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1. Introduction

Fractional calculus deals with the generalization of integrals and derivatives of noninteger
order. It involves a wide area of applications by bringing into a broader paradigm concepts
of physics, mathematics and engineering. This is the main advantage of fractional differential
equations in comparison with classical integer-order models. For an extensive collection of such
results, we refer the readers to the monographs by Samko et al. [1], Podlubny [2] and Kilbas et
al. [3]. For the basic theory and recent developments on the subject, we refer to a text by Laksh-
mikantham et al. [4]. Recently, there are some papers dealing with the existence of solutions (or
positive solutions) of nonlinear fractional differential equation by means of techniques of non-
linear analysis (fixed point theorems, Leray-Schauder theory, adomian decomposition method,
lower and upper solution method, etc.), see [5–14].

In a recent paper, by utilizing Guo-Krasnosel’skii fixed point theorem on cones, Zhang
[13] investigated the existence and multiplicity of positive solutions for the nonlinear fractional
differential equation boundary-value problem

{
Dα

0+u(t) = f(t, u(t)), 0 < t < 1,

u(0) + u′(0) = 0, u(1) + u′(1) = 0,

where 1 < α ≤ 2 is a real number, Dα
0+ is the Caputo fractional derivative, and f : [0, 1] ×

[0,+∞) → [0,+∞) is continuous. In [14], Zhao et al. studied the following fractional eigenvalue
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problems {
Dα

0+u(t) = λf(u(t)), 0 < t < 1,

u(0) + u′(0) = 0, u(1) + u′(1) = 0,

where 1 < α ≤ 2 is a real number, Dα
0+ is the Caputo fractional derivative, and f : [0,+∞) →

[0,+∞) is continuous. The eigenvalue intervals of the nonlinear fractional differential equation
boundary value problem are considered, some sufficient conditions for the nonexistence and
existence of at least one or two positive solutions for the boundary value problem are established.

In recent years, the theory of ordinary differential equations in Banach space has become
a new important branch of investigation (see, for example, [15–18] and references therein).
Byszewski [19] initiated the study of nonlocal Cauchy problems for abstract evolution differential
equations. Subsequently several authors discussed the problem for different kinds of nonlinear
differential equations and integro-differential equations including functional differential equations
in Banach spaces [20–25].

Let E be a real Banach space and P be a cone in E which defines a partial ordering in E by
x ≤ y if and only if y − x ∈ P. P is said to be normal if there exists a positive constant N such
that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, where θ denotes the zero element of E, and the smallest
N is called the normal constant of P (it is clear, N ≥ 1). P is called solid if its interior

o

P is
nonempty. If x ≤ y and x 6= y, we write x < y. If P is solid and y − x ∈ o

P , we write x ¿ y. We
refer to [16] for details on cone theory.

Motivated by above papers, we are concerned with the existence of multiple solutions for
the following fractional differential equations with more general boundary conditions in a Banach
space E {

Dα
0+u(t)− f(t, u(t)) = 0, t ∈ J ′,

m1u(0) + m2u
′(0) = 0, n1u(1) + n2u

′(1) = 0,
(1)

where 1 < α ≤ 2 is a real number, Dα
0+ is the Caputo fractional derivative, J = [0, 1], J ′ =

(0, 1), f ∈ C[J ′ × P, P ],m1,m2, n1, n2 with m1 ≤ m2 < (1 + n2
n1

)m1 are nonnegative constants.
As far as we know, there are fewer papers considering the multiplicity of positive solutions for
BVP (1) in a Banach space. First in this paper, we get the Green function for BVP (1) and
discuss its properties. Then, by utilizing the fixed point index theory of completely continuous
operators, we obtain the existence results for multiple positive solutions for BVP (1).

2. Several lemmas

For the convenience of the reader, we give some background materials from fractional cal-
culus theory to facilitate analysis of problem (1). These materials can be found in the recent
literature [2, 3, 13].

Definition 1 ([3]) The Caputo fractional derivative of order α > 0 of a continuous function

f : (0,+∞) → R is given by

Dα
0+f(t) =

1
Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α−n+1

ds,
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where n is the smallest integer greater than or equal to α, provided that the right side is pointwise

defined on (0,+∞).

Definition 2 ([3]) The Riemann-Liouville fractional integral of order α > 0 of a continuous

function f : (0,+∞) → R is given by

Iα
0+f(t) =

1
Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided that the right side is pointwise defined on (0,+∞).

