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Abstract We introduce the concepts of left (right) zero-divisor rings, a class of rings with-
out identity. We call a ring R left (right) zero-divisor if rr(a) # 0 (Ir(a) # 0) for every
a € R, and call R strong left (right) zero-divisor if rr(R) # 0 (Ir(R) # 0). Camillo and
Nielson called a ring right finite annihilated (RFA) if every finite subset has non-zero right
annihilator. We present in this paper some basic examples of left zero-divisor rings, and in-
vestigate the extensions of strong left zero-divisor rings and RFA rings, giving their equivalent
characterizations.
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1. Some examples of left zero-divisor rings

Throughout this paper rings are general associative rings (with or without identity), Z
denotes the ring of integers and N denotes the set of positive integers. Given a ring R, the right
(left) annihilator of a subset X of R is defined by rg(X) ={a € R| Xa =0} (Ir(X)={a € R|

aX = 0}), the polynomial ring over R in one indeterminate z is denoted by R[z].

Definition 1.1 A ring R is called left (right) zero-divisor if rr(a) # 0 (Ig(a) # 0) for every
a € R, and a ring R is called zero-divisor if it is both left and right zero-divisor.

Obviously, any non-zero nil ring is zero-divisor; and rings with identity are never left (right)
zero-divisor. If R is reversible (a ring R is called reversible if ab = 0 implies ba = 0 for a,b € R.),
then R is left zero-divisor if and only if R is right zero-divisor. In general, a left (right) zero-divisor

ring need not be a nil ring and the zero-divisor property for a ring is not left-right symmetric.

Proposition 1.2 If one of {R;}icw is left zero-divisor, so is R = @,y Ri (R =[],cy Ri).
Note that R = @,y Ri (R = [[,cw Ri) is left zero-divisor does not imply that every
R; (i € W) is left zero-divisor.

Received May 10, 2012; Accepted November 22, 2012

Supported by the National Natural Science Foundation of China (Grant Nos.11071097; 11101217).
* Corresponding author

E-mail address: wangyao@nuist.edu.cn (Yao WANG)



404 Yanli REN and Yao WANG

b
For any ring R, we define QM3(R) = “ J |la+b=c+d,a,b,c,de R}, then
c

QM>(R) is a subring of My(R). Moreover, given an (R, R)-bimodule M, the trivial exten-
sion of R by M (see [4]) is the ring T'(R, M) = R M with the usual addition and the following

multiplication:

(r1,m1)(re, ma) = (1172, T1M2 + Mr2).

m

This is isomorphic to the ring of all matrices ( (T) > , where r € R and m € M and the usual

r
matrix operations are used.

Theorem 1.3 The following statements are equivalent for a ring R:

(1) R is left zero-divisor.

(2) For any n € N, the ring T,,(R) of n x n upper triangular matrices over R is left
zero-divisor.

(3) QM (R) is left zero-divisor.

ap ar az an—1
0 agp ay Ap—2

(4) Foranyn € N, S, (R) = 0 0 a -+ Gp3 ||la€eRi=0,1....,n—1
0 0 0 - ag

is left zero-divisor.
(5) For any n € N, R[z]/(a™) is left zero-divisor, where (z™) is the ideal generated by x™.
(6) T(R,R) is left zero-divisor.

Proof (1) = (2). Assume that R is left zero-divisor and A = (a;;) € T,(R), where a;; = 0 if
i > j. Then there exists 0 # t;; € R such that a;;t;; = 0 for any ¢,1 < ¢ < n. Taking D = (d;;),
where di1 = t11 # 0,d;; = 0,1 < 4,5 < n, we get 0 # D € T,(R) such that AD = 0. Hence
T, (R) is left zero-divisor.

b b b
(2) = (3). We construct a map f : QM2(R) — Ta2(R), < “ J ) — ( a:)r i >, for
c _

a b
any < J ) € QM>(R). It is easy to verify that f is an injective and a ring homomorphism.
¢

T oz ,
For any ( 0 ) € Ty(R), since

)

f is a ring isomorphism. This completes the proof by (2).
0

(3) = (1). Let r € R. Then A = (g
r

) € QM>(R). Since QMsy(R) is left zero-
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b 0 b
divisor, there exists 0 # T = “ € QM (R) such that AT = " “ =
c d 0 r c d
ra b . .
( J = 0, it follows that ra = rb = rc¢ = rd = 0. Notice that T # 0, there must be
rc r

0 # s € R such that rs = 0, as desired.

