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Abstract In this paper, we first find finite travelling-wave solutions, and then investigate

the short time development of interfaces for non-Newtonian diffusion equations with strong

absorption. We show that the initial behavior of the interface depends on the concentration

of the mass of u(x, 0) near x = 0. More precisely, we find a critical value of the concentration,

which separates the heating front of interfaces from the cooling front of them.
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1. Introduction

In this paper, we study the following non-Newtonian diffusion equations with strong ab-
sorption

ut = (|ux|p−2ux)x − λuq, x ∈ R, t > 0, (1.1)

subject to initial value conditions u(x, 0) = u0(x), where p > 2, 0 < q < 1, λ > 0 and u0 is a
nonnegative and continuous function and has compact support. The particular feature of the
equation (1.1) is their gradient-dependent diffusivity with absorption. Such equations are widely
used models for various physical, chemical, and biological problems involving diffusion with
absorption. In the non-Newtonian fluids theory, in particular, the parameter p is a characteristic
quantity of the medium. According to the behavior of the absorption near u = 0, we say that uq

is strong absorption if 0 < q < 1 and uq is weak absorption if q > 1.
We are first interested in a particular class of solutions to (1.1), the finite travelling waves.

By a travelling-wave solution with velocity 0 6= k ∈ R we mean a solution u(x, t) of (1.1) in
Q = {(x, t) : −∞ < x < +∞, t > 0} of the form u(x, t) = φ(kt − x), where φ(η) ≥ 0, φ 6≡ 0
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and φ → 0 as η → −∞. In the case φ(η) = 0 for η ≤ η0 and some η0 ∈ R we say that u

is a finite travelling wave. A finite travelling wave with positive (resp., negative) velocity k is
called a heating wave (resp., a cooling wave) in thermal propagation. For classical heat equation
ut = ∆u − λuq not in the nonlinear equation ut = ∆um − λuq, the travelling waves have been
widely studied since [19] was published [20, 22, 32].

Many authors studied the interfaces of nonlinear diffusion equations in absorbing medium

ut = (um)xx − uq, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
(1.2)

where m > 1, q > 0 and u0(x) is nonnegative and has compact support. Since the diffusion rate
mum−1 vanishes at points where u = 0, the initial support propagates at finite speed; that is,
there appear interface curves between the region where u > 0 and the region where u = 0. It is
shown in the following papers that suppu(x, t) exhibits three properties:

(i) Positivity. suppu(x, t) expands as t increases and limt→∞suppu(x, t) = R for q ≥ m (see
[6, 8, 21, 26, 29]);

(ii) Localization. suppu(x, t) expands as t increases and is uniformly bounded with respect
to t for 1 ≤ q < m. There exist constants L1, L2 such that suppu(x, t) ⊂ [L1, L2] for all t > 0
(see [8, 18, 24, 26, 28, 29]);

(iii) Total extinction. suppu(x, t) is compact for 0 < q < 1. Thus suppu(x, t) expands and/or
shrinks and u(x, t) becomes extinct in a finite time: u(x, t) ≡ 0 for t > T ∗, and u(x, t) 6≡ 0 for
t < T ∗, where T ∗ > 0 is some constant and is called the extinction time of u(x, t) (see [24, 26–28]).

Chen et al. [9] studied the support dynamics of the problem (1.2) with strong absorption.
They showed that, given a nonnegative, continuous and compactly supported initial function
u0, the number of connected components of the positivity set Ω(t) = {x ∈ R : u(x, t) > 0} is
always finite (even if the initial data have infinitely many peaks). If an initial function as above
has only one peak (is “bell-shaped”), it was shown in [9] that the interfaces ζ+(t) and ζ−(t) are
continuous, Ω(t) = {x ∈ R : ζ−(t) < u(x, t) < ζ+(t)}, where

ζ+(t) = sup{x : u(x, t) > 0}, ζ−(t) = inf{x : u(x, t) > 0}

denote the interfaces of solution u at time t and are called the right and left interfaces.

