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Abstract Recently, the primitive symmetric signed digraphs on n vertices with the maxi-

mum base 2n and the primitive symmetric loop-free signed digraphs on n vertices with the

maximum base 2n− 1 are characterized, respectively. In this paper, the primitive symmetric

signed digraphs with loops on n vertices with the base 2n− 1 are characterized, and then the

primitive symmetric signed digraphs on n vertices with the second maximum base 2n− 1 are

characterized.
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1. Introduction

A sign pattern matrix is a matrix each of whose entries is a sign 1, −1 or 0. For a square
sign pattern matrix M , notice that in the computations of the entries of the power Mk, an
“ambiguous sign” may arise when we add a positive sign 1 to a negative sign −1. So a new
symbol “#” was introduced in [1] to denote the ambiguous sign. The set Γ = {0, 1,−1,#} is
defined as the generalized sign set and the addition and multiplication involving the symbol #
are defined as follows:

(−1) + 1 = 1 + (−1) = #; a + # = # + a = # (for all a ∈ Γ)

0 ·# = # · 0 = 0; b ·# = # · b = # (for all b ∈ Γ \ {0})

In [1, 2], the matrices with entries in the set Γ are called generalized sign pattern matrices.
The addition and multiplication of generalized sign pattern matrices are defined in the usual
way, so that the sum and product of the generalized sign pattern matrices are still generalized
sign pattern matrices. In this paper, we assume that all the matrix operations considered are
operations of the matrices over Γ.

Definition 1 ([1]) A square generalized sign pattern matrix M is called powerful if each power
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of M contains no # entry.

Definition 2 ([3]) Let M be a square generalized sign pattern matrix of order n and M, M2,M3, . . .

be the sequence of powers of M . Suppose M b is the first power that is repeated in the sequence.

Namely, suppose b is the least positive integer such that there is a positive integer p such that

M b = M b+p. (1)

Then b is called the generalized base (or simply base) of M , and is denoted by b(M). The least

positive integer p such that (1) holds for b = b(M) is called the generalized period (or simply

period) of M , and is denoted by p(M).

We now introduce some concepts of graph theory.

Let D = (V, A) denote a digraph on n vertices. Loops are permitted, but no multiple
arcs. A u → v walk in D is a sequence of vertices u, u1, . . . , uk = v and a sequence of arcs
e1 = (u, u1), e2 = (u1, u2), . . . , ek = (uk−1, v), where the vertices and the arcs are not necessarily
distinct. A closed walk is a u → v walk where u = v. A path is a walk with distinct vertices. A
cycle is a closed u → v walk with distinct vertices except for u = v. The length of a walk W is
the number of arcs in W , denoted by l(W ). A k-cycle is a cycle of length k, denoted by Ck.

A signed digraph S is a digraph where each arc of S is assigned a sign 1 or −1. A generalized
signed digraph S is a digraph where each arc of S is assigned a sign 1, −1 or #.

The sign of the walk W in a (generalized) signed digraph, denoted by sgnW , is defined to
be

∏k
i=1 sgn(ei), where e1, e2, . . . , ek is the sequence of arcs of W .

For a cycle C in a (generalized) signed digraph S, if sgnC = 1 (or −1), then we call C a
positive (or negative) cycle.

Let M = (mij) be a square (generalized) sign pattern matrix of order n. The associated
digraph D(M) = (V, A) of M (possibly with loops) is defined to be the digraph with vertex set
V = {1, 2, . . . , n} and arc set A = {(i, j)|mij 6= 0}. The associated (generalized) signed digraph
S(M) of M is obtained from D(M) by assigning the sign of mij to each arc (i, j) in D(M), and
we say D(M) is the underlying digraph of S(M).

Let S be a (generalized) signed digraph on n vertices. Then there is a (generalized) sign
pattern matrix M of order n whose associated (generalized) signed digraph S(M) is S. We say
that S is powerful if M is powerful. Also the base b(S) and period p(S) are defined to be those
of M . Namely, we define b(S) = b(M) and p(S) = p(M).

A digraph D is said to be strongly connected if there exists a path from u to v for all
u, v ∈ V , and D is called primitive if there is a positive integer k such that for each vertex x

and each vertex y (not necessarily distinct) in D, there exists a walk of length k from x to y.
The least such k is called the primitive exponent (or exponent) of D, denoted by exp(D). It
is also well-known that a digraph D is primitive if and only if D is strongly connected and the
greatest common divisor (g.c.d.) of the lengths of all the cycles of D is 1. A (generalized) signed
digraph S is called primitive if the underlying digraph D is primitive, and in this case we define
exp(S) = exp(D).
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A digraph D is symmetric if for every arc (u, v) in D, the arc (v, u) is also in D. A (gen-
eralized) signed digraph S is called combinatorially symmetric (or symmetric) if the underlying
digraph D is symmetric. A digraph D is loop-free if D has no loops. If a digraph D is symmetric
and loop-free, we regard D as a simple graph.