(1) = (4). Let A = (a;;) € Sn(R), where a;; = ap,1 < ¢ < n. Since R is left zero-divisor,
there exists 0 # to € R such that agto = 0. Taking 0 # T = (t;;) € S, (R), where t1,, = to and
t;;=0,1<i<n,1<j<n,weget AT =0. Thus, S,(R) is left zero-divisor.

(4) = (5). Note that R[z]/(2™) = S, (R), we obtain the result by (4).

(5) = (6). This is obvious since T'(R, R) = R[x]/(z?).
0
(6) = (1). Let a € R. Then A = T(R,R). Since T'(R,R) is left zero-
a
.. . t m a 0 t m
divisor, there exists 0 # T = € T(R, R) such that AT = =
0 t 0 a 0 t
at am . .
( 0 . = 0, it follows that at = 0 and am = 0. Notice that T" # 0, we have t # 0 or
a

m # 0. Consequently in any case there is 0 # s € R such that as = 0, as asserted. [J]

Let R[z; 27| be the ring of Laurent polynomials in one variable x with coefficients in a ring
R, i.e., Rlz;xz~ ] consists of all formal sums -, m;z* with obvious addition and multiplication,

where m; € R and k,n are (possible negative) integers.
Proposition 1.4 Let R be a ring. Then R|x] is left zero-divisor if and only if so is Rlx;z~1].

Proof Suppose that R[z] is left zero-divisor. Let f(z) € R[x;z~!]. Then there exists an
n € N such that fi(z) = f(z)z™ € R[z]. Hence there exists 0 # g(z) € Rx] such that
fi(x)g(z) = f(z)g(x)x™ = 0, it follows that f(z)g(x) =0 and R[z;x~'] is left zero-divisor.

Conversely, assume that R[z;x 1] is left zero-divisor, and let f(x) € R[x]. Then there exists
0 # g(z) € Rlz;271] such that f(z)g(z) = 0 since R[z] C R[z;271]. As g(z) = 27 ™gy(x) for
some m € Nand 0 # ¢1(z) € R[z], f(z)g(x) =2~ f(x)g1(x) = 0, we obtain that f(z)g1(x) = 0.
U

Proposition 1.5 Let R and S be rings and V =g Vg be an (R, S)-bimodule. If R is left
. . R V
zero-divisor, so is A = .

0 S
Proof Take any ( :) v € A. For r € R, there exists 0 # t € R such that rt = 0 since R is
s
t 0 t 0
left zero-divisor. Thus, we get 0 # € A such that v = 0, which
0 0 0 s 0 0

implies that A is left zero-divisor. O
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Proposition 1.6 If a ring R is left zero-divisor, so is the ring

a d 0 0 0 O
0O b 0 0 0 O
vy =3 | Y Y e e 00 cdefer
0 0 0 a 0 O
0000 b f
0O 0 0 0 0 ¢

Proof FixA € V(R). Since R is left zero-divisor, there exists 0 # @’ € R such that aa’ = 0.
Taking 0 # T = (t;;) € V(R), where t12 = o’ and 0 elsewhere, we obtain that AT = 0. O

Let R be a commutative ring, M an R-module and ¢ an endomorphism of R. Recall that
the Nagata extension of R by M and o (see [4]), denoted by N(R, M, o), is the ring REP M
with the usual addition and the multiplication (r1, m)(ra2, ms) = (rire, o(ri)ms+ram,), where
r € Rand m; € M,i=1,2.

Proposition 1.7 Let R be a commutative left zero-divisor ring. Then the Nagata extension
N(R,R,0) of R by R and o is left zero-divisor.

Proof For any (r,m) € N(R,R,0), we have 0 # ¢t € R such that o(r)t = 0 since R is
left zero-divisor and o(R) C R. Putting 0 # (0,t) € N(R, R,0), we get that (r,m)(0,t) =
(r0,o(r)t +0m) = (0,0). Therefore N(R, R, 0) is left zero-divisor. O

It is interesting to know if the polynomial ring of a ring share the same property with the
ring. If R[x] is left zero-divisor, then R is again left zero-divisor. We raise the following question:

if R is left zero-divisor, is the polynomial ring R[x] necessarily left zero-divisor?