Remark 1 ([2]) By Definition 1, under natural conditions on the function f(t), for α → n

Caputo’s derivative becomes a conventional n-th derivative of the function f(t).

Lemma 1 ([13]) Let α > 0. Then the fractional differential equation

Dα
0+u(t) = 0

has solutions u(t) = c0 + c1t + c2t
2 + · · ·+ cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n− 1, where n is the

smallest integer greater than or equal to α.

Lemma 2 ([13]) Let α > 0. Assume that u ∈ Cn[0, 1]. Then

Iα
0+Dα

0+u(t) = u(t) + c0 + c1t + c2t
2 + · · ·+ cn−1t

n−1, for some ci ∈ R, i = 0, 1, 2, . . . , n− 1

where n is the smallest integer greater than or equal to α.

Lemma 3 Suppose that y ∈ C[0, 1]. Then the following linear boundary value problem:
{

Dα
0+u(t) = y(t), t ∈ J ′,

m1u(0) + m2u
′(0) = 0, n1u(1) + n2u

′(1) = 0,
(2)

has a unique solution

u(t) =
∫ 1

0

G(t, s)y(s)ds, (3)

where

G(t, s) =





1
∆Γ(α)

[(m2 −m1t)(n1(1− s) + n2(α− 1))(1− s)α−2 + ∆(t− s)α−1],

0 ≤ s ≤ t ≤ 1,

1
∆Γ(α)

(m2 −m1t)(n1(1− s) + n2(α− 1))(1− s)α−2, 0 ≤ t ≤ s ≤ 1,

(4)

∆ = m1(n1 + n2)− n1m2. (5)

Proof By Lemma 2, we can deduce the equation of problem (2) to an equivalent integral
equation

u(t) = Iα
0+y(t)− c0 − c1t =

1
Γ(α)

∫ t

0

(t− s)α−1y(s)ds− c0 − c1t. (6)

According to the properties of the Caputo derivative, we have

u′(t) =
1

Γ(α− 1)

∫ t

0

(t− s)α−2y(s)ds− c1. (7)
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Then, we get

u(0) = −c0, u′(0) = −c1,

u(1) =
1

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds + u(0) + u′(0),

u′(1) =
1

Γ(α− 1)

∫ 1

0

(1− s)α−2y(s)ds + u′(0),

which together with the boundary conditions imply that
{

m1c0 + m2c1 = 0,

n1c0 + n1c1 + n2c1 = n1I
α
0+y(1) + n2I

α−1
0+ y(1).

Therefore,

c0 =
−m2(n1I

α
0+y(1) + n2I

α−1
0+ y(1))

m1(n1 + n2)− n1m2
,

c1 =
m1(n1I

α
0+y(1) + n2I

α−1
0+ y(1))

m1(n1 + n2)− n1m2
.

We can easily get that

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds +
m2 −m1t

∆

[ n1

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds+

n2

Γ(α− 1)

∫ 1

0

(1− s)α−2y(s)ds
]

=
1

∆Γ(α)

∫ t

0

[(m2 −m1t)(n1(1− s) + n2(α− 1))(1− s)α−2 + ∆(t− s)α−1]y(s)ds+

1
∆Γ(α)

∫ 1

t

(m2 −m1t)(n1(1− s) + n2(α− 1))(1− s)α−2y(s)ds

=
∫ 1

0

G(t, s)y(s)ds ¤ (8)

Lemma 4 G(t, s) defined in (4) satisfies the following conditions

(i) G(t, s) ∈ C([0, 1]× [0, 1)) and G(t, s) > 0 for t, s ∈ (0, 1),
(ii)

max
t∈[0,1]

G(t, s) ≤ 1
∆Γ(α)

[m2(n1(1− s) + n2(α− 1))(1− s)α−2 + ∆(1− s)α−1]

≤ 1
∆Γ(α)

[(m2n1 + ∆)(1− s)α−1 + m2n2(α− 1)(1− s)α−2].