Let Sn = {S|S is a primitive symmetric signed digraph on n vertices}, S?
n = {S|S is a

primitive symmetric loop-free signed digraph on n vertices}. Clearly, S?
n ⊂ Sn.

Let En = {exp(S)|S ∈ Sn}, E?
n = {exp(S)|S ∈ S?

n}, and Bn = {b(S)|S ∈ Sn}, B?
n =

{b(S)|S ∈ S?
n}. The primitive exponent, exponent sets En and E?

n were discussed in [4–7]. The
base, the base sets Bn and B?

n were discussed in [8–11].

Theorem 1 ([5]) Let D be a primitive symmetric digraph on n vertices. Then

(1) exp(D) ≤ 2n − 2 and the equality holds if and only if D is isomorphic to G1, where

G1 = (V, A), V = {1, 2, . . . , n}, A = {(i, i + 1), (i + 1, i)|1 ≤ i ≤ n− 1}⋃{(1, 1)}.
(2) En = {1, 2, . . . , 2n− 2}\D where D is the set of odd numbers in {n, n + 1, . . . , 2n− 2}.

Theorem 2 ([7]) Let D be a primitive symmetric loop-free digraph on n vertices. Then

(1) exp(D) ≤ 2n− 4.

(2) E?
n = {2, 3, . . . , 2n−4}\D where D is the set of odd numbers in {n−2, n−1, . . . , 2n−5}.

The primitive symmetric signed digraphs on n vertices with the maximum base 2n and the
base set Bn were characterized in [8, 9].

Theorem 3 ([8, 9]) Let S be a primitive symmetric signed digraph on n vertices. Then

(1) b(S) ≤ 2n and the equality holds if and only if S has at least one negative 2-cycle and

D is isomorphic to G1 where D is the underlying digraph of S.

(2) Bn = {1, 2, . . . , 2n}.
The primitive symmetric loop-free signed digraphs on n vertices with the maximum base

2n− 1 and the base set B?
n were characterized in [10–12].

Let n ≥ 4, l (3 ≤ l ≤ n) be odd, Dl = (V, A) be a digraph on n vertices with vertex set
V = {1, 2, . . . , n} and arc set A = {(i, i + 1), (i + 1, i)|1 ≤ i ≤ n− 1} ∪ {(1, l), (l, 1)}. Clearly, Dl

is a primitive symmetric loop-free digraph.

Let n ≥ 4, l (3 ≤ l ≤ n) be odd, SDl be a signed digraph on n vertices with Dl as its
underlying digraph, where every 2-cycle in SDl is negative. Then SDl is a primitive symmetric
loop-free non-powerful signed digraph on n vertices and b(SDl) = 2n− 1.

Theorem 4 ([10–12]) Let S be a primitive symmetric loop-free signed digraph on n vertices.

Then

(1) b(S) ≤ 2n− 1 and the equality holds if and only if S ∈ SDL = {SDl|3 ≤ l ≤ n and l is

odd }.
(2) B?

n = {2, . . . , 2n− 1}.
A natural question is what primitive symmetric signed digraphs on n vertices are of the

second maximum base 2n− 1? We answer this in Section 3.
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2. Some preliminaries

In this section, we introduce some needed definitions, theorems and lemmas. Other defini-
tions and results not in this article can be found in [13–15].

Definition 3 ([3]) Two walks W1 and W2 in a signed digraph are called a pair of SSSD walks, if

they have the same initial vertex, same terminal vertex and same length, but they have different

signs.

It is easy to see from the above relation between matrices and signed digraphs that a
(generalized) sign pattern matrix M is powerful if and only if the associated (generalized) signed
digraph S(M) has no pairs of SSSD walks. Thus for a (generalized) signed digraph S, S is
powerful if and only if S has no pairs of SSSD walks.

In [3], You, Shao and Shan obtained an important characterization of primitive non-powerful
signed digraphs from the characterization of powerful irreducible sign pattern matrices [1].

Theorem 5 ([3]) If S is a primitive signed digraph, then S is non-powerful if and only if S

has a pair of cycles C ′ and C ′′ (say, with lengths p1 and p2, respectively) satisfying one of the

following conditions:

(A1) p1 is odd, p2 is even and sgn C ′′ = −1;

(A2) Both p1 and p2 are odd and sgn C ′ = −sgnC ′′.

A pair of cycles C ′ and C ′′ satisfying (A1) or (A2) is a “distinguished cycle pair”. It is easy
to check that if C ′ and C ′′ is a distinguished cycle pair with lengths p1 and p2, respectively, then
the closed walks W1 = p2C

′ (walk around C ′ by p2 times) and W2 = p1C
′′ have the same length

p1p2 and different signs: (sgnC ′)p2 = −(sgn C ′′)p1 .