We do not know whether R is left zero-divisor when both R/I and I are left zero-divisor
for an ideal I of R. In view of this question, the following proposition may be of some interest.
According to Lambek [5], a ring R is called symmetric if abc = 0 < acb = 0 for all a,b,c € R,
ie., if bec € rr(a) & cb € rr(a). We call aring R left symmetric if rst = 0 implies srt = 0 for all

r,s,t € R. For example, let R = 2Z. Then T(R, R) & { ( g s ) | r,s € R p is left symmetric.
T

Note that this definition is equivalent to that of symmetric rings for rings with identity, but in
0

general they are different. For instance, R = ( 0

) is symmetric but not left symmetric.
Proposition 1.8 Let R be left symmetric and I a non-trivial ideal of R which is a right

annihilator in R. If R/I is left zero-divisor, then R is left zero-divisor.

Proof Since I is non-trivial, we assume that I = rg(S) where 0 # S C R. For any a € R,
there exists 0 # t € R/I such that at =0, i.e., at € [ = rg(S) since R/I is left zero-divisor. It
follows that Sat = 0. Consequently aSt = 0 since R is left symmetric. Note that t ¢ I, we have
St # 0. This implies that there exists so € S such that sot # 0 and a(sot) = 0. Thus rr(a) # 0,
as required. [
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It is natural to conjecture that the homomorphic image R/I of R and eR, eRe may also be
left (right) zero-divisor for a left (right) zero-divisor ring R, I << R and e = ¢ € R. We have,

however, a negative answer to these situations by the following example.

0 0 0
Example 1.9 Thering R = { < Z 0 ) | a,b € Z} is left zero-divisor. We have I = ( 7 0 )q

1 Z 0

0
R,e(o 0)62€RandReRR,butR/IN ( 0 0 = eR = eRe is not left zero-

divisor.

From the above example it also follows that the left zero-divisor property of rings is not a

radical property in the sense of Amitsur and Kurosh.

2. Strong left zero-divisor rings and RFA rings

Observe that for some rings, they not only satisfy rg(a) # 0 for any a € R but also have

rr(R) # 0. In this section, we will focus on these rings.

Definition 2.1 A ring R is called strong left (right) zero-divisor if rr(R) # 0 (Igr(R) # 0).
Any strong left (right) zero-divisor ring is left (right) zero-divisor, but the converse does not
hold.

Example 2.2 Let R =) .2, Zyz; be a countably infinite dimensional vector space over the field

Zo = {0, 1}, with basis T' = {x2,23,...,Zp,...}. Multiplication of the base vectors is defined as

- { 0, if 13 #1L,

zy, if (i,7) =1,
where (4,7) is the maximal prime divisor of ¢ and j. Thought of as a ring, R is the set of
all finite sums > a;x;, where a; are elements in the field Z5. Addition is defined articulately
as a;r; + a;x; just written together, if i # j; and if ¢ = j, then a;z; + ajz; = (a; + af)x;.
Multiplication is distributive and defined as above. The ring R is then commutative. Moreover,

for any a = a;, x;, + ai,®i, + -+ + a;,v;, € R, we have a® = 0, and hence R is zero-divisor.

For any a = x;, + 2;, + -+ x;, € R and any positive integer n > 2, since (n,n + 1) =1,

we get that

Tit1Q = Ty (ig41) T 05 Tlig (i +1)4+1]3 = Tjy + 0

where j; = i1(ip + 1)[é1 (41 + 1) +1],.... Thus, if a € rg(T), then necessarily a = 0, whence
rr(R) Crr(T) =0. So R is not strong left zero-divisor.

For a ring R with a ring endomorphism « : R — R, a skew polynomial ring R[z; ] of R is
the ring obtained by giving the polynomial ring over R with the new multiplication zr = «o(r)z
for all r € R.

Theorem 2.3 Let R be a ring and o : R — R an epimorphism. Then R is strong left zero-
divisor if and only if so is R[x; a].
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Proof If Rb =0, then Ra(b) = a(R)a(b) C a(Rb) = 0, hence a(rr(R)) C rr(R). Now assume
that R is strong left zero-divisor, then T' = rg(R) # 0. For every f(z) = Y a;z' € R[z;al,
taking any 0 # ¢(x) = Z;n:o bjzl € Tz;a] C Rz;al, we obtain

m—+n

f(@)t(x) = Z Z a;al(b;)zk = 0.

Hence T R[x; a]( [ ]) 7é 0.
Conversely, assume that R[z; o] is strong left zero-divisor. For any 0 # f(z) = > I ja;z" €

TRlza] (R[; a]), there exists at least one a;, # 0,0 < ix < n,a;, € R. Note that R C R[x;a] and
Rf(x) =0. It follows that Ra;; = 0 and rg(R) # 0. O
Theorem 2.3 answers partially the question raised in the above section.
Recall that for an infinite set of commuting indeterminates {z)} over R, Gilmer-Grams [3]
defined rings
R{z\}] = U{R ]| F is a finite subset of {z)}} and

R[[{zA}]] U{R ]| F is a finite subset of {xx}}.