Proof It follows from the expression of G(t, s) that G(t, s) ∈ C([0, 1] × [0, 1)). Notice that
m1 ≤ m2 < (1 + n2

n1
)m1, we can easily get that G(t, s) ≥ 0 for t, s ∈ (0, 1). In the following, we

are in position to show (ii). Let

g1(t, s) =
1

∆Γ(α)
[(m2 −m1t)(n1(1− s) + n2(α− 1))(1− s)α−2 + ∆(t− s)α−1], s ≤ t,

g2(t, s) =
1

∆Γ(α)
(m2 −m1t)(n1(1− s) + n2(α− 1))(1− s)α−2, s ≥ t.
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Obviously,

max
t∈[0,1]

g1(t, s) ≤ 1
∆Γ(α)

[m2(n1(1− s) + n2(α− 1))(1− s)α−2 + ∆(1− s)α−1], s ∈ [0, 1],

≤ 1
∆Γ(α)

[(m2n1 + ∆)(1− s)α−1 + m2n2(α− 1)(1− s)α−2].

max
t∈[0,1]

g2(t, s) ≤ 1
∆Γ(α)

m2(n1(1− s) + n2(α− 1))(1− s)α−2

≤ 1
∆Γ(α)

[m2(n1(1− s) + n2(α− 1))(1− s)α−2 + ∆(1− s)α−1]

≤ 1
∆Γ(α)

[(m2n1 + ∆)(1− s)α−1 + m2n2(α− 1)(1− s)α−2]. ¤

Let C[J,E] = {u|u : J → E is continuous on J}. Then C[J,E] is a Banach space with the
norm ‖ · ‖c, where ‖u‖c = maxt∈J{‖u(t)‖}. Let

C[J, P ] = {u ∈ C[J,E] : u(t) ≥ θ, ∀ t ∈ J}.
It is clear, C[J, P ] is a cone in space C[J,E]. A map u ∈ C[J,E]∩Cα[J ′, E] is called a nonnegative
solution of BVP (1) if u(t) ≥ θ for t ∈ J and u(t) satisfies (1). A map u ∈ C[J,E] ∩Cα[J ′, E] is
called a positive solution of BVP (1) if it is a nonnegative solution and u(t) 6≡ θ.

Let α and αc denote the Kuratowski measure of non-compactness in E and C[J,E], respec-
tively. For details on the definition and properties of the measure of non-compactness, the reader
is referred to references [15, 18].

Lemma 5 ([15]) Let H ⊂ C[J,E] be bounded and equicontinuous. Then

αc(H) = max
t∈J

α(H(t)).

Lemma 6 ([16]) Let H be a countable set of strongly measurable function u : J → E such

that there exists a M ∈ L[J,R+] such that ‖u(t)‖ ≤ M(t) a.e. t ∈ J for all u ∈ H. Then

α(H(t)) ∈ L[J,R+] and

α
({∫

J

u(t)dt : u ∈ H
})

≤ 2
∫

J

α(H(t))dt.

Let us list some conditions for convenience.
(H1) There exist a, b ∈ L[J ′, R+] and g ∈ C[R+ ×R+, R+] such that

‖f(t, u0)‖ ≤ a(t) + b(t)g(‖u0‖), ∀t ∈ R+, u0 ∈ P,

and

a∗ =
∫ 1

0

a(s)(1− s)α−1ds < +∞, a∗ =
∫ 1

0

a(s)(1− s)α−2ds < +∞,

b∗ =
∫ 1

0

b(s)(1− s)α−1ds < +∞, b
∗

=
∫ 1

0

b(s)(1− s)α−2ds < +∞;

(H2) There exists c ∈ L[J ′, R+] such that

‖f(t, u0)‖
c(t)‖u0‖ → 0, as u0 ∈ P, ‖u0‖ → ∞
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uniformly for t ∈ J ′, and

c∗ =
∫ 1

0

c(s)(1− s)α−1ds < +∞, c∗ =
∫ 1

0

c(s)(1− s)α−2ds < +∞;

(H3) There exists d ∈ L[J ′, R+] such that

‖f(t, u0)‖
d(t)‖u0‖ → 0, as u0 ∈ P, ‖u0‖ → 0

uniformly for t ∈ J ′, and

d∗ =
∫ 1

0

d(s)(1− s)α−1ds < +∞, d
∗

=
∫ 1

0

d(s)(1− s)α−2ds < +∞;

(H4) For any t ∈ J ′ and r > 0, f(t, Pr) = {f(t, u0) : u0 ∈ Pr} are relatively compact in E,
where Pr = {u ∈ P : ‖u‖ ≤ r}.