The following result can be used to determine the base.

Theorem 6 ([3]) Let S be a primitive non-powerful signed digraph. Then

(1) There is an integer k such that there exists a pair of SSSD walks of length k from each

vertex x to each vertex y in S.

(2) If there exists a pair of SSSD walks of length k from each vertex x to each vertex y,

then there also exists a pair of SSSD walks of length k + 1 from each vertex x to each vertex y

in S.

(3) The minimal such k (as in (1)) is just b(S)-the base of S.

The following result will be useful.

Theorem 7 ([11, 12]) Let D be a symmetric digraph on n vertices. Suppose that there exist

a cycle C and an odd cycle C ′ with lengths of k ≥ 1 and k′ ≥ 1 in D such that C ∩ C ′ = ∅.
Let P be the shortest path from C to C ′, d(x, y) be the distance from x to y. Then for any two

vertices x, y ∈ D, there exist x′ ∈ C, y′ ∈ C ′ or x′ ∈ C ′, y′ ∈ C such that

d(x, x′) + l(P ) + d(y, y′) ≤ 2(n− k − k′ + 1) + max{[k
2
],

k′ − 1
2

}. (2)
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3. Characterization with the second maximum base

It was shown in [1] that if a primitive signed digraph S is powerful, then b(S) = exp(D),
where D is the underlying digraph of S. So for a primitive powerful symmetric (loop-free) signed
digraph, Theorems 1 and 2 give the base. Therefore, if S is a primitive symmetric (loop-free)
signed digraph on n vertices with base 2n − 1, then S must be non-powerful. Furthermore, if
S ∈ S?

n and b(S) = 2n − 1, then S ∈ SDL = {SDl|3 ≤ l ≤ n and l is odd } by Theorem 4. So
we only need to study the case for S ∈ Sn but S 6∈ S?

n.

Let Dn,I = (V, A) be a digraph on n vertices, where vertex set V = {1, 2, . . . , n}, arc set
A = {(i, i + 1), (i + 1, i)|1 ≤ i ≤ n − 1} ∪ {(j, j)|j ∈ I}, and {1} ⊂ I ⊆ {1, 2, . . . , n}. Clearly,
Dn,I is a primitive symmetric digraph and Dn,I has at least two loops.

Let D = (V, A) be a digraph. For any vertex v ∈ V , if (v, v) ∈ A, we denote the loop on
vertex v by C

(v)
1 .

Lemma 8 Let SDn,I be a signed digraph with Dn,I as its underlying digraph, where all 2-cycles

in SDn,I are positive, and for any i, j ∈ I \ {1}, sgn C
(i)
1 = sgn C

(j)
1 , sgn C

(i)
1 = −sgn C

(1)
1 . Then

(1) SDn,I ∈ Sn and SDn,I is non-powerful.

(2) b(SDn,I) = 2n− 1.

Proof (1) is easy to verify by Theorem 5 and the definitions.

(2) It is obvious that b(SDn,I) ≤ 2n − 1 by Theorem 3. On the other hand, there are no
SSSD walks of length 2n−2 from n to n, so b(SDn,I) ≥ 2n−1. Combining the two inequalities,
we obtain b(SDn,I) = 2n− 1. ¤

In the rest of the paper, for an undirected walk W of graph G and two vertices x, y on W ,
let QW (x → y) be the shortest path from x to y on W . Let Q(x → y) be the shortest path from
x to y on G. For a cycle C, if x and y are two (not necessarily distinct) vertices on C and P is
a path from x to y along C, then C\P denotes the path or cycle from x to y along C obtained
by deleting the edges of P .

Lemma 9 Let n ≥ 3, S = (V, A) be a signed digraph with Dn,I as its underlying digraph. If

there exists a negative 2-cycle in S, then b(S) ≤ 2n− 2.

Proof Let (i, i) ∈ A (2 ≤ i ≤ n), say C
(i)
1 , (j, j + 1) and (j + 1, j) (1 ≤ j ≤ n− 1) be two arcs

of a negative 2-cycle, say C2. Then 2C
(1)
1 (2C

(i)
1 ) and C2 have the same length 2 and different

signs in S.

Let x and y be any two (not necessarily distinct) vertices in V . We will show there exists
a pair of SSSD walks of length 2n − 2 from x to y. Since vertex 1 (or i) is on the loop C

(1)
1

(or C
(i)
1 ), we only need to show there exists a pair of SSSD walks, say W1, W2, of length

l(W1) = l(W2) ≤ 2n− 2 from x to y where both W1 and W2 meet vertex 1 (or i).

Case 1 i ≤ j.