It is worth mentioning that, the support of the corresponding solution of (1.2) is bounded
for each time t > 0 if 0 < q < 1 and u0(x) = O(1 + |x|)−γ as |x| → ∞, where γ > 0 is some
constant. For this phenomenon, we say that the support of solution u(x, t) has the property
of instantaneous shrinking. namely, |ζ±(t)| < ∞ for any t > 0 despite the fact |ζ±(0)| = ∞.
The effect of instantaneous shrinking for (1.2) was discovered in [1, 10], the authors studied
the effect of the spatially dependent coefficient on the effect of instantaneous shrinking for the
semilinear equation ut = uxx− c(x)uq with power-law initial functions. For the Cauchy problem
for the equations ut = (um)xx +(uq)x, this effect was established in [14]. Instantaneous shrinking
property of solutions has been also investigated by other authors (see for example [7, 38, 41–43]
and references therein).
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In this paper we are also interested in the short time development of interfaces of (1.1) with
strong absorption. We show the law governing the motion of the free boundaries in a small time.
For convenience, we only consider the right interface ζ+(t), and the left interface can be handled
in a similar way. Since (1.1) is invariant under the transformations x → −x, x → x + c, c ∈ R,
without loss of generality we will investigate the case when ζ+(0) = 0. More precisely, we are
interested in the short time behavior of the right interface ζ+(t) with ζ+(0) = 0. Since p > 2,
the solutions to equation (1.1) have the property of finite propagation locally in time. This
means that behaviour of u0 as x → −∞ has no influence on our results. Accordingly, we may
suppose that u0(x) = 0 as x < −K, here the constant K is large enough, which is suitable
for existence, uniqueness and comparison results [36]. For more problems concerned with the
interfaces of solution to degenerate parabolic equations, we refer the reader to [2–5, 12, 13, 15–
17, 31, 33–35, 37, 39, 40] and references therein. We also mention the recent work [11] of Ferreira
et al., where the authors investigated the interfaces of inhomogeneous porous medium equations
with convection.

Now we state the main results of this paper.

Theorem 1.1 The equation (1.1) admits a finite travelling-wave solution u(x, t) = φ((kt− x))
with φ(0) = 0 if k 6= 0. Moreover,

(i) limη→0 η−
p

p−1−q φ(η) = [λ p−1−q
(p−1)(q+1) (

p−1−q
p )p−1]

1
p−1−q if (p− 1)q < 1;

(ii) limη→+∞ η−
p

p−1−q φ(η) = [λ p−1−q
(p−1)(q+1) (

p−1−q
p )p−1]

1
p−1−q if (p− 1)q > 1;

(iii) limη→+∞ η−
p−1
p−2 φ(η) = (p−2

p−1 )
p−1
p−2 k

1
p−2 if k > 0, (p− 1)q < 1;

(iv) limη→0 η−
p−1
p−2 φ(η) = (p−2

p−1 )
p−1
p−2 k

1
p−2 if k > 0, (p− 1)q > 1;

(v) limη→+∞ η−
1

1−q φ(η) = [(1− q)(−λ
k )]

1
1−q if k < 0, (p− 1)q < 1;

(vi) limη→0 η−
1

1−q φ(η) = [(1− q)(−λ
k )]

1
1−q if k < 0, (p− 1)q > 1.

(1.3)

In many applications it is important to know whether, for given initial data, the interface
ζ+(t) is a heating or cooling front (support of the solution u(x, t) expands or contracts with
time). Next results shows that the initial behavior of the interface depends on the concentration
of the mass of u(x, 0) near x = 0. We shall compare, locally, u(x, 0) with the auxiliary function
us(x) given by us(x) = C0(−x)

p
p−1−q

+ where

C0 = [λ
p− 1− q

(p− 1)(q + 1)
(
p− 1− q

p
)p−1]

1
p−1−q . (1.4)

It is easy to see that us is the nonnegative stationary solution to the equation (1.1) in R vanishing
on [0,+∞).

Theorem 1.2 Let u be any local non-negative solution to (1.1) with ζ+(0) = 0.

(i) Suppose that there exist x0 ∈ (−∞, 0) and C ∈ (0, C0) such that

u(x, 0) ≤ C(−x)
p

p−1−q

+ for x ∈ [x0, 0].