Remark 2 It is clear, (H4) holds automatically when E is finite dimensional.
Define an operator A as follows

(Au)(t) =
∫ 1

0

G(t, s)f(s, u(s))ds. (9)

Lemma 7 If (H1) and (H2) are satisfied, then the operator A defined by (9) is a continuous

operator from C[J, P ] into C[J, P ]. If in addition, condition (H4) is satisfied, then A is also

compact.

Proof Let
ε0 =

1
2
α̃−1

1 , (10)

where
α̃1 =

1
∆Γ(α)

[c∗(m2n1 + ∆) + m2n2(α− 1)c∗].

By virtue of conditions (H1) and (H2), for ε0 > 0, there exists r > 0 such that

‖f(t, u0)‖ ≤ ε0c(t)‖u0‖, ∀t ∈ J ′, u0 ∈ P, ‖u0‖ > r,

and
‖f(t, u0)‖ ≤ a(t) + Mb(t), ∀ t ∈ J ′, u0 ∈ P, ‖u0‖ ≤ r,

where
M = max{g(x0) : 0 ≤ x0 ≤ r}. (11)

Hence
‖f(t, u0)‖ ≤ ε0c(t)‖u0‖+ a(t) + Mb(t), ∀t ∈ J ′, u0 ∈ P. (12)

Let u ∈ C[J, P ]. We have by (12)

‖f(t, u(t))‖ ≤ ε0c(t)‖u(t)‖+ a(t) + Mb(t)

≤ ε0c(t)‖u‖c + a(t) + Mb(t), ∀t ∈ J ′, (13)

which together with (H1) and (H2) shows the convergence of the integrals
∫ 1

0
(1−s)α−1f(s, u(s))ds

and
∫ 1

0
(1 − s)α−2f(s, u(s))ds. We can easily know from Lemma 4 that A is well defined. It
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follows from (9) that Au ∈ C[J,E] and (Au)(t) ≥ θ for t ∈ J . To summarize, A maps C[J, P ]
into C[J, P ]. By (9) and Lemma 4, we get

‖(Au)(t)‖ =
∥∥∥

∫ 1

0

G(t, s)f(s, u(s))ds
∥∥∥

≤ 1
∆Γ(α)

∫ 1

0

[(m2n1 + ∆)(1− s)α−1 + m2n2(α− 1)(1− s)α−2]·
‖f(s, u(s))‖ds

≤ 1
∆Γ(α)

∫ 1

0

[(m2n1 + ∆)(1− s)α−1 + m2n2(α− 1)(1− s)α−2]

(ε0c(s)‖u‖c + a(s) + Mb(s))ds

≤ ε0

∆Γ(α)
[c∗(m2n1 + ∆) + m2n2(α− 1)c∗]‖u‖c +

1
∆Γ(α)

[(m2n1 + ∆)

(a∗ + Mb∗) + m2n2(α− 1)(a∗ + Mb
∗
)]

=ε0α̃1‖u‖c + β̃1, (14)

where

α̃1 =
1

∆Γ(α)
[c∗(m2n1 + ∆) + m2n2(α− 1)c∗],

β̃1 =
1

∆Γ(α)
[(m2n1 + ∆)(a∗ + Mb∗) + m2n2(α− 1)(a∗ + Mb

∗
)].

It follows from (14) that Au ∈ C[J, P ] and

‖Au‖c ≤ 1
2
‖u‖c + β̃1, ∀u ∈ C[J, P ]. (15)

Next, we are in position to show that A is continuous. Let um, u ∈ C[J, P ], ‖um − u‖c →
0 (m →∞). Then r = supm ‖um‖c < +∞ and ‖u‖c ≤ r. By (9), we get

(Aum)(t) =
∫ 1

0

G(t, s)f(s, um(s))ds. (16)

It is clear,

f(t, um(t)) → f(t, u(t)) as m →∞, ∀t ∈ J ′, (17)

and by (13), we get

‖f(t, um(t))− f(t, u(t))‖ ≤2ε0c(t)r + 2a(t) + 2Mb(t) = λ(t),

∀ t ∈ J ′ (m = 1, 2, 3, . . . , ), λ ∈ L[J,R+], (18)

and

(1− t)α−2‖f(t, um(t))− f(t, u(t))‖ ≤(1− t)α−2[2ε0c(t)r + 2a(t) + 2Mb(t)] = σ(t),

∀ t ∈ J ′ (m = 1, 2, 3, . . . , ), σ ∈ L[J,R+]. (19)