Subcase 1.1 1 ≤ x ≤ i and 1 ≤ y ≤ n.
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Set W = Q(x → i) + Q(i → j) + Q(j → y), W1 = W + 2C
(i)
1 , and W2 = W + C2. Then for

k = 1, 2,

l(Wk) = (i− x) + (j − i) + |j − y|+ 2 =

{
2j − x− y + 2 ≤ 2n− 2, if 1 ≤ y ≤ j;

y − x + 2 ≤ 2n− 2, if j + 1 ≤ y ≤ n.

Subcase 1.2 i < x ≤ j and 1 ≤ y ≤ i.
Set W = Q(x → j) + Q(j → i) + Q(i → y), W1 = W + 2C

(i)
1 , and W2 = W + C2. Then

l(W1) = l(W2) = (j − x) + (j − i) + (i− y) + 2 = 2j − x− y + 2 ≤ 2(n− 1)− 3− 1 + 2 = 2n− 4.

Subcase 1.3 i < x ≤ j and i < y ≤ j.
Set

W =

{
Q(x → i) + Q(i → j) + Q(j → y), if x ≤ y;

Q(x → j) + Q(j → i) + Q(i → y), otherwise,

W1 = W + 2C
(i)
1 , and W2 = W + C2. Then

l(W1) = l(W2) =

{
(x− i) + (j − i) + (j − y) + 2 ≤ 2n− 4, if x ≤ y;

(j − x) + (j − i) + (y − i) + 2 < 2n− 4, otherwise.

Subcase 1.4 i < x ≤ j and j + 1 ≤ y ≤ n.
Set W = Q(x → i) + Q(i → j) + Q(j → y), W1 = W + 2C

(i)
1 , and W2 = W + C2. Then

l(W1) = l(W2) = (x− i) + (j − i) + (y − j) + 2 = x + y − 2i + 2 ≤ n− 1 + n− 4 + 2 = 2n− 3.

Subcase 1.5 j + 1 ≤ x ≤ n and 1 ≤ y ≤ n.
Set W = Q(x → j) + Q(j → i) + Q(i → y), W1 = W + 2C

(i)
1 , and W2 = W + C2. Then for

k = 1, 2,

l(Wk) = (x− j) + (j − i) + |i− y|+ 2 =

{
x− y + 2 ≤ 2n− 2, if 1 ≤ y ≤ i;

x + y − 2i + 2 ≤ 2n− 2, if i + 1 ≤ y ≤ n.

Case 2 i ≥ j + 1.

Subcase 2.1 j = 1 and 2 ≤ i ≤ n.

Subcase 2.1.1 2 ≤ x ≤ n, y = n and x = n, 2 ≤ y ≤ n.
Set W = Q(x → 2) + Q(2 → y), W1 = W + 2C

(i)
1 , and W2 = W + C2. Then l(W1) =

l(W2) = (x− 2) + (y − 2) + 2 = x + y − 2 ≤ 2n− 2.

Subcase 2.1.2 Otherwise.
Set W = Q(x → 1) + Q(1 → y), W1 = W + 2C

(1)
1 , and W2 = W + C2. Then l(W1) =

l(W2) = (x− 1) + (y − 1) + 2 = x + y ≤ 2n− 2.

Subcase 2.2 2 ≤ j ≤ n− 1 and 3 ≤ j + 1 ≤ i ≤ n.

Subcase 2.2.1 1 ≤ x ≤ j, 1 ≤ y ≤ j.
Set

W =

{
Q(x → 1) + Q(1 → j) + Q(j → y), if x ≤ y;

Q(x → j) + Q(j → 1) + Q(1 → y), otherwise,
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W1 = W + 2C
(1)
1 , and W2 = W + C2. Then for k = 1, 2,

l(Wk) =

{
(x− 1) + (j − 1) + (j − y) + 2 = 2j + x− y ≤ 2j ≤ 2n− 2, if x ≤ y;

(j − x) + (j − 1) + (y − 1) + 2 = 2j + y − x < 2j ≤ 2n− 2, otherwise.

Subcase 2.2.2 1 ≤ x ≤ j, j + 1 ≤ y ≤ n.

Set W = Q(x → j) + Q(j → i) + Q(i → y), W1 = W + 2C
(i)
1 , and W2 = W + C2. Then for

k = 1, 2,

l(Wk) = (j − x) + (i− j) + |i− y|+ 2 =

{
2i− x− y + 2 ≤ 2n− 2, if j + 1 ≤ y ≤ i;

y − x + 2 ≤ 2n− 2, if i + 1 ≤ y ≤ n.

Subcase 2.2.3 j + 1 ≤ x ≤ i, 1 ≤ y ≤ j.

Set W = Q(x → i) + Q(i → j) + Q(j → y), W1 = W + 2C
(i)
1 , and W2 = W + C2. Then

l(W1) = l(W2) = (i− x) + (i− j) + (j − y) + 2 = 2i− x− y + 2 ≤ 2n− 2.

