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Abstract The purpose of this paper is to investigate the problem of finding a common

fixed point of Lipschitz mappings. We introduce a multistep Ishikawa iteration approximation

method which is based upon the Ishikawa iteration method and the Noor iteration method,

and we prove some necessary and sufficient conditions for the strong convergence of the it-

eration scheme to a common fixed point of a finite family of quasi-Lipschitz mappings and

pseudocontractive mappings, respectively. In particular, we establish a strong convergence

theorem of the sequence generated by the multistep Ishikawa scheme to a common fixed point

of nonexpansive mappings. As applications, some numerical experiments of the multistep

Ishikawa iteration algorithm are given to demonstrate the convergence results.

Keywords convex feasibility problem; common fixed point problem; Lipschitz mappings.

MR(2010) Subject Classification 47H09; 47L07; 65F10

1. Introduction

Recall that the convex feasibility problem (CFP) is formulated as follows: If
⋂k

i=1 Ci 6= ∅,

Find a point x∗ ∈
k⋂

i=1

Ci, (1)

where k ≥ 1 is an integer, and each Ci is a nonempty closed convex subset of a Hilbert space H.
It is a central problem for many areas of applied mathematics and the physical sciences. It has
been used to model significant real-world problems in image reconstruction from projections [1],
in inverse problems in radiation therapy treatment planning [2, 3], in fractal image coding [4], in
compressed sensing [5, 6], in image processing [7, 8], in electron microscopy and signal processing
[9], etc. A complete and exhaustive study on algorithms and applications for solving the convex
feasibility problem can be found in [10]. A common approach to the (CFP) is to use projection
algorithms, which employ orthogonal projections onto the individual sets Ci. The orthogonal
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projection PΩ(x) of a point x ∈ H onto a closed convex set Ω ⊆ H is defined by

PΩ(x) := arg min{‖x− z‖ | z ∈ Ω}, (2)

where ‖ · ‖ denotes the norm in H. There are two basic algorithmic structures of projection
algorithms, one is the sequential projection algorithm; the other is the simultaneous projection
algorithm.

The well-known “Projections Onto Convex Sets” (POCS) algorithm for the (CFP) is a
sequential projection algorithm. The POCS algorithm is defined by the iteration process

{
x1 ∈ H,

xn+1 = xn + λn

(
PCi(n)(xn)− xn

)
, n ≥ 1,

(3)

where {λn} are relaxation parameters and the control sequence {i(n)} is periodic, i.e., i(n) =
n(mod k) + 1.

The simultaneous projection algorithm is defined by the following




x1 ∈ H,

xn+1 = xn + λn

( k∑

i=1

ωiPi(xn)− xn

)
, n ≥ 1,

(4)

where {ωi}k
i=1 ⊆ (0, 1) and

∑k
i=1 ωi = 1.

Since the projection algorithm (3) and (4) perform projections onto the individual sets,
otherwise the whole family of sets, which make them successful in real-world applications. The
sequential algorithmic structures cater for the row action approach while simultaneous algorith-
mic structures favor parallel computing platforms.

It is observed that the (CFP) can be formulated as finding a common fixed point problem
(CFPP) for nonlinear mappings:

x∗ ∈
k⋂

i=1

Fix(Ti), (5)

where each Ti : H → H is a (nonlinear) mapping, Fix(Ti) denotes the fixed point set of Ti. If
we take Ti = PCi , then the common fixed point problem (CFPP) is reduced to (CFP).

It is an interesting problem to find out for what kind of mappings Ti one can solve (CFPP)
iteratively (assuming the existence of solutions). The iterative methods for solving (CFPP) can
be obtained by replacing the projection operators PCi

of (3) and (4) by operators Ti. Hence, the
iterative algorithms are defined by the recursion:

{
x1 ∈ H,

xn+1 = xn + λn(T[n](xn)− xn), n ≥ 1,
(6)

where [n] = n(mod k) + 1, and




x1 ∈ H,

xn+1 = xn + λn

( k∑

i=1

ωiTi(xn)− xn

)
, n ≥ 1.

