⊂ U . Thus r(U) ≺ U .

(3) If U1 ≺ U2, for open covers U1 and U2 of X, we have α(U1) ≥ α(U2) and r(U1) =
{(α(U1), ω1]} ∪ {{β} : β ≤ α(U1)}, r(U2) = {(α(U2), ω1]} ∪ {{β} : β ≤ α(U2)}, it is easy to see
that r(U1) ≺ r(U2). So X is a monotonically metacompact space. ¤

If X is the space which appears in Example 2.8, then we can see that r(U) is a pairwise
disjoint open refinement of U . Thus we have the following definition.

Definition 2.9 A space (X, T ) is monotonically ultra-paracompact if each open cover U of

X has a pairwise disjoint open refinement r(U) such that if U and V are open covers of the

space X and U ≺ V, then r(U) ≺ r(V). In this case, the operator r is called a monotone ultra-

paracompact operator for the space X.

Remark In Example 2.8, any two elements of r(U) = {(α(U), ω1]} ∪ {{β} : β ≤ α(U)} are
pairwise disjoint. By Definition 2.9, the space X in Example 2.8 is also monotonically ultra-
paracompact.

By the definition of monotonically ultra-paracompact, we can get that monotonically ultra-
paracompact spaces are monotonically metacompact and monotonically meta-Lindelöf. By a
proof which is similar to that of Lemma 2.2, we can get the following theorem.

Theorem 2.10 Monotonically ultra-paracompact spaces are hereditary with respect to closed
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subspaces.

Recall that a topological space X is termed non-Archimedean if it has a base B where any
two members are either disjoint, or comparable (viz, one is contained inside the other). The base
B is also called a rank-1 base of X (see [10, 11]).

Lemma 2.11 ([11]) Every non-Archimedean space has a base which is a tree by reverse inclusion.

Theorem 2.12 Every non-Archimedean space is monotonically ultraparacompact.

Proof Let X be a non-Archimedean space and let U be any open cover of the space X. By
Lemma 2.11, there exists a base B which is a tree by reverse inclusion. Let r(U) be the family of
all members of the tree base B which are ⊂-maximal with respect to being contained in members
of U .

(1) For any x ∈ X, there exist U ∈ U and B ∈ B such that x ∈ B ⊂ U . Then there exists
Bx ∈ r(U) such that x ∈ B ⊂ Bx. By the maximality of the members of r(U) and any two
members of B are either disjoint or comparable, any two members of r(U) are obviously disjoint.
Then it is easy to get that r(U) is a pairwise disjoint open refinement of the cover U .

(2) If U and V are open covers of the space X and V ≺ U , then it is enough to show that
r(V) ≺ r(U). For any W ∈ r(V), there is VW ∈ V such that W ⊂ VW . If V ≺ U , then there
exists UW ∈ U such that VW ⊂ UW . By the maximality of the members of r(U), there exists
BW ∈ r(U) such that W ⊂ BW . Then r(V) ≺ r(U). So X is a monotonically ultraparacompact
space.

3. Two conclusions on McAuley spaces

Definition 3.1 ([1]) Let X = X0 ∪X1, where

X0 = {(x, 0) : x ∈ R}, X1 = {(x, y) ∈ R2 : y > 0}.

We topologize X by defining neighborhood bases at each point p ∈ X in the following two

ways: (1) If p = (x, y) ∈ X1, then p has a usual neighborhood base, and (2) If p = (x, 0) ∈ X0,

then p has a neighborhood base {M(p, 1
n ) : n ∈ N}, where M(p, 1

n ) = {p}⋃{(x′, y′) ∈ X : y′ <
1
n |x′ − x| < 1

n2 }, n ∈ N}. Then the space X, thus defined, is called McAuley space.

In [1], it was proved that McAuley space is an M1-space, then we can get that McAuley
space is also paracompact and metacompact. In what follows we give an alternate proof of this
result. In [3], H. R. Bennett posed a question whether stratifiable spaces are monotonically
metacompact. We have known that McAuley space is a stratifiable space, then another question
was posed whether McAuley space is monotonically metacompact. This is a very interesting and
specific question. We ever considered this question, but we have not got good results. However,
we can directly prove the result that McAuley space is paracompact and metacompact. We hope
the method that we used can be useful to slove the problem above. So we give a direct proof for
the following results.
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Theorem 3.2 McAuley space X is metacompact.