Subcase 2.2.4 j + 1 ≤ x ≤ i, j + 1 ≤ y ≤ i.

Set

W =

{
Q(x → j) + Q(j → i) + Q(i → y), if x ≤ y;

Q(x → i) + Q(i → j) + Q(j → y), otherwise,

W1 = W + 2C
(i)
1 , and W2 = W + C2. Then for k = 1, 2,

l(Wk) =

{
(x− j) + (i− j) + (i− y) + 2 = 2i− 2j + x− y + 2 ≤ 2n− 2, if x ≤ y;

(i− x) + (i− j) + (y − j) + 2 = 2i− 2j + y − x + 2 < 2n− 2, otherwise.

Subcase 2.2.5 j + 1 ≤ x ≤ i, i + 1 ≤ y ≤ n.

Set W = Q(x → j) + Q(j → i) + Q(i → y), W1 = W + 2C
(i)
1 , and W2 = W + C2. Then

l(W1) = l(W2) = (x− j) + (i− j) + (y − i) + 2 = x + y − 2j + 2 ≤ 2n− 3.

Subcase 2.2.6 i + 1 ≤ x ≤ n, 1 ≤ y ≤ n.

Set W = Q(x → i) + Q(i → j) + Q(j → y), W1 = W + 2C
(i)
1 , and W2 = W + C2. Then for

k = 1, 2,

l(Wk) = (x− i) + (i− j) + |j − y|+ 2 =

{
x− y + 2 ≤ 2n− 2, if 1 ≤ y ≤ j;

x + y − 2j + 2 ≤ 2n− 2, if j + 1 ≤ y ≤ n.

From the above arguments, there exists a pair of SSSD walks of length 2n− 2 from x to y,
so we have b(S) ≤ 2n− 2 by Theorem 6. ¤

Lemma 10 Let S = (V, A) ∈ Sn. If S has at least one loop and b(S) = 2n− 1, then S has no

negative 2-cycles.

Proof Suppose S has at least a negative 2-cycle, denoted by C2. Since S has at least one loop,
let (v, v) ∈ A, denoted by C

(v)
1 . Let x and y be any two (not necessarily distinct) vertices in V .

Case 1 Every 2-cycle is negative.

Let P1 be the shortest path from x to v, P2 the shortest path from y to v.



386 Lihua YOU and Shuyong YI

Subcase 1.1 There exists x (or y) satisfying l(P1) = n− 1 (or l(P2) = n− 1). Without loss of
generality, let l(P1) = n− 1.

Since b(S) = 2n − 1, D is not isomorphic to G1 where D is the underlying digraph of S.
But S ∈ Sn, l(P1) = n − 1, and the terminal vertex (or the initial vertex) is the loop vertex v,
so there exists a set I where {1} ⊂ I ⊆ {1, 2, . . . , n} such that D is isomorphic to Dn,I . Thus
b(S) ≤ 2n− 2 by Lemma 9, a contradiction.

Subcase 1.2 For all vertices x, y, l(P1) ≤ n− 2 and l(P2) ≤ n− 2.

Let W1 = P1 + 2C
(v)
1 + P2, and W2 = P1 + C2 + P2. Then W1, W2 are a pair of SSSD

walks from x to y with the length l(W1) = l(W2) ≤ 2n− 2. Then b(S) ≤ 2n− 2 by Theorem 6,
a contradiction.

Case 2 There exists at least a positive 2-cycle.

Assume that u is contained in a positive 2-cycle C ′2 and a negative 2-cycle C2. Let P be the
shortest path from v to u. Suppose there are k vertices on P where k ≥ 1. Let P1(P2) be the
shortest path from x(y) to P and P1(P2) intersect P at x′(y′) where 0 ≤ l(Pi) ≤ n−k (i = 1, 2).

Subcase 2.1 There exists x (or y) satisfying l(P1) = n− k (or l(P2) = n− k).

Without loss of generality, we suppose l(P1) = n− k. In this case, we have x′ = u because
there are k vertices on P and u is contained at least two 2-cycles, and thus we obtain a contra-
diction by the same proof of Subcase 1.1.

Subcase 2.2 For any vertices x, y, l(P1) < n− k and l(P2) < n− k.

Set a = l(QP (x′ → v)), and b = l(QP (y′ → v)),

W =

{
P1 + QP (x′ → v) + P + QP (u → y′) + P2, if a ≤ b;

P1 + QP (x′ → u) + P + QP (v → y′) + P2, otherwise.

Let W1 = W + C ′2, W2 = W + C2. Then W1 and W2 are a pair of SSSD walks from x to y

with length l(W1) = l(W2) ≤ 2(n− k− 1) + 2(k− 1) + 2 = 2n− 2. Therefore there exists SSSD

walks of length 2n− 2 from x to y, and thus b(S) ≤ 2n− 2 by Theorem 6, a contradiction. ¤

Lemma 11 Let S = (V, A) ∈ Sn and S has at least one loop. If b(S) = 2n− 1, then S has no

negative even cycles.

