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Abstract In this paper, the property of linear dependence of solutions for higher order linear

differential equation

f (k)(z) + Ak−2(z)f (k−2)(z) + · · ·+ A0(z)f(z) = 0, (∗)

where Aj(z) (j = 0, 2, . . . , k − 2) are constants and A1 is a non-constant entire function of

period 2πi and rational in ez, is investigated. Under certain condition, the representation of

solution of Eq. (∗) is given, too.
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1. Introduction and main results

In this paper, we use the standard notations from the Nevanlinna’s values distribution theory
of meromorphic functions [10, 13]. In addition, we use the notation σ(f) and λ(f), respectively,
to denote the order of growth and the exponent of convergence of the zeros of a meromorphic
function f . σ2(f), the hyper-order of f(z), is defined to be

σ2(f) = lim
r→+∞

log log T (r, f)
log r

.

We define as in [7]

σe(f) = lim
r→+∞

log T (r, f)
r

to be the e-type order of a meromorphic function f(z). Obviously, if f(z) is entire, then

σe(f) = lim
r→+∞

log log M(r, f)
r

.

We also define as in [7]

λe(f) = lim
r→+∞

log N(r, f)
r

to be the e-type exponent of convergence of the zeros of f(z).
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For a set E ⊂ (1,+∞), we denote

m(E) =
∫

E

dr, ml(E) =
∫ ∞

1

χE(t)dt/t,

where χE(t) denotes the characteristic function of the set E. In accordance with the usual
notation, we will use the abbreviation “n.e.” (nearly everywhere) to mean “everywhere in (0,+∞)
except in a set of finite linear measure”.

The study of the properties of solutions of a linear differential equation with periodic coef-
ficients is one of the difficult aspects in the complex oscillation theory of differential equations.
However, it is also one of the important aspects since it relates to many special functions. Many
important researches were done by various authors, see, for instance, [1, 2, 4–9, 11].

For the second-order periodic differential equation

f ′′ + A(z)f = 0, (1.1)

In [1], Bank and Laine proved the following theorem.

Theorem A Let A(z) be a nonconstant periodic entire function of period ω, which is of finite

order of growth and transcendental in eαz, where α = 2πiω−1. If f(z) 6≡ 0 is a solution of the

equation (1.1) with the property λ(f) < ∞, then f(z) and f(z + ω) are linearly dependent.

In [7], Chiang and Gao proved the following theorem.

Theorem B Let A(z) = B(ez), where B(ζ) = g1(1/ζ) + g2(ζ), g1 and g2 are entire functions

with g2 transcendental and σ(g2) not equal to a positive integer or infinity, and g1 arbitrary.

(i) Suppose σ(g2) > 1. If f is a non-trivial solution of (1.1) with λe(f) < σ(g2), then f(z)
and f(z + 2πi) are linearly dependent.

(ii) Suppose σ(g2) < 1. If f is a non-trivial solutions of (1.1) with λe(f) < 1, then f(z)
and f(z + 2πi) are linearly dependent.

For second-order differential equation (1.1), if f1 and f2 are two linearly independent solu-
tions, then

−4A =
c2

E2
− E′

E

2

+ 2
E′′

E
,

where E = f1f2. This formula plays an important role in the proofs of Theorems A and B. But
for a higher-order differential equation, there does not exist such formula. So it is more difficult
to investigate the properties of solutions for higher-order periodic differential equations.

For a higher order periodic differential equation only with two terms, Gao Shi-An proved
the following result in [9].

Theorem C Let A(z) = B(ez), where B(ζ) = g1( 1
ζ )+g2(ζ), g1(t) and g2(t) are entire functions,

g1(t) (or g2(t)) is transcendental and σ(g1) (or σ(g2)) < 1
2 . If f is a non-trivial solution of the

differential equation

f (k) + A(z)f = 0, (1.2)
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with

log+ N(r,
1
f

) = O(r), (1.3)

then f(z) and f(z + 2πi) are linearly dependent.

For a general higher-order periodic differential equation, Bank and Langley proved the
following theorem in [2].