Theorem 2.4 Let R be a ring. Then the following statements are equivalent:
(1) R is strong left zero-divisor.
(2) T,(R) is strong left zero-divisor for any n € N.
(3) QM (R) is strong left zero-divisor.
(4) S, (R) is strong left zero-divisor for any n € N.
(5) R[x]/(x™) is strong left zero-divisor for any n € N.
(6) T(R, R) is strong left zero-divisor.
(7)

R|
(8) R[{z A}] is strong left zero-divisor.
R

)

Proof Note that if R is strong left zero-divisor, then S = rg(R) # 0 and there exists 0 #
t({xa}) € Sl{aa}] © S[[{za}]] such that R{zx}t({za}) = 0 (R[[{zx}]t({zx}) = 0), hence
R{zx}] (R[[{xx}]]) is strong left zero-divisor. It follows that (1) < (8) and (1) < (9).

Making a little modification in the proof of Theorem 1.3, we can prove that (1) < (2) <
3) & (4) & (5) < (6).

By Theorem 2.3, we know that R is strong left zero-divisor if and only if so is R[z]. By

x; 271 is strong left zero-divisor.

[{x}]] is strong left zero-divisor.

analogy with the proof of Proposition 1.4, it is easy to prove that (1) < (7). O

Theorem 2.5 A ring R is strong left zero-divisor if and only if so is My, (R), the ring of n x n

matrices over R, for any positive integer n.

Proof Assume that R is strong left zero-divisor and A = (a;;) € M, (R). Then rg(R) # 0. For
any 0 # r € rr(R), we have a;;7 = 0,V1 < 4,5 < n. Putting T = (t;;) € M, (R), where t;; =r
and t;; = 0if @ # 5,1 <i,j < n, we get that T # 0 and AT = 0. Hence 7y, (r)(M,(R)) # 0

because A is arbitrary.
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Conversely, assume that M, (R) is strong left zero-divisor and r € R. Take any 0 # A =
(aij) € rar, (r)(Mn(R)) # 0, and suppose that some ap; # 0,1 < k,I < n. If we put T' = (t;;) as
above, then from T'A = 0 one can get that rax; = 0. This implies that ag; € rr(R) # 0. O

Given a monoid G and a ring R, we use R[G] to denote the monoid ring of G over R.
Theorem 2.6 A ring R is strong left zero-divisor if and only if so is R|G| for any monoid G.

Proof Assume that rg(R) # 0 and > 7,9, € R[G]. For any 0 # a € rr(R), we have
(>_rigi)(ae) = > (ria)g; = 0, where e is the identity of G. Thus 0 # ae € 7y (R[G]).

Conversely, assume that R[G] is strong left zero-divisor and ¢ € R. If 0 # > r;g; €
rric)(R[G]), then from 0 = (ae)(}_7ig:) = > _(a;ri)g; we get that ar; = 0 for any i. This shows
that r; € rr(R) for any ¢, and rr(R) # 0. O

Let G denote a group with identity e, and R = P, Ry be a G-graded ring. Beattie [1]
defined the generalized smash product R#G* of R and G to be the free left R-module e RP,
with multiplication defined for elements aP, and bP, by (aP,)(bP,) = abg),-1 Py, and extended
to general elements of R#G™ by linearity.

Theorem 2.7 Let R =
only if so is R#G*.

gec Bg be a G-graded ring. Then R is strong left zero-divisor if and

Proof Assume that rg(R) # 0 and >_ a,P;, € R#G*. Take any 0 # r € rg(R). Since rr(R) is
a graded ideal of R, (3" a; Py, )rP. = " a;rg, P. = 0. This implies that 0 # 7P, € rruc-(R#G*).

Conversely, assume that R#G* is strong left zero-divisor. Taking

0 # Z al Py, € rrypc-(R#G"),

we get that 0 = r, P, (3", aVP,,) =, rgas;i_lpgi for any g,h € G and ry € Ry. Thus for every
gi € G7rga§jg),l = 0. If al) # 0, then there exists an hg € G such that agjog),l # 0, and hence
i 09,

aﬁj;);;l € rg(ry) # 0. Since g € G and 14 € R, are arbitrary, we have as;;f erg(R). O

Camillo-Nielson [2] introduced the concept of right finite annihilatedorings (in short, RFA
rings) to describe exactly when a direct product or direct sum of rings is right McCoy. A ring R
is called RF A if every finite subset of R has a nonzero right annihilator.