It follows from (18), (19), (H1), (H2) and the Lebesgue’s dominated convergence theorem that

lim
m→∞

∫ 1

0

‖f(t, um(t))− f(t, u(t))‖dt = 0, (20)
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and

lim
m→∞

∫ 1

0

(1− t)α−2‖f(t, um(t))− f(t, u(t))‖dt = 0. (21)

By (9), (16), (20), (21) and Lemma 4, we get

‖(Aum)(t)− (Au)(t)‖ ≤
∫ 1

0

G(t, s)‖f(s, um(s))− f(s, u(s))‖ds

≤
∫ 1

0

1
∆Γ(α)

[(m2n1 + ∆)(1− s)α−1 + m2n2(α− 1)(1− s)α−2]·
‖f(s, um(s))− f(s, u(s))‖ds (22)

which means that ‖Aum −Au‖c → 0 as m →∞. Thus, the continuity of A is proved.

Finally, assume that condition (H4) is satisfied, and we are going to show that A is compact.
Let V = {um : m = 1, 2, 3, . . .} ⊂ C[J, P ] be bounded and ‖um‖c ≤ γ (m = 1, 2, 3, . . .). It is easy
to see from (H1) and (H2) that
∫ 1

0

1
∆Γ(α)

(m1n1(1− s)α−1 + m1n2(α− 1)(1− s)α−2)(ε0γc(s) + a(s) + Mb(s))ds < +∞, (23)

1
Γ(α)

∫ 1

0

(t2 − s)α−1 · (ε0γc(s) + a(s) + Mb(s))ds < +∞, (24)

and ∫ 1

0

1
Γ(α)

((t2 − s)α−1 − (t1 − s)α−1)(ε0γc(s) + a(s) + Mb(s))ds < +∞. (25)

By Lebesgue’s dominated convergence theorem, we get that

lim
t1→t2

∫ 1

0

1
Γ(α)

((t2 − s)α−1 − (t1 − s)α−1)(ε0γc(s) + a(s) + Mb(s))ds = 0. (26)

It follows from the absolute continuity of Lebesgue’s integral and (24), for any ε > 0, there exists
δ1 > 0 such that for t1, t2 ∈ [0, 1], t1 < t2, t2 − t1 < δ1

1
Γ(α)

∫ t2

t1

(t2 − s)α−1 · (ε0γc(s) + a(s) + Mb(s))ds <
ε

5
. (27)

By (26), we know that there there exists δ2 > 0 such that for t1, t2 ∈ [0, 1], t1 < t2, t2 − t1 < δ2

∫ 1

0

1
Γ(α)

((t2 − s)α−1 − (t1 − s)α−1)(ε0γc(s) + a(s) + Mb(s))ds <
ε

5
. (28)

Let

δ3 =
ε

5
·
( ∫ 1

0

1
∆Γ(α)

(m1n1(1− s)α−1 + m1n2(α− 1)(1− s)α−2)(ε0γc(s) + a(s) + Mb(s))ds
)−1

.

Take δ = min{δ1, δ2, δ3}. Then, for any um ∈ V, t1, t2 ∈ [0, 1], t1 < t2, t2 − t1 < δ, we have by
(13), (23), (27) and (28) that

‖(Aum)(t2)− (Aum)(t1)‖

= ‖
∫ 1

0

G(t2, s)f(s, um(s))ds−
∫ 1

0

G(t1, s)f(s, um(s))ds‖
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≤
∫ t1

0

|G(t2, s)−G(t1, s)|‖f(s, um(s))‖ds +
∫ 1

t2

|G(t2, s)−G(t1, s)|‖f(s, um(s))‖ds+

∫ t2

t1

|G(t2, s)−G(t1, s)|‖f(s, um(s))‖ds

=
∫ t1

0

[ 1
∆Γ(α)

(m1n1(t2 − t1)(1− s)α−1 + m1n2(α− 1)(t2 − t1)(1− s)α−2)+

1
Γ(α)

((t2 − s)α−1 − (t1 − s)α−1)
]
· ‖f(s, um(s))‖ds+

∫ 1

t2

1
∆Γ(α)

(m1n1(t2 − t1)(1− s)α−1 + m1n2(α− 1)(t2 − t1)(1− s)α−2) · ‖f(s, um(s))‖ds+

∫ t2

t1

[ 1
∆Γ(α)