Theorem D Suppose that k ≥ 2 and that A0, . . . , Ak−2 are entire functions of period 2πi, and

that f is a non-trivial solution of the differential equation

f (k) + Ak−2f
(k−2) + · · ·+ A0f = 0. (1.4)

Suppose further that f satisfies log+ N(r, 1/f) = o(r), that A0 is non-constant and rational in

ez, and that if k ≥ 3, then A1, . . . , Ak−2 are constants. Then there exists an integer q with

1 ≤ q ≤ k such that f(z) and f(z + q2πi) are linearly dependent. The same conclusion holds if

A0 is transcendental in ez, and f satisfies

log+ N(r, 1/f) = O(r),

and if k ≥ 3, then as r → +∞ through a set L1 of infinite linear measure, we have

T (r,Aj) = o(T (r,A0))

for j = 1, . . . , k − 2.

Later, Chen proved the following theorem in [5].

Theorem E Let Aj (j = 0, . . . , k − 2) be entire functions of period 2πi, Aj(z) = Cj( 1
ζ ) +

Bj(ζ), ζ = ez, and Cj(t), Bj(t) be entire functions with finite order of growth. Let B0(t) be

transcendental with σ(B0) < 1
2 , σ(Bj) < σ(B0) (j = 1, . . . , k − 2) and σ(Cs) < σ(B0) (s =

0, 1, . . . , k− 2) if σ(B0) > 0; or Bj (j = 1, . . . , k− 2) and Cs (s = 0, 1, . . . , k− 2) be polynomials

if σ(B0) = 0. If f(z) is a non-trivial solution of (1.4) and satisfies (1.3), then f(z) and f(z +2πi)
are linearly dependent.

We can see that the results of Theorem C to Theorem E are under the hypothesis that
A0 of (1.4) is the dominant coefficient. A natural question is what can be said when As(s ∈
{1, . . . , k − 2}) of (1.4) is the dominant coefficient. When A1 is the dominant coefficient and
transcendental in ez, the author and Chen have obtained following result recently in [12].

Theorem F Let k ≥ 3, A0, . . . , Ak−2 (A0 6≡ 0) be entire function of period 2πi satisfying

max{σe(Aj)(j 6= 1)} < σe(A1) < +∞.

If f(z) is a non-trivial solution of Eq. (1.4) satisfying λe(f) < σe(A1), then there exists an integer

q with 1 ≤ q ≤ k such that f(z) and f(z + q2πi) are linearly dependent.

Remark 1 A1 of Theorem F must be transcendental in ez.
In this paper, we continue to study the properties of solutions of (1.4) when A1 is the

dominant coefficient and rational in ez. One of our results is similar to Theorem C. Another
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result is the representation of solution of Eq. (1.4). We will prove the following Theorems.

Theorem 1 Let k ≥ 3. Suppose A0(6≡ 0), A2, . . . , Ak−2 are constants, and A1 is a non-constant

entire function of period 2πi and rational in ez. If f(z) is a solution of (1.4) satisfying λ(f) < 1,

then there exists an integer q with 1 ≤ q ≤ k such that f(z) and f(z + q2πi) are linearly

dependent.

Theorem 2 Suppose that k ≥ 3, and A1 is a non-constant periodic entire function, rational

in ez. Suppose further that A0(6≡ 0), A2, . . . , Ak−2 are constants. If f(z) is a solution of (1.4)

satisfying λ(f) < 1, then there exists an integer q with 1 ≤ q ≤ k, a constant d, and rational

functions R(ξ), S(ξ), analytic on 0 < |ξ| < +∞, such that

f(z) = R(ez/q) exp(dz + S(ez/q)).

2. Lemmas for the proof of Theorems

Lemma 1 ([3]) Let g(z) be an entire function of infinite order, with the hyper-order σ2(g) = σ,

and ν denote the central index of g. Then

lim
r→+∞

log log ν(r)
log r

= σ.

Lemma 2 ([10]) Suppose that f(z) is meromorphic and transcendental in the plane and that

f(z)nP (f) = Q(f),

where P (f), Q(f) are differential polynomials in f with meromorphic coefficients bj , and the

degree of Q(f) is at most n. Then

m(r, P (f)) = O{
∑

j

m(r, bj) + S(r, f)},

where S(r, f) = O{log T (r, f) + log r}, n.e..

Lemma 3 ([2]) Let A(z) be a non-constant entire function with period 2πi. Then

c = lim
r→+∞

T (r,A)
r

> 0.

If c is finite, then A(z) is rational in ez.

Remark 2 When A(z) is a non-constant, entire function and rational in ez, then T (r,A) ∼ cr;
when A(z) is an entire function and transcendental in ez, then r = o{T (r,A)}.