Proof Suppose S has at least a negative even cycle, denoted by C with length k. Clearly, all
2-cycles are positive in S by Lemma 10 and k ≥ 4. Since S has at least one loop, let (v, v) ∈ A,
denoted by C

(v)
1 . Then kC

(v)
1 and C have the same length k and different signs. Let x and y be

any two (not necessarily distinct) vertices in V .

Case 1 v ∈ C.

Let P1(P2) be the shortest path from x(y) to C and let P1(P2) intersect C at x′(y′) where
0 ≤ l(Pi) ≤ n− k (i = 1, 2).

Subcase 1.1 v ∈ QC(x′ → y′).
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Set W = P1+QC(x′ → y′)+P2, W1 = W +kC
(v)
1 , and W2 = W +C. Then W1 and W2 are a

pair of SSSD walks from x to y with length l(W1) = l(W2) ≤ 2(n−k)+ k
2 +k = 2n− k

2 ≤ 2n−2.
Therefore there exists a pair of SSSD walks of length 2n− 2 from x to y.

Subcase 1.2 v ∈ C \QC(x′ → y′).

Set a = l(QC(x′ → v)), b = l(QC(y′ → v)),

W1 =

{
P1 + QC(x′ → v) + QC(v → x′) + QC(x′ → y′) + P2, if a ≤ b;

P1 + QC(x′ → y′) + QC(y′ → v) + QC(v → y′) + P2, otherwise

and W2 = P1 + C \QC(x′ → y′) + P2.

So l(W1) and l(W2) have the same parity since l(QC(x′ → y′)) and l(QC \ QC(x′ → y′))
have the same parity, and sgnQC(x′ → y′) = −sgn C \ QC(x′ → y′). Thus sgnW1 = −sgn W2

by sgn C = −1 and all 2-cycles in S are positive. Therefore there exists a pair of SSSD walks
from x to y with length ≤ max{l(W1), l(W2)} ≤ 2(n− k) + k = 2n− k < 2n− 2, and thus there
exists a pair of SSSD walks of length 2n− 2 from x to y since both W1 and W2 meet the loop
vertex v.

Case 2 v 6∈ C.

Let P be the shortest path from v to C and P intersect C at v′. By Theorem 7, there exist
x′ ∈ C

(v)
1 , y′ ∈ C or x′ ∈ C, y′ ∈ C

(v)
1 such that (2) holds. Without loss of generality, suppose

there exist x′ ∈ C
(v)
1 , y′ ∈ C such that (2) holds. For convenience, let P1 be the shortest path

from x to x′ and P2 be the shortest path from y to y′.

Set W1 = P1 + P + QC(v′ → y′) + P2, W2 = P1 + P + C \ QC(v′ → y′) + P2. Then
sgn W1 = −sgn W2 and l(W1) and l(W2) have the same parity with l(W1) ≤ l(W2) ≤ 2(n− k −
1 + 1) + k

2 + k = 2n− k
2 ≤ 2n− 2 by (2). So W2, W3 = W1 + (l(W2)− l(W1))C

(v)
1 are a pair of

SSSD walks from x to y and thus there exists a pair of SSSD walks of length 2n− 2 from x to
y.

From the above arguments, we have b(S) ≤ 2n−2 by Theorem 6, contradicting b(S) = 2n−1.
¤

Lemma 12 Let S = (V, A) ∈ Sn. Suppose that all 2-cycles are positive, S has a loop C
(v)
1 and

an odd cycle C with length k(≥ 3) such that sgn C
(v)
1 × sgn C = −1. Then b(S) ≤ 2n− 2.

Proof Let x and y be any two (not necessarily distinct) vertices in V . We consider the following
two cases.

Case 1 sgn C
(v)
1 = 1 and sgnC = −1.

Subcase 1.1 v 6∈ C.

Let P, P1, P2, v
′, x′, y′ be defined as in Case 2 of Lemma 11.

Set W1 = P1 + [l(C \ QC(v′ → y′)) − l(QC(v′ → y′))]C(v)
1 + P + QC(v′ → y′) + P2,

W2 = P1 + P + C \ QC(v′ → y′) + P2. Then sgn C \ QC(v′ → y′) = −sgn QC(v′ → y′) by all
2-cycles are positive in S and sgnC = −1, and thus sgnW1 = −sgn W2 by sgn C

(v)
1 = 1.
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So W1, W2 are a pair of SSSD walks from x to y with length l(W1) = l(W2) ≤ 2(n− k −
1 + 1) + k−1

2 + k = 2n − k+1
2 ≤ 2n − 2 by (2). Therefore there exists a pair of SSSD walks of

length 2n− 2 from x to y.