(7)
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The iterative algorithms (6) and (7) maintain the sequential and simultaneous algorithmic struc-
ture of (3) and (4), respectively. In the literature, there exists a lot of work for solving (CFPP)
by virtue of iterative schemes (6) and (7). Crombez [11] studied the iterative algorithm (7)
for finding common fixed point of a finite set of paracontractions. The Halpern type iterative
schemes could be seen as a special case of (6) which is defined by:

{
x1 = x ∈ H,

xn+1 = (1− λn)x + λnT[n]xn, n ≥ 1.
(8)

Bauschke [12] first used the Halpern type iterative sequence (8) to find a common fixed point
of a finite family of nonexpansive mappings. Wang [13] constructed an explicit cyclic iteration
scheme which is based on the algorithmic structure (6) to approximate a common fixed point of a
finite family of nonself asymptotically nonexpansive mappings and proved some strong and weak
convergence theorems for such mappings. Osilike and Shehu [14], Qin et al. [15] independently
proved that the explicit cyclic iteration scheme converges weakly to a common fixed point of a
finite family of asymptotically strictly pseudocontractive mappings. It is recommended for the
interested readers to [16] and [17] for an extensive study of the theory about iterative fixed point
theory.

Besides the iterative algorithms (6) and (7), there exists other important algorithms to solve
(CFPP) which has a different algorithmic structure from (6) and (7). It is usually called the
multistep Ishikawa iterative sequence which is defined by the following form:





x1 ∈ H,

xn+1 = (1− α1n)xn + α1nT1y1n,

y1n = (1− α2n)xn + α2nT2y2n,

...

y(k−1)n = (1− αkn)xn + αknTkxn, n ≥ 1,

(9)

where {αin}∞n=1 is a sequence in (0, 1) for each i = 1, 2, . . . , k. The multistep Ishikawa iterative
sequence (9) can be rewritten more compactly as follows:





x1 ∈ H,

xn+1 = (1− α1n)xn + α1nT1y1n,

yjn = (1− α(j+1)n)xn + α(j+1)nTj+1y(j+1)n, n ≥ 1,

(10)

where j = 1, 2, . . . , k − 1. It is worth mentioning that the multistep Ishikawa iterative sequence
includes many well-known iteration schemes, such as the Ishikawa iteration scheme [18], the
Krasnoselskij-Mann iteration scheme [19], the Noor iteration scheme [20], etc. We demonstrate
the algorithmic structure of (6), (7) and (9) with the aid of Figure 1. For simplicity, we take
the convex sets to be hyper planes, denoted by C1 and C2, and assume all operators Ti to be
orthogonal projections onto the hyper planes.
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Figure 1 (a) Kaczmarz projections algorithm. (b) Sequential projections algorithm.

(c) Simultaneous projections algorithm. (d) Multistep Ishikawa projections algorithm.

Figure 1(a) depicts the Kaczmarz projections’ algorithm, which is a special case of sequential
projections’ algorithm. It is also called POCS (Projections Onto Convex Sets) algorithm. Figure
1(b) exhibits the sequential algorithmic structure with relaxation parameters belonging to (0, 1).
In Figure 1(c) we show the fully simultaneous algorithmic structure. Cimmino first proposed
such an algorithm for solving linear equations, which involved orthogonal reflections instead of
orthogonal projections. Figure 1(d) gives the examples of multistep Ishikawa iterative algorithm.

Since the iterative schemes (6) and (7) belong to the sequential algorithm and the simultane-
ous algorithm, respectively. They have been used to solve the (CFPP) successfully. Nevertheless,
the multistep Ishikawa iterative scheme (9) neither belongs to the sequential algorithm nor the
simultaneous algorithm. We are motivated to use the multistep Ishikawa iterative scheme (9) to
solve the (CFPP).

The paper is organized as follows. In the next section, we present some preliminaries. In
Section 3, we prove necessary and sufficient condition for the strong convergence of the multistep
Ishikawa iterative sequence to a common fixed point of quasi-Lipschitz mappings. In particular,
we prove that the sequence generated by this iterative scheme converges strongly to a common
fixed point of nonexpansive mappings. In Section 4, we establish some necessary and sufficient
conditions for the strong convergence of the multistep Ishikawa iterative sequence to fixed point
of a finite family of pseudocontractive mappings. In Section 5, we give numerical examples to
demonstrate the convergence results. Lastly, we make conclusion and give some recommendation
for future work.