Lemma 4 Suppose that k ≥ 3, A0(6≡ 0), A2, . . . , Ak−2 are constants. A1 is a non-constant entire

function of period 2πi and rational in ez. Suppose further that f, g, f1, . . . , fk are all non-trivial

solutions of (1.4) satisfying

max{λ(f), λ(g), λ(fi) (i = 1, . . . , k)} < 1.

Then there exist a constant d (0 < d < 1) and a set L ⊂ (0,+∞) of infinite linear measure such
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that the following hold:

(1) σ2(f) = 1;

(2) log T (r, f) 6= o(rd) as r → +∞ in L;

(3) If f, g are linearly independent, then we have log T (r, f/g) 6= o(rd) as r → +∞;

(4) log T (r, f ′/f) = o(rd) as r → +∞ n.e.;

(5) If f1, . . . , fk are linearly independent, then the product E = f1 · · · fk satisfies log T (r,E) =
o(rd) as r → +∞ n.e..

Proof (1) It is easy to see that every solution f (6≡ 0) of (1.4) is entire and transcendental.
From Wiman-Valiron theory, there exists a set E1 ⊂ (1,+∞) with ml(E1) < +∞, such that for
j = 1, 2, . . . , k and for z satisfying |z| = r 6∈ [0, 1] ∪ E1 and |f(z)| = M(r, f), we have

f (j)(z)
f(z)

= (
νf (r)

z
)j(1 + o(1)), (2.1)

where νf (r) denotes the central index of f(z). For any given ε > 0, we have for sufficiently large
r,

|Aj(z)| ≤ exp{r1+ε}, (2.2)

for j = 0, 1, . . . , k − 2. Now, we take a z satisfying |z| = r 6∈ [0, 1] ∪ E1 and |f(z)| = M(r, f).
Substituting (2.1),(2.2) into (1.4), we obtain

(
νf (r)
|z| )k|1 + o(1)| ≤ k(

νf (r)
|z| )k−2|1 + o(1)| exp{r1+ε}.

This gives

lim
r→+∞

log log νf (r)
log r

≤ 1 + ε. (2.3)

Since ε is arbitrary, by (2.3), we have σ2(f) ≤ 1. We assert that σ2(f) = 1. Assume that
σ2(f) < 1, since

T (r,
f ′

f
) = m(r,

f ′

f
) + N(r,

f ′

f
) = O{log T (r, f) + log r + N(r,

1
f

)}, n.e.,

this gives

log T (r,
f ′

f
) ≤ log log T (r, f) + log log r + log N(r,

1
f

) + log M, n.e.,

(We denote by M some fixed positive constant, M may be different at each occurrence). Using
the fact that λ(f) < 1, we obtain

σ(
f ′

f
) < 1. (2.4)

On the other hand, we obtain by rewriting (1.4),

−A1 =
f

f ′
(
f (k)

f
+ Ak−2

f (k−2)

f
+ · · ·+ A2

f ′′

f
+ · · ·+ A0). (2.5)

Since
f (j)

f
= (

f ′

f
)j +

1
2
j(j − 1)(

f ′

f
)j−2(

f ′

f
)′ + Hj−2(

f ′

f
), (2.6)
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for j = 2, . . . , k, where Hj−2( f ′

f ) is a differential polynomial in f ′

f and its derivatives with constant

coefficients, and the degree of Hj−2( f ′

f ) is not greater than j − 2, it follows from (2.6) that

σ(
f (j)

f
) ≤ σ(

f ′

f
), (2.7)

for j = 2, . . . , k. By (2.5), (2.7), we get

σ(
f ′

f
) ≥ 1,

a contradiction to (2.4), so σ2(f) = 1 holds.

(2) We can choose a constant d satisfying

max{λ(f), λ(g), λ(fi) (i = 1, . . . , k)} < d < 1.

From (1), there exists a sequence {rn} (rn →∞) such that

lim
rn→+∞

log log T (rn, f)
log rn

= 1.

We take L =
⋃+∞

n=1[rn, rn + 1], then obviously m(L) = +∞ and

lim
r→+∞

r∈L

log log T (r, f)
log r

= 1

holds, which gives

log T (r, f) 6= o(rd) as r → +∞ in L.