Clearly, strong left zero-divisor rings are RFA rings, but the converse does not hold.

Example 2.8 Let R = Z[xy, 22, 73,...]/(23,23,23,...), and A = (T1,73,T3,...) be the ideal
of R generated by T71,%3,T3,.... Then A is nil, left zero-divisor and RFA. But A is neither

nilpotent nor strong left zero-divisor.

For RFA rings, we have the following

Proposition 2.9 Let R be a ring and S = {(a,)22, € [[R | an is a eventually constant}, a
subring of the countable direct product [[,-_ | R. Then ring R is RFA if and only if so is S.

Proof It is a trivial verification.
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Theorem 2.10 Let R be a ring. Then the following statements are equivalent:
(1) R is RFA.
(2) T,(R) is RFA for any n € N.
(3) QMy(R) is RFA.
(4) S, (R) is RFA for any n € N.
(5) R[x]/(x™) is RFA for any n € N.

(6) T(R,R) is RFA.
(7) Rlx;x~1] is RFA.
(8) R[{xx}] is RFA.

Proof (1) = (2). Assume that F' = {4}, = (af;) € To(R),k = 1,2,...,m} is a finite subset
of T,(R). Then E = {a§j|1 <i,j <nk=1,2,...,m} is a finite subset of R, there exists
0 # t € R such that afjt = 0 for every afj (1 <i4,j<n,1<k<m)since Ris RFA. Putting
D = (d;;) € T,(R) with di1 =t and zeros elsewhere, we have that AyD =0for 1 <k <m.

(2) = (3). Holds since QM2(R) = Tx(R).
0

(3) = (1). For any finite subset F of R, E = {4, = ( g ) |r € F'} is a finite subset of
T

b
QM5 (R). Then there exists 0 # T = “ J ) € QM (R) such that A, T =0 for every r € F,
c

it follows that ra = rb = rc = rd = 0. Notice that T # 0, there is 0 # s € R such that F's = 0,
as desired.

(1) = (4). Let F = {Ay, = (a};) € Su(R),k =1,2,...,m} be a finite subset of S,,(R). Then
E = {a§j|1 <i4,j<nk=1,2,...,m} is a finite subset of R, there exists 0 # ¢ € R such that
afjt = 0 for every afj (1 <4i,j<n,1<k<m)since R is RFA. Taking 0 # T = (t;;) € Sp(R)
with ¢y, =t and zeros elsewhere, we obtain that AT =0 for 1 < k < m.

(4) = (5). Holds by R[x]/(z™) = S, (R).

(5) = (6). Follows from T(R, R) & R[z]/(z?).

r

0
(6) = (1). Let F be a finite subset of R and E = {4, = < 0 ) |r € F}. Then there
T

t
exists 0 £ T = 0 T € T(R, R) such that A, T = 0 for any r € F, it follows that rt = 0

and rm = 0. Notice that T # 0, we have that ¢t # 0 or m # 0. Consequently in any case there is
0 # s € R such that F's = 0, as desired.

(1) = (8). Let E = {fi{zx}]i =1,2,...,m} be a finite subset of R[{zx}]. Then E C R[F]
for some finite subset F' of {x)}, and the set H of coefficients of all f;{z,} C F is a finite subset
of R. Hence there exists 0 # ¢t € R such that Ht = 0, it follows that f;{x }t =0 for 1 < k < m.

(8) = (1). Let E be a finite subset of R. Then E C R[{z}], and there exists 0 # f{z)} €
R[{z»}] such that Ef{xx} = 0. Thus Fa = 0 for any nonzero coefficient a of f{x)}.

(1) & (7). The proof is analogous to that of (1) < (8). O
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0 Z Z 0 a b
Example 2.11 Consider thering R=| 0 0 Z |. Forany A=1] 0 0 ¢ € R and
0 0 Z 0 0 d
0 0 1
T=1]1 0 0 0 | €R,wehave AT =0, which implies that R is strong left zero-divisor.
0 00

We conclude this paper with the following chart:

nilpotent === locally nilpotent === nil

ﬂ ﬂ ﬂ

strong left zero-divisor RFA left zero-divisor

No other implications hold (except by transitivity). Note that Example 2.11 shows that a strong
left zero-divisor, left zero-divisor and RFA ring are not necessarily nilpotent, nil and locally
nilpotent, respectively; and Example 20.2 in Szasz [6] also shows that a left zero-divisor ring is

not necessarily an RFA ring.
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