Then

ζ+(t) ≤ −Lt
p−1−q
p(1−q) for any t ∈ [0, t0],
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for some L > 0 and t0 > 0.

(ii) Suppose that there exist x0 ∈ (−∞, 0) and C ∈ (C0,+∞) such that

u(x, 0) ≥ C(−x)
p

p−1−q

+ for x ∈ [x0, 0].

Then

ζ+(t) ≥ Lt
p−1−q
p(1−q) for any t ∈ [0, t0],

for some L > 0 and t0 > 0.

Finally, we give a brief outline of the rest of this paper. In Section 2, we consider the
travelling-wave solutions of (1.1) and prove Theorem 1.1. The proof of Theorem 1.2 is the
subject of Section 3.

2. Travelling-wave solutions

In this section, by using a phase-plane argument, we find finite travelling-wave solutions for
the equation (1.1), and give the asymptotic behavior of these solutions by constructing various
upper and lower solutions.

Inserting u(x, t) = φ((kt− x)) into (1.1), we have

(|φ′|p−2φ′)′ − kφ′ − λφq = 0 in R.

The above equation is understood in weak sense, i.e., |φ′|p−2φ′ and φ are continuous functions in
R and the equation is satisfied in its standard integral version. Since the finite travelling-wave
solution φ vanishes for η ≤ η0, by translation we may put η0 = 0. Then the equation (1.1) admits
a finite travelling-wave solution if we find a positive function φ in R+ such that

(|φ′|p−2φ′)′ − kφ′ − λφq = 0,

φ(0) = 0, φ′(0) = 0
(2.1)

with k 6= 0 since we can prolong solution φ by 0 on (−∞, 0). In the sequel we analyze the
corresponding phase portrait of the problem (2.1). To this aim, we first give a monotonicity
property of φ.

Lemma 2.1 If φ is a positive solution to (2.1), then φ is increasing in (0,+∞).

Proof For k < 0, we suppose that φ is not increasing in (0,+∞). There exists some η0 such
that φ is strictly increasing on (0, η0) and η0 is local maximum, then (|φ′|p−2φ′)′(η0) ≤ 0. But
by (2.1), we see that (|φ′|p−2φ′)′(η0) > 0, which is a contradiction. Consequently φ′(η) > 0 for
any η > 0.

For k > 0, we define Φ(η) = p−1
p |φ′(η)|p − λ

q+1φq+1(η). Then it follows from (2.1) that
Φ′(η) = k(φ′)2 ≥ 0. Assume that φ is not increasing in (0,+∞) and let η0 be the first zero of φ′.
Then 0 = Φ(0) ≤ Φ(η0) = − λ

q+1φq+1(η0) < 0, which is a contradiction. Consequently φ′(η) > 0
for any η > 0. ¤

We shall show that there exists a unique φ(η) > 0 in R+ satisfying (2.1). Let us introduce
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the variables:
X = φ, Y = (φ′)p−1

and then our problem can be reformulated as finding the nontrivial trajectories of the differential
system

X ′ = Y
1

p−1 , Y ′ = kY
1

p−1 + λXq,

which start from (0, 0) at η = 0, exist for 0 < η < +∞, and are contained in the first quadrant
Ω1 = {(X, Y ) : X > 0, Y > 0} for η > 0. We claim that there exists one and only one such
trajectory Y (X). To show this, we write the system of O.D.E for the trajectories:

dY

dX
= f(X, Y ) = k + λXqY − 1

p−1 ,

Y (0) = 0.
(2.2)

We shall find the nontrivial trajectories Y (X) to (2.2) by two steps. First we prove the global
existence of the solution of the following approximation problem

dY

dX
= k + λXqY − 1

p−1 ,

Y (0) = ε, ε > 0.
(2.3)