Subcase 1.2 v ∈ C.
Let P1(P2) be the shortest path from x(y) to C and P1(P2) intersect C at x′(y′) where

0 ≤ l(Pi) ≤ n− k (i = 1, 2).

Subcase 1.2.1 v ∈ QC(x′ → y′).
Set a = l(QC(x′ → v)), b = l(QC(y′ → v)), W1 = P1 + QC(x′ → y′) + P2, and

W2 =

{
P1 + QC(x′ → v) + QC(v → x′) + C \QC(x′ → y′) + P2, if a ≤ b;

P1 + C \QC(x′ → y′) + QC(y′ → v) + QC(v → y′) + P2, otherwise.

It is easy to see that sgn QC(x′ → y′) = −sgn C \QC(x′ → y′) and thus sgnW1 = −sgn W2.
So W2, W3 = W1 + (l(W2) − l(W1))C

(v)
1 are a pair of SSSD walks from x to y with length

l(W2) ≤ 2(n− k) + k = 2n− k < 2n− 2, and thus there exists a pair of SSSD walks of length
2n− 2 from x to y.

Subcase 1.2.2 v ∈ C \QC(x′ → y′).
It is similar to Subcase 1.2.1.

Case 2 sgn C
(v)
1 = −1 and sgnC = 1.

Subcase 2.1 v 6∈ C.
Let P, P1, P2, v

′, x′, y′ be defined as in Case 2 of Lemma 11.
Set W1 = P1 + P + C \ QC(v′ → y′) + P2, W2 = P1 + [l(C \ QC(v′ → y′)) − l(QC(v′ →

y′))]C(v)
1 + P + QC(v′ → y′) + P2.

Because sgn C = 1, we have sgn C\QC(v′ → y′)) = sgn QC(v′ → y′). Because sgn C
(v)
1 = −1

and l(C \ QC(v′ → y′)) − l(QC(v′ → y′)) is odd, W1, W2 are a pair of SSSD walks from x to
y with length l(W1) = l(W2) ≤ 2(n − k − 1 + 1) + k−1

2 + k = 2n − k+1
2 ≤ 2n − 2 by (2). Thus

there exists a pair of SSSD walks of length 2n− 2 from x to y.

Subcase 2.2 v ∈ C.
Let P1(P2) be the shortest path from x(y) to C and P1(P2) intersect C at x′(y′) where

0 ≤ l(Pi) ≤ n− k (i = 1, 2).

Subcase 2.2.1 v ∈ QC(x′ → y′).
Set a = l(QC(x′ → v)), b = l(QC(y′ → v)), W1 = P1 + QC(x′ → y′) + P2 + [l(C \QC(v′ →

y′))− l(QC(v′ → y′))]C(v)
1 , and

W2 =

{
P1 + QC(x′ → v) + QC(v → x′) + C \QC(x′ → y′) + P2, if a ≤ b;

P1 + C \QC(x′ → y′) + QC(y′ → v) + QC(v → y′) + P2, otherwise.

Clearly, l(W1), l(W2) have the same parity. Similar to the Subcase 2.1, we have sgnW1 =
−sgn W2. So W2, W3 = W1 + (l(W2) − l(W1))C

(v)
1 are a pair of SSSD walks from x to y with
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length l(W2) ≤ 2(n−k)+k + k−1
2 = 2n− k+1

2 ≤ 2n−2. Thus there exists a pair of SSSD walks
of length 2n− 2 from x to y.

Subcase 2.2.2 v ∈ C \QC(x′ → y′).

It is similar to Subcase 2.2.1.

From the above arguments, we have b(S) ≤ 2n− 2 by Theorem 6. ¤
Let Tn,3,2 be a tree on n vertices, where T has three pendant vertices, and two loops are on

the two pendant vertices, respectively. Clearly, Tn,3,2 is a primitive symmetric digraph.

Lemma 13 Let STn,3,2 be a signed digraph with Tn,3,2 as its underlying digraph, where all

2-cycles in STn,3,2 are positive, and the only two loops satisfy that one is positive and the other

is negative. Then

(1) STn,3,2 ∈ Sn and STn,3,2 is non-powerful.

(2) b(STn,3,2) = 2n− 1.

Proof (1) is easy to verify by Theorem 5 and the definitions.

(2) It is obvious that b(STn,3,2) ≤ 2n− 1 by Theorem 3. On the other hand, there are no
SSSD walks of length 2n−2 from u to u where u is the pendant vertex which is not loop vertex,
so b(STn,3,2) ≥ 2n− 1. Combining the two inequalities, we obtain b(STn,3,2) = 2n− 1. ¤

Theorem 14 Suppose S ∈ Sn, and S has at least one loop. Then b(S) = 2n− 1 if and only if

S is one of the following signed digraphs:

(1) SDn,I , where {1} ⊂ I ⊆ {1, 2, . . . , n};
(2) STn,3,2.