(3) Assume that U = f/g satisfies

log T (r, U) = o(rd) (2.8)

as r → +∞. Substituting f = gU into (1.4) yields,

kg(k−1) + Bk−2g
(k−2) + · · ·+ (B0 + A1)g = 0, (2.9)

where each coefficient Bj is a polynomial in the logarithmic derivatives U(m)

U ′ for m = 1, . . . , k,
and in A2, . . . , Ak−2, so by (2.8),

m(r,Bj) = o(rd), n.e. (2.10)

holds. Since g is a solution of (1.4),

g(k) + Ak−2g
(k−2) + · · ·+ A1g

′ + A0g = 0 (2.11)

holds. Eliminating A1 from (2.9) and (2.11) yields,

g(k)

g
+Ak−2

g(k−2)

g
+· · ·+A2

g′′

g
+(−k

g(k−1)

g
−Bk−2

g(k−2)

g
−· · ·−B1

g′

g
−B0)

g′

g
+A0 = 0. (2.12)

Setting G = g′

g and combining (2.6) and (2.12) yields

Gk + Ck−1G
k−1 + · · ·+ C0 = 0 (2.13)
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where each coefficient Cj is a polynomial in the logarithmic derivatives G(m)

G for m = 1, 2, . . . , k

and in B0, . . . , Bk−2. So by (2.10),

m(r, Cj) ≤ o(rd) + O{log T (r,G)}, n.e..

By Clunie Lemma (Lemma 2), (2.13) yields

m(r,G) ≤ o(rd) + O{log T (r,G)}, n.e..

Using the fact that log N(r,G) ≤ log N(r, 1/g) = o(rd), we obtain

m(r,G) = o(rd), n.e.. (2.14)

Since for j = 1, . . . , k,

m(r,G(j)) ≤ m(r,G) + O{log T (r,G) + log r}, n.e.. (2.15)

It follows from (2.6), (2.14) and (2.15) that

m(r,
g(j)

g
) = o(rd), n.e.,

for j = 1, . . . , k. Substituting it into (1.4) yields

m(r,A1) ≤ m(r,A1
g′

g
) + m(r,

g

g′
) = m(r,

g(k)

g
+ Ak−2

g(k−2)

g
+ · · · , A2

g′′

g
+ A0) + m(r,

g

g′
)

≤ o(rd) + T (r,
g′

g
) + o(1) = o(rd) + m(r,

g′

g
) + N(r,

g′

g
)

= o(rd), n.e.,

which gives σ(A1) ≤ d < 1, a contradiction to the condition σ(A1) = 1.

(4) By setting H = f ′

f , (2.5) yields,

Hk + Dk−1H
k−1 + · · ·+ D1H + D0 = 0, (2.16)

where Dj is a polynomial in the logarithmic derivatives H(m)

H for m = 1, . . . , k and in A1. It
follows from (2.16) that

m(r,H) ≤ O{log T (r,H) + log r}+
k∑

m=1

m(r,
H(m)

H
) + m(r,A1)

= O{log T (r,H) + log r}+ m(r,A1), n.e..

So

log T (r,H) ≤ log m(r,A1) + log log r + log N(r,H) + log M

≤ M(1 + ε) log r, n.e..

This gives log T (r, f ′

f ) = o(rd), n.e. as r → +∞ as required.
(5) It follows from Ak−1 = 0 that the Wronskian W (f1 · · · fk) is a non-zero constant, say

c, we can write
c

E
=

W (f1 · · · fk)
f1 · · · fk

,
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so c
E is represented as a determinant in the functions f

(m)
j /fj for j = 1, . . . , k and m = 1, . . . , k−1.

But each of these functions satisfies, by (4)

log T (r,
f

(m)
j

fj
) = o(rd) as r → +∞, n.e..

So log T (r,E) = o(rd), n.e. as r → +∞. This completes the proof of Lemma 4. ¤

Lemma 5 ([2]) Let k ≥ 2, L be a subset of (1,+∞) having infinite linear measure, and φ(r)
be a positive increasing function on (1,+∞) such that φ(r)/ log r → +∞ as r → +∞. Suppose

that f1, . . . , fk are meromorphic in the plane, such that the following hold, as r → +∞ in L:

(i) For each j, log T (r, fj) 6= o(φ(r));
(ii) For i 6= j, log T (r, fi/fj) 6= o(φ(r));
(iii) For each j, log T (r, f ′j/fj) = o(φ(r)).
Then f1, . . . , fk are linearly independent.

Remark 3 If f(z) satisfies a homogeneous linear differential equation with rational coefficients,
and if f(z) has an essential singularity at infinity, then the order of f(z) is a positive rational
number. This follows from the Wiman-Valiron theory [1].