Since the function f(X, Y ) is locally Lipschitz continuous function in R+ × (ε,+∞), from the
theory of the ordinary differential equations, we have the existence of unique local solution Yε.
For k > 0, the function Yε(X) is strictly increasing and satisfies the following inequality

dYε

dX
≤ k + λXqε−

1
p−1

and then Yε is global solution.
For k < 0, define the curve C̃ : Y (X) = (−λ

k Xq)p−1, then we have f(X, Y ) = 0 on C̃ and
the curve C̃ divides the first quadrant Ω1 into two regions: Rl = {(X, Y ) : f(X, Y ) < 0} and
Rr = {(X, Y ) : f(X, Y ) > 0} (see Figure 1). Yε starts in region Rl, then Yε must cross C̃ at some
point with horizontal tangent and after Yε lies in the region Rr, where Yε is strictly increasing.
Hence the minimum Mε of Yε reaches on C̃ and is strictly positive. So

dYε

dX
≤ k + λXqM

− 1
p−1

ε

and then Yε is a global solution.

C̃

-

6

f(X, Y ) > 0

f(X, Y ) < 0

X

Y

(0,0)
Figure 1 Trajectories Y (X)
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Next we prove the global existence of the Cauchy problem

dY

dX
= k + λXqY − 1

p−1 ,

Y (ε) = 0.
(2.4)

To this end, we consider the Cauchy problem

dv

dt
= g(t, v) =

1
f(v, t)

=
t

1
p−1

λvq + kt
1

p−1
,

v(0) = ε.

(2.5)

It is easy to see that the problem (2.5) has a unique local solution vε. For k > 0, we have
0 ≤ dvε

dt ≤ 1
k and then vε is global. For k < 0, we denote by C̃ the curve f(v, t) = 0. Then

C̃ divides the first quadrant Ω1 into two regions: Rl = {(v, t) : f(v, t) > 0} and Rr = {(v, t) :
f(v, t) < 0} (see Figure 2). vε starts in region Rl and dvε

dt is strictly positive and approaches
+∞ as f(vε, t) → 0. Consequently vε is strictly increasing and does never touch the curve C̃.
Therefore vε is global. Moreover, we can see limt→+∞ vε(t) = +∞. This means that vε is a one
to one from [0,+∞) to [ε,+∞). Now let wε be the inverse function of vε defined from [ε,+∞)
to [0,+∞). It is easy to see that wε satisfies the following Cauchy problem

dwε

dX
= k + λXqw

− 1
p−1

ε ,

wε(ε) = 0.

Therefore, the problem (2.4) has a unique global solution for any ε > 0.

C̃

-

6

f(v, t) < 0

f(v, t) > 0

t

v

(0,0)
Figure 2 Trajectories v(t)

Lemma 2.2 The problem (2.2) has a unique global solution.

Proof We will prove the uniqueness at first. Assume that there exist two solutions Y1 and Y2

of (2.2) such that Y1 6≡ Y2. Define M = sup{r > 0;Y1(X) = Y2(X) for 0 ≤ X < r} and let N

be close to M , such that N > M . Without loss of generality we assume Y1(N) > Y2(N). Set
Z(X) = Y1(X)− Y2(X), then there exists some X0 ∈ (M, N ] satisfying

0 ≤ Z(N)− Z(M) = λXq
0 (Y

− 1
p−1

1 (X0)− Y
− 1

p−1
2 (X0))(N −M) < 0,
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which is a contradiction and then Y1 ≡ Y2.

It remains to prove the existence. Let Yε be the solution of (2.3). As {Yε} is a decreasing
sequence as ε → 0+, there exists some function Y (X) such that limε→0+ Yε(X) = Y (X) with
Y (0) = 0. In order to prove that Y is the solution of (2.2), we firstly prove that Y (X) is strictly
positive for any X > 0. Let Y ε be the solution of (2.4). Since Yε and Y ε satisfy the same
equation in (ε,+∞). Taking any δ0 ∈ (0,+∞) and using the fact that {Y ε} is an increasing
sequence as ε → 0+, we get

Y (δ0) = lim
ε→0

Yε(δ0) ≥ lim
ε→0

Y ε(δ0) ≥ Y
δ0
2 (δ0) > 0

and then Y is strictly positive on (0,+∞).