2. Preliminaries

Throughout this paper, E is a real Banach space and E∗ is the dual space of E. 〈·, ·〉 denotes
the duality pairing of E and E∗. J : E → 2E∗ is the normalized duality mapping defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖ · ‖f‖, ‖f‖ = ‖x‖}, x ∈ E.
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We shall use the notations ⇀ and → for weak convergence and strong convergence, respectively.

Definition 2.1 Let C be a nonempty closed convex subset of E, T : C → C be a mapping.

(i) T is called pseudocontractive mapping, if there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2, for all x, y ∈ C.

(ii) T is said to be L-Lipschitzian, where L is a positive constant, if

‖Tx− Ty‖ ≤ L‖x− y‖, for all x, y ∈ C.

(iii) T is called quasi-Lipschitzian, if Fix(T ) 6= ∅ and there exists a positive constant L,

such that

‖Tx− p‖ ≤ L‖x− p‖, for all x ∈ C, p ∈ Fix(T ).

Remark 2.1 If T is pseudocontractive mapping, then the following inequality holds:

‖x− y‖ ≤ ‖x− y + r[(I − T )x− (I − T )y]‖,

for all x, y ∈ C and r > 0. If T is a nonexpansive mapping, then it is obvious that T is
pseudocontractive mapping. If L = 1 in (ii) and (iii), then T is called nonexpansive mapping
and quasi-nonexpansive mapping, respectively.

In the sequel we shall need the following lemma.

Lemma 2.1 ([21]) Let {an}, {bn} and {cn} be sequences of nonnegative real numbers satisfying

the inequality

an+1 ≤ (1 + cn)an + bn, n ≥ 1.

If
∑∞

n=1 cn < +∞ and
∑∞

n=1 bn < +∞, then (i) limn→∞ an exists; (ii) Further, if lim infn→∞ an =
0, we have limn→∞ an = 0.

3. Common fixed point of quasi-Lipschitz mappings

In this section, we first prove a necessary and sufficient condition for a finite family of
quasi-Lipschitz mappings. Then, we prove a strong convergence theorem for a finite family of
nonexpansive mappings, which plays a central role from the practical point of view.

For the rest of the results, Li ≥ 1 denotes the Lipschitz constant of Ti and L = max1≤i≤k{Li}.

Lemma 3.1 Let E be a real Banach space and C be a nonempty closed convex subset of E. Let

{Ti : i = 1, 2, . . . , k} : C → C be a finite family of quasi-Lipschitzian mappings with Lipschitz

constants {Li, i = 1, 2, . . . , k}. Suppose that the sequence {xn} is defined by (9) satisfying the

condition
∑∞

n=1 α1n < +∞. If F :=
⋂k

i=1 Fix(Ti) 6= ∅, then

(i) There exists a sequence {rn} ⊆ (0,∞) such that
∑∞

n=1 rn < +∞ and

‖xn+1 − p‖ ≤ (1 + rn)‖xn − p‖,

for all p ∈ F and n ≥ 1. Furthermore, limn→∞ ‖xn − p‖ exists.
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(ii) There exists a constant M > 1, for all integer m ≥ 1 such that

‖xn+m − p‖ ≤ M‖xn − p‖,

for all p ∈ F .

Proof (i) Let p ∈ F . By (9), we have

‖y(k−1)n − p‖ = ‖(1− αkn)(xn − p) + αkn(Tkxn − p)‖
≤ (1− αkn)‖xn − p‖+ αkn‖Tkxn − p‖
≤ [1 + αkn(L− 1)]‖xn − p‖
≤ L‖xn − p‖,

and

‖y(k−2)n − p‖ = ‖(1− α(k−1)n)(xn − p) + α(k−1)n(Tk−1y(k−1)n − p)‖
≤ (1− α(k−1)n)‖xn − p‖+ α(k−1)nL‖y(k−1)n − p‖
≤ L2‖xn − p‖.

By induction, we obtain

‖y1n − p‖ ≤ (1− α2n)‖xn − p‖+ α2nLk−1‖xn − p‖ ≤ Lk−1‖xn − p‖.