Proof Let U be any open cover of X. Thus X =
⋃U and X0 =

⋃{U ∩X0 : U ∈ U}. As the
subspace of X, X0 is homeomorphic to R (in the usual topology), so there exists a point-finite
open refinement V of {U ∩ X0 : U ∈ U} in X0. For any V ∈ V, there exists some U ∈ U such
that V ⊂ U . For each V ∈ V and x ∈ V , the second component of the point x is 0. X0 is
homeomorphic to R, for convenience, we take every element of V as a subspace of R. Because
any non-empty open subset of the space R can be uniquely represented as the union of some
maximal convex open sets, then for any V ∈ V, V =

⋃{Vi : i ∈ ΛV , Vi is a maximal convex
component of the set V }. Obviously, for any i, j ∈ ΛV , if i 6= j, then Vi ∩ Vj = ∅. If V ′ = {I : I

is a maximal convex component of some member of V}, then for any I ∈ V ′, there are VI ∈ V,
UI ∈ U such that I × {0} ⊂ VI × {0} ⊂ UI . As I ∈ V ′, I is an open set of R, then we can
easily get that I × [0,+∞) is an open set of X. If W0 = {(I × [0,+∞)) ∩ UI : I ∈ V ′}, then
W0 is a weak open refinement of U . For any p = (x, y) ∈ X, as V is point-finite in R, then
|{V : x ∈ V, V ∈ V}| < ω. Therefore |{I : x ∈ I, I ∈ V ′}| < ω, hence ord(p,W0) < ω. The
topology of X1 is the same as the usual topology of the upper half plane of R2 (without x-axis),
so X1 is a metric space, {U \X0 : U ∈ U} is an open cover of X1, so there exists a point-finite
open refinement W1 of {U \X0 : U ∈ U} in X1. If W = W0

⋃W1, then W is a point-finite open
refinement of U and X =

⋃W, so X is metacompact. ¤

In what follows, we prove that McAuley space is paracompact.

Theorem 3.3 McAuley space X is paracompact.

Proof X0 and X1 as the subspaces of X are hereditary separable. So we can easily get that
McAuley space is a hereditary separable regular space. By Lemma 3.2, McAuley space X is
metacompact. Because every separable metacompact space is Lindelöf, McAuley space X is
paracompact. ¤

In what follows, we get a conclusion on paracompact spaces.

Theorem 3.4 Let F be a closed subspace of a normal space X and let X \ F be hereditary

paracompact. If for each open family U of X with F ⊂ ⋃U , there exists a weak refinement V of

U and V is a locally finite open family of X such that F ⊂ ⋃V, then X is paracompact.

Proof Let U be any open cover of X and F ⊂ ⋃U . There is a weak refinement V of U , F ⊂ ⋃V,
and V is locally finite open family of X. The set F is a closed subspace of a normal space X, so
there is an open set O1 of X such that F ⊂ O1 ⊂ O1 ⊂

⋃V, and there is an open set O2 of X

such that F ⊂ O2 ⊂ O2 ⊂ O1. X \F is hereditary paracompact, so
⋃{U \O2 : U ∈ U} = X \O2

is paracompact. So there exists a locally finite open refinement V1 of {U \ O2 : U ∈ U} in
X \ O2 such that

⋃V1 = X \ O2. For each V1 ∈ V1, there exists some U1 ∈ U such that
V1 ⊂ U1 \ O2. For any x ∈ X \ O2, there exists a neighborhood Ux ⊂ X \ O2 of x such that
|{V : V ∩ Ux 6= ∅, V ∈ V1}| < ω. If V2 = {V \O1 : V ∈ V1}, then

⋃V2 = X \O1 and O1 ⊂
⋃V.

So (
⋃V) ∪ (

⋃V2) = X. V1 is locally finite in X \ O2, so V2 = {V \ O1 : V ∈ V1} is also locally
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finite in X \ O2. If x ∈ O1, then for a neighborhood Ux of x, Ux = O1, Ux ∩ V ′ = ∅ for each
V ′ ∈ V2. If x ∈ X \ O1, then by X \ O1 ⊂ X \ O2, we can get x ∈ X \ O2, then there exists a
neighborhood Ux of x such that |{V ′ : V ′ ∩Ux 6= ∅, V ′ ∈ V2}| ≤ |{V : V ∩Ux 6= ∅, V ∈ V1}| < ω.
So V2 is locally finite in X. V1 ≺ {U \ O2 : U ∈ U}, so V2 ≺ {U \ O2 : U ∈ U} ≺ U , V⋃V2 is a
locally finite open refinement of the open cover U of X, therefore X is paracompact. ¤
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