(m1n1(t2 − t1)(1− s)α−1 + m1n2(α− 1)(t2 − t1)(1− s)α−2)+

1
Γ(α)

((t2 − s)α−1
]
· ‖f(s, um(s))‖ds

≤ δ

∫ t1

0

1
∆Γ(α)

(m1n1(1− s)α−1 + m1n2(α− 1)(1− s)α−2)(ε0γc(s) + a(s) + Mb(s))ds+

δ

∫ 1

t2

1
∆Γ(α)

(m1n1(1− s)α−1 + m1n2(α− 1)(1− s)α−2) · (ε0γc(s) + a(s) + Mb(s))ds+

δ

∫ t2

t1

1
∆Γ(α)

(m1n1(1− s)α−1 + m1n2(α− 1)(1− s)α−2)(ε0γc(s) + a(s) + Mb(s))ds+

1
Γ(α)

∫ t2

t1

(t2 − s)α−1 · (ε0γc(s) + a(s) + Mb(s))ds +
∫ t1

0

1
Γ(α)

((t2 − s)α−1 − (t1 − s)α−1)

(ε0γc(s) + a(s) + Mb(s))ds

≤ 3δ

∫ 1

0

1
∆Γ(α)

(m1n1(1− s)α−1 + m1n2(α− 1)(1− s)α−2)(ε0γc(s) + a(s) + Mb(s))ds+

1
Γ(α)

∫ t2

t1

(t2 − s)α−1 · (ε0γc(s) + a(s) + Mb(s))ds +
∫ 1

0

1
Γ(α)

((t2 − s)α−1 − (t1 − s)α−1)

(ε0γc(s) + a(s) + Mb(s))ds

≤ 3
5
ε +

ε

5
+

ε

5
= ε, (29)

which implies that {(Aum)(t)} (m = 1, 2, 3, . . .) is equicontinuous on J . Hence, by Lemma 5

αc(AV ) = max
t∈J

{α((AV )(t))}, (30)

where AV = {Aum : m = 1, 2, 3, . . .} and (AV )(t) = {(Aum)(t) : m = 1, 2, 3, . . .}. It follows
from Lemma 6 that

α((AV )(t)) ≤ 2
∫ 1

0

G(t, s)α(f(s, V (s)))ds, ∀t ∈ J. (31)

For fixed s ∈ J, V (s) ⊂ Pγ , we have, by condition (H4),

α(f(s, V (s))) = 0, ∀s ∈ J ′. (32)

Hence, it follows from (31) and (32) that α((AV )(t)) for t ∈ J . Therefore, by (30), αc(AV ) = 0,
and the compactness of A is proved. ¤
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Lemma 8 ([26]) A bounded set W of c0 is relatively compact if and only if

lim
n→∞

{
sup

w∈W
[max{|wm| : m ≥ n}]

}
= 0,

where c0 = {u = (u1, . . . , un) : un → 0} is a Banach space with norm ‖u‖ = supn |un|.

3. Main results

Theorem 1 Let conditions (H1)–(H4) be satisfied. Assume that P is normal and solid, and

there exist v À θ, 0 < t∗ < t∗ < 1 and ρ ∈ C[I, R+] (I = [t∗, t∗]) such that

f(t, u0) ≥ ρ(t)v, ∀t∗ ≤ t ≤ t∗, u0 ≥ v, (33)

and
1

∆Γ(α)
(m2 −m1t

∗)
∫ t∗

t∗
(n1(1− s) + n2(α− 1)(1− s)α−2)ρ(s)ds > 1. (34)

Then, BVP (1) has at least two positive solutions u∗, u∗∗ ∈ C[J, P ]∩C2[J ′E] such that u∗(t) À v

for t∗ ≤ t ≤ t∗.

Proof By Lemma 7, operator A defined by (9) is completely continuous from C[J, P ] → C[J, P ],
and we now need only to show that A has two positive fixed points u∗ and u∗∗ in C[J, P ] such
that u∗(t) À v for t∗ ≤ t ≤ t∗. Choose

R > max
{
2β̃1,

2‖v‖
cos t∗

}
. (35)

Let U1 = {u ∈ C[J, P ] : ‖u‖c < R}. Then U1 = {u ∈ C[J, P ] : ‖u‖c ≤ R} and, by (14) and (27),
we get that

A(U1) ⊂ U1. (36)

Let

ε1 =
1
2
∆Γ(α)[d∗(m2n1 + ∆) + m2n2(α− 1)d

∗
]−1.