On the other hand, we get from (9) that

‖xn+1 − p‖ = ‖(1− α1n)(xn − p) + α1n(T1y1n − p)‖
≤ (1− α1n)‖xn − p‖+ α1nL‖y1n − p‖
≤ (1− α1n)‖xn − p‖+ α1nLk‖xn − p‖
= [1 + α1n(Lk − 1)]‖xn − p‖
= (1 + rn)‖xn − p‖,

where rn = α1n(Lk − 1). Since α1n < +∞, we have
∑∞

n=1 rn < +∞. By Lemma 2.1, we know
that limn→∞ ‖xn − p‖ exists. Therefore, {xn} is bounded.

(ii) By virtue of the inequality 1 + x ≤ ex, for all x ≥ 0. For any integer m ≥ 1, we have

‖xn+m − p‖ ≤ (1 + rn+m−1)‖xn+m−1 − p‖
≤ ern+m−1‖xn+m−1 − p‖
≤ ern+m−1ern+m−2‖xn+m−2 − p‖
· · ·

≤ e
∑n+m−1

k=n rk‖xn − p‖
≤ e

∑∞
n=1 rn‖xn − p‖ = M‖xn − p‖,

where M =
∑∞

n=1 rn. This completes the proof. ¤

Theorem 3.1 Let E be a real Banach space and C be a nonempty closed convex subset of E.
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Let {Ti : i = 1, 2, . . . , k} : C → C be a finite family of quasi-Lipschitz mappings with Lipschitz

constant {Li : i = 1, 2, . . . , k}. Suppose that the sequence {xn} is defined by (9) satisfying the

condition:
∑∞

n=1 α1n < +∞. Let F :=
⋂k

i=1 Fix(Ti) 6= ∅. Then {xn} converges strongly to a

fixed point of T if and only if lim infn→∞ d(xn, F ) = 0, where d(x, F ) = infq∈F ‖x− q‖.

Proof We follow the line of proof in [22]. First, the necessity of Theorem 3.1 is obvious. We
just need to prove the sufficiency. From Lemma 3.1(i), we have

d(xn+1, F ) ≤ (1 + rn)d(xn, F ).

By Lemma 2.1 and notice the condition lim infn→∞ d(xn, F ) = 0, then limn→∞ d(xn, F )=0.
Next, we show that {xn} is a Cauchy sequence. Indeed, for any ε > 0, there exists an integer

n1 > 0 such that

d(xn, F ) ≤ ε

4M
, for all n ≥ n1.

In particular, there exists p1 ∈ F and a constant n2 > n1 such that

‖xn2 − p1‖ <
ε

2M
.

Using Lemma 3.1(ii) and the above inequality, for all n ≥ n2 and m ≥ 1, we have

‖xn+m − xn‖ ≤ ‖xn+m − p1‖+ ‖p1 − xn‖
≤ 2M‖xn2 − p1‖ < 2M

ε

2M
= ε.

Hence, {xn} is a Cauchy sequence. Since C is a nonempty closed convex subset of E, there
exists a q ∈ C such that xn → q as n → ∞. Finally, we prove that q ∈ F . In fact, note that
d(q, F ) = 0. Therefore, for any ε1 > 0, there exists a p2 ∈ F such that ‖p2 − q‖ < ε1. Then, we
have

‖Tiq − q‖ ≤ ‖Tiq − p2‖+ ‖p2 − q‖
≤ (1 + L)‖p2 − q‖ ≤ (1 + L)ε1.

By the arbitrariness of ε1, we know that ‖Tiq − q‖ = 0, for all i = 1, 2, . . . , k, i.e., q ∈ F .

Remark 3.1 The condition
∑∞

n=1 αin < +∞, for all i = 1, 2, . . . , k in [23] weakened to∑∞
n=1 α1n < +∞. Moreover, a simple example of sequences {αin}∞n=1, for all i = 1, 2, . . . , k

are α1n = 1
(n+1)2 , αjn = δ, for each j = 2, . . . , k, where δ ∈ (0, 1) is a constant.