Now we will prove that the function Y is a solution of the problem (2.2). In fact, since Yε

is the solution of (2.3), for any test function ϕ ∈ D((0,+∞)) we have
∫ +∞

0

Yε(X)ϕ′(X)dX +
∫ +∞

0

(k + λXqY
− 1

p−1
ε (X))ϕ(X)dX = 0.

By letting ε → 0 we get

dY

dX
= k + λXqY − 1

p−1 (X) in D′([0,+∞)). (2.6)

Then for any 0 < α < β, we deduce
∫ β

α
| dY
dX |dX is finite, therefore Y ∈ W 1,γ((α, β)) for any

γ ∈ N− {0}. Then Y and dY
dX are continuous in (α, β). Therefore (2.6) holds in the usual sense

in (0,+∞). ¤
Let Y be the solution of the problem (2.2). For the problem

dφ

dη
= Y

1
p−1 (φ(η)), φ(0) = 0, (2.7)

there exists a unique maximal solution defined in (−∞, β) such that limη→β− φ(η) = +∞. In
fact we have φ′(0) = 0 by (2.7), then we can prolong solution φ by 0 on (−∞, 0). On the other
hand, as φ is strictly increasing, we obtain limη→β− φ(η) = +∞ if β is finite; while if β = +∞,
it is easy enough to use (2.7) to get also limη→β− φ(η) = +∞.

Noting that the solution of (2.7) defined in (−∞, β) satisfies

(|φ′|p−2φ′)′ − kφ′ − λφq = 0 in (−∞, β),

φ(0) = 0, φ′(0) = 0.
(2.8)

Next, we will prove the solution of (2.8) is global. For that we need the asymptotic behavior
of the solution Y (X) to the problem (2.2).

Lemma 2.3 Let Y be the solution of (2.2). Then we have

(i) Y (X) ≈ [ λp
(p−1)(q+1) ]

p−1
p X

(p−1)(q+1)
p as X → 0 if (p− 1)q < 1;

(ii) Y (X) ≈ [ λp
(p−1)(q+1) ]

p−1
p X

(p−1)(q+1)
p as X → +∞ if (p− 1)q > 1;

(iii) Y (X) ≈ kX as X → +∞ if k > 0, (p− 1)q < 1;

(iv) Y (X) ≈ kX as X → 0 if k > 0, (p− 1)q > 1;

(v) Y (X) ≈ (− k
λ )1−pX(p−1)q as X → +∞ if k < 0, (p− 1)q < 1;
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(vi) Y (X) ≈ (− k
λ )1−pX(p−1)q as X → 0 if k < 0, (p− 1)q > 1,

here f(x) ≈ g(x) as x → c means that f(x)
g(x) → 1 as x → c.

Proof We only prove conclusions (i), (ii), and conclusions (iii)–(vi) can be obtained in a similar
way. We consider Ỹ (X) = AXα, where A,α > 0 are determined later. It is easy to see that Ỹ

is a supersolution of (2.2) (resp., subsolution) if and only if

AαXα−1 ≥ k + λXqA−
1

p−1 X− α
p−1 , (2.9)

respectively,

AαXα−1 ≤ k + λXqA−
1

p−1 X− α
p−1 . (2.10)

Let α = (p−1)(q+1)
p . Then (2.9) and (2.10) become

(p− 1)(q + 1)
p

A ≥ kX1− (p−1)(q+1)
p + λA−

1
p−1 ,

respectively,
(p− 1)(q + 1)

p
A ≤ kX1− (p−1)(q+1)

p + λA−
1

p−1 .

Noting that (p− 1)q < 1 implies that (p−1)(q+1)
p < 1. Then Ỹ is a supersolution of (2.2) (resp.,

sub-solution) in the neighborhood 0 for all A > [ λp
(p−1)(q+1) ]

p−1
p (resp., A < [ λp

(p−1)(q+1) ]
p−1

p ).
Consequently

Y (X) ≈ [
λp

(p− 1)(q + 1)
]

p−1
p X

(p−1)(q+1)
p as X → 0.