By condition (H3), for ε1, there exists a r1 > 0 such that

‖f(t, u0)‖ ≤ ε1d(t)‖u0‖, ∀t ∈ J ′, u0 ∈ P, ‖u0‖ ≤ r1. (37)

Then for u ∈ C[J, P ] with ‖u‖c ≤ r1, we have by (37) that

‖f(t, u(t))‖ ≤ ε1d(t)‖u‖c, ∀t ∈ J ′. (38)

It follows from (9) and (38) that Au ∈ C[J, P ] and

‖(Au)(t)‖ ≤ 1
∆Γ(α)

[d∗(m2n1 + ∆) + m2n2(α− 1)d
∗
]‖u‖c. (39)

Therefore,

‖Au‖c ≤ 1
2
‖u‖c, ∀u ∈ C[J, P ], ‖u‖c ≤ r1. (40)

Choose

0 < r < min
{
r1, R,

‖v‖
N

}
, (41)
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where N denotes the normal constant of P and let U2 = {u ∈ C[J, P ] : ‖u‖c < r}. Then
U2 = {u ∈ C[J, P ] : ‖u‖c ≤ r}, and by (39) and (40),

A(U2) ⊂ U2. (42)

Let U3 = {u ∈ C[J, P ] : ‖u‖c < R, u(t) À v, ∀ t ∈ I}. As in the proof of Theorem 1, in [27,
p244], we can show that U3 is open in C[J, P ]. Let

w(t) = 2
cos t

cos t∗
v. (43)

It is easy to see that w ∈ C[J, P ], ‖w‖ ≤ 2
cos t∗ ‖v‖, w(t) ≥ 2v À v, ∀ t ∈ I. Hence, w ∈ U3 and

so, U3 6= ∅. Obviously,

U3 = {u ∈ C[J, P ] : ‖u‖c ≤ R, u(t) ≥ v, ∀ t ∈ I}.

Let u ∈ U3. By (36), we know that ‖Au‖c ≤ R. On the other hand,

(Au)(t) =
∫ 1

0

G(t, s)f(s, u(s))ds ≥
∫ t∗

t∗
G(t, s)f(s, u(s))ds

≥
∫ t∗

t∗

1
∆Γ(α)

(m2 −m1t
∗)(n1(1− s) + n2(α− 1))(1− s)α−2f(s, u(s))ds

≥ 1
∆Γ(α)

(m2 −m1t
∗)

∫ t∗

t∗
(n1(1− s) + n2(α− 1))(1− s)α−2ρ(s)ds · v

À v. (44)

Hence,

A(U3) ⊂ U3. (45)

It follows from (36), (42), (45) and Lemma 17 that

i(A,Ui, C[J, P ]) = 1, i = 1, 2, 3. (46)

On the other hand, for any u ∈ U3, we have u(t∗) À v, and so,

‖u‖c ≥ ‖u(t∗)‖ ≥ 1
N
‖v‖.

As a consequence,

U2 ⊂ U1 ⊂ C[J, P ], U3 ⊂ U1 ⊂ C[J, P ], U3 ∩ U2 = ∅. (47)

By (46) and (47), we can obtain

i(A,U1\(U2 ∪ U3), C[J, P ]) = 1− 1− 1 = −1. (48)

Therefore, the operator A has at least two fixed points u∗ ∈ U3 and u∗∗ ∈ U1\(U2 ∪ U3), and
‖u∗‖c > r, ‖u∗∗‖c > r. Hence, u∗(t) 6≡ 0, u∗∗(t) 6≡ 0. The proof is completed. ¤

Remark 3 Condition (H3) and the continuity of f imply that f(t, θ) = θ for t ∈ J ′. Hence,
under the conditions of Theorem 1, BVP (1) has the trivial solution u(t) ≡ 0 besides two positive
solutions u∗ and u∗∗.
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Theorem 2 Let conditions (H1), (H2) and (H4) be satisfied. Assume that there exist v > θ, 0 <

t∗ < t∗ < 1 and ρ ∈ C[I, R+](I = [t∗, t∗]) such that (33) and (34) hold. Then, BVP (1) has at

least one positive solution u∗ ∈ C[J, P ] ∩ C2[J ′E] such that u∗(t) ≥ v for t∗ ≤ t ≤ t∗.