3. Proof of Theorem 1

Proof We define k + 1 solutions of (1.4) from f(z) by

fj(z) = f(z + j2πi) for j = 0, . . . , k.

By Lemma 4 (2), there exists a set Lj ⊂ (0,+∞) of infinite linear measure for each fj such that

log T (r, fj) 6= o(rd) as r → +∞ in Lj .

We take L =
⋃k

j=0 Lj , then m(L) = +∞ and for each j

log T (r, fj) 6= o(rd) as r → +∞ in L

holds obviously. By Lemma 4 (4), we have for each j

log T (r, f ′j/fj) = o(rd), n.e. as r → +∞.

We can assume for i 6= j,

log T (r, fi/fj) 6= o(rd) as r → +∞,

for otherwise by Lemma 4 (3), the functions fi and fj are linearly dependent, and the conclusion
of the Theorem 1 holds with q = |i− j|. Now we can apply Lemma 5 with φ(r) = rd to conclude
that {f0, . . . , fk−1} and {f1, . . . , fk} are both fundamental solution sets for (1.4). Now form the
product

E1 = f0 · · · fk−1 and E2 = f1 · · · fk.

By Lemma 4 (5), we have

log T (r,E2/E1) ≤ log T (r,E1) + log T (r,E2) + O(1) = o(rd), (3.1)
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as r→ +∞, n.e.. But E2/E1 = fk/f0 = f(z + k2πi)/f(z), so that (3.1) and Lemma 4 (3) imply
that f0 and fk are linearly dependent. This completes the proof of Theorem 1. ¤

4. Proof of Theorem 2

The proof of Theorem 2 is similar to the proof of Theorem 2 in [2].

Proof From Theorem 1, we know that f(z) and f(z + q2πi) are linearly dependent for some
integer q with 1 ≤ q ≤ k. We can therefore write

f(z) = ed1zG(ez/q), (4.1)

where d1 is a constant and G(ξ) is analytic on 0 < |ξ| < ∞. Now for any R > 1 and any zero
ξ1 of G in R−1 < |ξ| < R, there exists z1 with |z1| < q(log R + π) and exp(z1/q) = ξ1, such
that f(z1) = 0. It follows that counting multiplicity, the number nR of zeros of G in the annulus
R−1 < |ξ| < R satisfies log nR = o(log R). We can therefore write

G(ξ) = ξQu(ξ)v(1/ξ) exp(K(ξ)) (4.2)

where Q is an integer, K is analytic on 0 < |ξ| < ∞, and u, v are entire of order zero, formed as
follows. The function u is the canonical product formed with the zeros of G in |ξ| ≥ 1, and so
has order zero. Similarly, v is a canonical product formed with the zeros of G in 0 < |ξ| < 1, for
each zero ξ1 of G which satisfies 0 < |ξ1| < 1, v has a zero of the same multiplicity at 1/ξ1, so
has order zero, too.

We first prove that K is rational. Set h(z) = K(ez/q). Then

f(z) = W (z)eh(z), (4.3)

where W (z) = ed1zξQu(ξ)v(1/ξ) and log T (r,W ) = o(r). Substituting (4.3) in Eq. (1.4) gives

(h′)k +
k−1∑

j=0

Bj(h′)j + A0 = 0, (4.4)

where each Bj is a polynomial in the logarithmic derivatives W (m)/W and h(m)/h′ for m =
1, . . . , k and in A1, and hence satisfies

m(r,Bj) = O{log T (r, h′) + o(r)}+ m(r,A1) = O{log T (r, h′) + o(r)}+ O(r). (4.5)

Thus from Clunie Lemma, (4.4) and (4.5) give T (r, h′) = O(r), so that T (r, h) = O(r) and by
Lemma 3, h is rational in ez/q.

We now set U(ξ) = u(ξ)v(1/ξ). By (4.1), (4.2) and the fact K is rational, U satisfies a
linear differential equation with rational coefficients. Suppose U is transcendental, from Remark
3, the order of U is a positive rational number, this is a contradiction, since u and v both have
order zero. Set R(ez/q) = u(ez/q)v(e−z/q), S(ez/q) = K(ez/q), d = d1 + Q/q, then f(z) =
R(ez/q) exp(dz + S(ez/q)). This completes the proof of Theorem 2. ¤
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