Noting that (p− 1)q > 1 implies that (p−1)(q+1)
p > 1. Then Ỹ is a supersolution of (2.2) (resp.,

sub-solution) in the neighborhood +∞ for all A > [ λp
(p−1)(q+1) ]

p−1
p (resp., A < [ λp

(p−1)(q+1) ]
p−1

p ).
Consequently

Y (X) ≈ [
λp

(p− 1)(q + 1)
]

p−1
p X

(p−1)(q+1)
p as X → +∞. ¤

Proof of Theorem 1.1 As long as φ(η) 6= 0 (consequently Y (φ(x)) 6= 0), we rewrite the
equality (2.7) as

Y − 1
p−1 (φ(η))φ′(η) = 1. (2.11)

Integrating (2.11) on (η1, η) ⊂ (0, β) yields

η − η1 =
∫ φ(η)

φ(η1)

Y − 1
p−1 (s)ds. (2.12)

By letting η → β in (2.12), we obtain β = ∞ if and only if
∫ +∞

Y − 1
p−1 (s)ds = ∞. (2.13)

By (ii), (iii), (v) in Lemma 2.3, we know that the formula (2.13) holds, then the solution of (2.8)
is global and the equation (1.1) admits a finite travelling-wave solution u(x, t) = φ((kt − x)).
Combining Lemma 2.3 and dφ

dη = Y
1

p−1 (φ(η)), and integrating, we obtain (1.3) in Theorem 1.1.
¤
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3. Interfaces

In order to study the interface, we first study the self-similar solutions of the equation (1.1)
with special initial data

u(x, 0) = C(−x)
p

p−1−q

+ for C > 0. (3.1)

Lemma 3.1 Let u be the solution of the equation (1.1) with u(x, 0) given by (3.1). Then there

exists a function f : R→ [0,∞) such that

u(x, t) = t
1

1−q f(
x

t
p−1−q
p(1−q)

). (3.2)

Moreover supp(f) = (−∞, L] with L < +∞, i.e.,

f(y) = 0 for any y ≥ L. (3.3)

Proof We put
uk(x, t) = ku(k−

p−1−q
p x, kq−1t),

where k > 0 and u(x, t) is the solution of (1.1) with u(x, 0) = C(−x)
p

p−1−q

+ , C > 0. Then uk(x, t)
solves the problem

ukt = (|ukx|p−2ukx)x − λuq
k, x ∈ R, t > 0,

uk(x, 0) = C(−x)
p

p−1−q

+ , x ∈ R.

By the uniqueness of the solution to the equation (1.1) with u(x, 0) given by (3.1), we conclude
that uk(x, t) = u(x, t) for any k > 0. Now, given τ > 0, we choose k = τ

1
1−q and so we have that

u(x, τ) = τ
1

1−q u(τ−
p−1−q
p(1−q) x, 1). Finally, given y ∈ R, we define f(y) = u(y, 1). Making t = τ , we

obtain (3.2). In order to prove (3.3), we consider the Cauchy problem

ut = (|ux|p−2ux)x, x ∈ R, t > 0,

u(x, 0) = C(−x)
p

p−1−q

+ , x ∈ R.

Using the comparison principle, we have that 0 ≤ u(x, t) ≤ u(x, t) for any (x, t) ∈ R× [0,+∞).
Since the operator (|ux|p−2ux)x has a finite propagation property for p > 2, we know that for
any t ≥ 0 we have that sup{x : u(x, t) > 0} < +∞ and hence sup{x : u(x, t) > 0} < +∞ is also
finite. Choosing t = 1, we obtain (3.3). ¤

For the equation (1.1) with u(x, 0) = C(−x)
p

p−1−q

+ , C > 0, we know from Lemma 3.1 that
the interface ζ+(t) = Lt

p−1−q
p(1−q) . And so the behavior of ζ+(t) is determined by the sign of L.

Lemma 3.2 Let C0, u(x, 0) and f be given by (1.4), (3.1) and (3.2), respectively. Let L ∈ R be

defined by L = sup{y : f(y) > 0}. Then we have (i) C = C0 implies L = 0; (ii) C < C0 implies

L < 0; (iii) C > C0 implies L > 0.