Proof Sufficiency is easy by Lemmas 8 and 13.

Necessity. Since S has at least one loop and b(S) = 2n−1, all even cycles in S are positive by
Lemma 11, and S must be non-powerful. Thus there exists a distinguished cycle pair satisfying
(A2) of Theorem 5.

Let Cl and Ck be a distinguished cycle pair satisfying (A2) of Theorem 5. Then l, k are
odd, and sgnCl = −sgn Ck.

Case 1 l, k ≥ 3.

Then C1 and Cl or C1 and Ck is a distinguished cycle pair where C1 is any loop in S, and
thus we have b(S) ≤ 2n− 2 by Lemma 12, leading to a contradiction.

Case 2 l = 1, k ≥ 3 or l ≥ 3, k = 1.

Then we have b(S) ≤ 2n− 2 by Lemma 12, leading to a contradiction.

Case 3 l = k = 1.

Then there exist two loops C1 and C ′1 such that sgnC1 = −sgn C ′1 where V (C1) = v1 and
V (C ′1) = vk. Let P = v1v2 · · · vk be the shortest path from C1 to C ′1.

Since b(S) = 2n − 1, there exist two vertices x, y such that there are no SSSD walks of



390 Lihua YOU and Shuyong YI

length 2n− 2 from x to y. Let P1(P2) be the shortest path from x(y) to P and P1(P2) intersect
P at x′(y′) where 0 ≤ l(Pi) ≤ n− k (i = 1, 2).

Now we prove l(P1) = n− k.
If k = n, l(P1) = n − k holds clearly. If k < n, we suppose l(P1) ≤ n − k − 1, and set

a = l(QP (x′ → v1)), b = l(QP (y′ → v1)),

W =

{
P1 + QP (x′ → v1) + P + QP (vk → y′) + P2, if a ≤ b;

P1 + QP (x′ → vk) + P + QP (v1 → y′) + P2, otherwise

and W1 = W + C1, W2 = W + C ′1.
Then l(W1) = l(W2) ≤ (n−k−1)+2(k−1)+(n−k)+1 = 2n−2, and sgnW1 = −sgn W2.

So W1,W2 are a pair of SSSD walks from x to y and thus there exists a pair of SSSD walks of
length 2n− 2 from x to y. It is a contradiction.

Therefore l(P1) = n− k. Similarly, l(P2) = n− k and x = y.
Now we show x′ = y′. If x′ 6= y′, suppose a < b where a, b defined as above, then l(QP (x′ →

v1)) + l(QP (vk → y′)) < k − 1. Let W,W1,W2 be defined as above. We have l(W1) = l(W2) <

2n − 1, and thus there exists a pair of SSSD walks of length 2n − 2 from x to y. It is a
contradiction. So x′ = y′.

Notice that S has no more arcs except loops because P is the shortest path from v1 to vk

and P1 is the shortest path from x to P . So we consider the following two cases.

Subcase 3.1 If x′ = y′ = v1 or x′ = y′ = vk.
Without loss of generality, we let x′ = y′ = vk. In this case, the length of the longest path

of S is n−1 and S has at least two loops. One loop is on the vertex v1 which is the initial vertex
(or terminal vertex) of the longest path, and the other loop is on the vk where 2 ≤ k ≤ n.

If S has at least three loops, let C
(w)
1 be a loop on the vertex w. If sgn C ′1 = −sgn C

(w)
1 ,

then C ′1, C
(w)
1 is a distinguished cycle pair, and thus there exists a pair of SSSD walks of length

2n− 2 from x to y, a contradiction. So sgnC ′1 = sgn C
(w)
1 .

Combining the above arguments, we see that there exists set I such that {1} ⊂ I ⊆
{1, 2, . . . , n}, S is some signed digraph SDn,I .

Subcase 3.2 If x′ = y′ 6= v1 and x′ = y′ 6= vk.
In this case, the underlying digraph of S is isomorphic to the tree Tn,3,2. If S has at least

three loops, let C
(w)
1 be a loop on the vertex w. Then sgnC1 = −sgn C

(w)
1 or sgn C ′1 = −sgn C

(w)
1 ,

and thus there exists a pair of SSSD walks of length 2n− 2 from x to y, a contradiction. So S

has no more loops and thus S is some signed digraph STn,3,2.
Combining the two cases, we get the desired conclusion. ¤
By Theorems 4 and 14, we can characterize the primitive symmetric signed digraphs with

the second maximum base as follows.

Theorem 15 Suppose S ∈ Sn. Then b(S) = 2n − 1 if and only if S is one of the following

signed digraphs:

(1) SDn,I , where {1} ⊂ I ⊆ {1, 2, . . . , n};
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(2) STn,3,2.

(3) SDl, where 3 ≤ l ≤ n and l is odd.
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