Proof As in the proof of Theorem 1, we need only to show that A has one positive fixed point
u∗ ∈ C[J, P ] such that u∗(t) ≥ v for t∗ ≤ t ≤ t∗. Choose R satisfying (35) and let

U4 = {u ∈ C[J, P ] : ‖u‖c ≤ R, u(t) ≥ v, ∀ t ∈ I}.
Clearly, U4 is bounded closed convex set in C[J, P ] and it is nonempty since w ∈ U4, where w is
defined as in (43). Let u ∈ U4. By (36), we have that ‖Au‖c < R. As in the proof of Theorem
1, we can show that

(Au)(t) ≥ v, ∀ t ∈ I, u ∈ U4. (49)

Thus, Au ∈ U4, and therefore
A(U4) ⊂ U4. (50)

Then, the Schauder fixed point theorem implies that A has at least one fixed point u∗ ∈ U4 ⊂
C[J, P ] and u∗(t) ≥ v for t ∈ I. ¤

4. An example

Consider the infinite system of scalar fractional singular differential equations




D
3
2
0+un(t) =

3√
nt

(1 + 10un(t))
1
2 , t ∈ J ′,

un(0) + u′n(0) = 0, un(1) + 2u′n(1) = 0 (n = 1, 2, 3, . . .).
(51)

Conclusion Infinite system (51) has at least one positive solution un(t) satisfying un(t) ≥ 1
n

for t ∈ [ 14 , 1
2 ] (n = 1, 2, 3, . . .).

Proof Let E = c0 = {u = (u1, . . . , un, . . .) : un → 0} with norm ‖u‖ = supn |un| and P = {u =
(u1, . . . , un, . . .) ∈ c0 : un ≥ 0, n = 1, 2, 3, . . .}. Then P is a normal cone in E (but P is not
solid), and infinite system (51) can be regarded as a BVP of form (1) in E. In this situation,
u = (u1, . . . , un, . . .), m1 = m2 = n1 = 1, n2 = 2, α = 3

2 , Γ( 3
2 ) =

√
π

2 , ∆ = 2 and

fn(t, u) =
3√
nt

(1 + 10un(t))
1
2 , ∀t ∈ J ′, u ∈ P. (52)

It is clear, f ∈ C[J ′ × P, P ] and

‖f(t, u)‖ ≤ 3√
t
(1 + 10‖u‖) 1

2 , ∀t ∈ J ′, u ∈ P. (53)

By direct computation, we have

b∗ = c∗ =
∫ 1

0

3√
t
· √1− tdt =

3
2
π,

∫ 1
2

1
4

1− t√
t

dt =
5
6

√
2− 11

12
, (54)

and

b
∗

= c∗ =
∫ 1

0

3√
t
· (1− t)−

1
2 dt = 3π,

∫ 1
2

1
4

1√
t(1− t)

dt =
π

6
. (55)
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It follows from (53)–(55) that (H1) and (H2) hold for a(t) = 0, b(t) = c(t) = 3√
t
, g(x0) =

(1 + 10x0)
1
2 . Let t ∈ J ′ and r > 0. For any w = (w1, . . . , wn, . . .) ∈ f(t × Pr, Pr), we have by

(52)

0 ≤ wn ≤ 3√
nt

(1 + 10r)
1
2 , n = 1, 2, 3, . . . .

So, the relative compactness of f(t, Pr) in c0 follows directly from Lemma 8. Hence, condition
(H4) is satisfied.

Let v = (1, 1/2, . . . , 1/n, . . .). Then, v > θ. For t ∈ [ 14 , 1
2 ], u > v, we have by (52)

fn(t, u) ≥ 3√
nt

(1 + 10
1
n

)
1
2 ≥ 3

√
10√
nt

· 1√
n

=
1
n
· 3
√

10√
t

,

which implies that (33) holds for ρ(t) = 3
√

10√
t

. Thus, by (54) and (55), we get

1
∆Γ(α)

(m2 −m1t
∗)

∫ t∗

t∗
(n1(1− s) + n2(α− 1)(1− s)α−2)ρ(s)ds

=
1√
π
· 1
2
·
∫ 1

2

1
4

[(1− s) + (1− s)−
1
2 ] · 3

√
10√
s

ds

= 3
√

10×
√

π

2π
(
5
6

√
2− 11

12
+

π

6
) ≈ 2.1019927969 > 1, (56)

which means that (34) holds. Hence, our conclusion follows from Theorem 2. ¤
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