Proof If C = C0, it follows from the uniqueness of solutions to the equation (1.1) with u(x, 0)
given by (3.1) that u(x, t) = C0(−x)

p
p−1−q

+ and so the conclusion (i) holds. When C 6= C0, we
divide the proof into three cases.

Case 1 (p− 1)q < 1. By Theorem 1.1, there exists a family of travelling-wave solutions to the
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equation (1.1) of the form u(x, t; k) = φ ((kt− x)) for arbitrary k ∈ R. Now let C < C0 and take
k < 0. By (1.3) there exists M > 0 such that

φ(η) > Cη
p

p−1−q for 0 < η < M.

On the other hand, by the continuity of φ and u, there exists t0 > 0 such that

u(−M, t; k) ≥ u(−M, t) for any t ∈ [0, t0].

Then we compare u(x, t; k) and u(x, t) in the region [−M, M ]× [0, t0] and obtain

u(x, t; k) ≥ u(x, t) in [−M, M ]× [0, t0].

Thus, since k < 0, the conclusion (ii) holds. Finally, if C > C0, we choose k > 0 and by a similar
argument we obtain (iii).

Case 2 (p− 1)q = 1. In this case function f can be made explicit and so

u(x, t) = C
[(

((
p− 1
p− 2

)p−1Cp−2 − λ(
p− 2
p− 1

)Cq−1)t− x
)
+

] p−1
p−2

.

It is easy to check that the assertions (ii) and (iii) follow.

Case 3 (p − 1)q > 1. Given 0 6= k ∈ R and ξ ∈ R, again by Theorem 1.1 and under the
transformations x → x + ξ, there exists a family of travelling-wave solutions to the equation in
(1.1) of the form u(x, t; k, ξ) = φ((kt− x + ξ). If C < C0, by (1.3) there exists M > 0 such that

φ(η) > Cη
p

p−1−q for η > M.

Let ξ = M . u(x, t; k, M) is a solution of (1.1) with u(x, 0) = φ((−x + M)). Besides, from (1.3),
we obtain that

φ((−x + M)) ≥ C(−x)
p

p−1−q

+ for any x ∈ R.

Then by the comparison principle we have that

u(x, t; k, M) ≥ u(x, t) for any x ∈ R, t ≥ 0.

Finally, choosing k < −M < 0, we obtain (ii).
If C > C0, we choose k > 0. By (1.3) we have that

φ(η) < Cη
p

p−1−q for η > M

for some M > 0. Let K = max{φ(η) : 0 ≤ η ≤ M} and ξ = max{M, (K
C )

p−1−q
p }. u(x, t; k,−ξ) =

φ ((kt− x− ξ)) is a solution of (1.1) with u(x, 0) = φ((−x− ξ)). In addition

φ((−x− ξ)) ≤ C(−x)
p

p−1−q

+ for any x ∈ R.

Then by the comparison result u(x, t; k,−ξ) ≤ u(x, t) for any x ∈ R, t ≥ 0. We select k > ξ > 0
and see that (iii) holds. ¤

Proof of Theorem 1.2 Let u be any continuous solution of the equation (1.1). Assume that
there exist x0 ∈ (−∞, 0) and C ∈ (0, C0) such that

u(x, 0) ≤ C(−x)
p

p−1−q

+ if x ∈ [x0, 0]. (3.4)
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Let C1 satisfy C < C1 < C0, and let v be the solution of the equation (1.1) with u(x, 0) =
C1(−x)

p
p−1−q

+ for x ∈ R. From the continuity of u, v and the inequality (3.4), we deduce the
existence of a time t0 > 0 such that u(x0, t) ≤ v(x0, t) for any t ∈ [0, t0]. Then we are allowed to
apply the comparison principle for the solution to the equation (1.1) on the set Q0 = (x0,+∞)×
(0, t0) and thus we have

u(x, t) ≤ v(x, t) for any (x, t) ∈ Q. (3.5)

By Lemma 3.2 and (3.5), the conclusion (i) of Theorem 1.2 is immediate. The proof of the
assertion (ii) is similar to the previous one. ¤
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