Nonexpansive mapping with a nonempty fixed point set is a special case of quasi-Lipschitz
mapping with Lipschitz constant L = 1. By using iterative sequence (9), Chidume and Ali [24, 25]
proved weak convergence theorems for finite family of (asymptotically) nonexpansive mappings in
real uniformly convex Banach spaces that satisfy Opial’s condition, or have Fréchet differentiable
norms or the dual space E∗ of E have the Kadec-Klee property. Further, they proved some
strong convergence theorems if one member within the family of (asymptotically) nonexpansive
mappings {Ti} satisfies completely continuous or semicompact or the family {Ti}k

i=1 satisfies
condition (C) in a real uniformly convex Banach space. For application, we build the following
theorem and prove it just in finite dimension case.
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Theorem 3.2 Let {Ti : i = 1, 2, . . . , k} be a finite family of nonexpansive mappings on Hilbert

space H. Assume that F :=
⋂k

i=1 Fix(Ti) 6= ∅. Let {αin}∞n=1 be a sequence in [ε, 1−ε], ε ∈ (0, 1),
i = 1, 2, . . . , k. Then the sequence {xn} defined iteratively (9) converges weakly to a fixed point

of F .

Although the above theorem holds for infinite dimensional H using weak convergence, we
restrict the discussion here to the finite dimensional case. Before we prove this theorem, for the
finite dimensional case, we shall need the following lemma.

Lemma 3.2 ([24]) Let E be a real uniformly convex Banach space and C be a closed convex

nonempty subset of E. Let {Ti : i = 1, 2, . . . , k} : C → C be a finite family of nonexpansive

mappings. Let {αin}∞n=1 be a sequence in [ε, 1 − ε], ε ∈ (0, 1), i = 1, 2, . . . , k. Let {xn} be a

sequence defined iteratively by (9). Then,

lim
n→∞

‖xn − T1xn‖ = lim
n→∞

‖xn − T2xn‖ = · · · = lim
n→∞

‖xn − Tkxn‖ = 0.

Now, we give the proof of Theorem 3.2 in finite dimensional case.

Proof Let p ∈ F . By Lemma 3.1, we have

‖xn+1 − p‖ ≤ ‖xn − p‖.
Consequently, the sequence {xn} is bounded and the sequence {‖xn − p‖} is decreasing. Let x∗

be a cluster point of {xn}, i.e., there exists a subsequence {xni
} of {xn} such that xni

→ x∗.
Then by Lemma 3.2, we know that limn→∞ ‖xn− Tixn‖ = 0, i = 1, 2, . . . , k. Therefore, we have

‖x∗ − Tix
∗‖ ≤ ‖x∗ − xni

‖+ ‖xni
− Tixni

‖+ ‖Tixni
− Tix

∗‖
≤ 2‖x∗ − xni

‖+ ‖xni
− Tixni

‖ → 0 as i →∞.

Then x∗ ∈ Fix(Ti), i = 1, 2, . . . , k, i.e., x∗ ∈ F . Therefore, we may use x∗ in place of the arbitrary
fixed point of p. It follows then that the sequence {‖xn−x∗‖} is decreasing. Since a subsequence
converges to zero, the entire sequence converges to zero. The proof is completed. ¤

4. Common fixed point of pseudocontractive mappings

The class of pseudocontractive mapping is strongly connected with the nonlinear accretive
operators. It is a classical result that if T is an accretive operator, then the solutions of the equa-
tions’ Tx = 0 correspond to the equilibrium points of some evolution systems. In 1974, Ishikawa
[18] introduced the so-called Ishikawa iterative process to approximate fixed points of Lipschitz
pseudocontractive mapping in Hilbert space. Recently, one of the authors [22] established a
necessary and sufficient condition for the strong convergence of the Ishikawa iterative sequence
to a fixed point of pseudocontractive mapping in Banach space, which improved the well-known
results of Ishikawa [18]. In [18] and [22], they just considered the single Lipschitz pseudocon-
tractive mapping. In order to solve the (CFPP) involved by pseudocontractive mapping, we
establish a necessary and sufficient condition for the multistep Ishikawa iterative sequence (9)
that guarantees the strong convergence of {xn} to a common fixed point to the family of {Ti}k

i=1.
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We prove the following theorem.

Theorem 4.1 Let C be a nonempty convex subset of Banach space E. Let {Ti : i = 1, 2, . . . , k} :
C → C be a finite family of Lipschitzian pseudocontractive mappings with Lipschitz constant

{Li, i = 1, 2, . . . , k}. Suppose that F :=
⋂k

i=1 Fix(Ti) 6= ∅. Let the sequence {xn} be defined by

(9) satisfying the conditions:
∑∞

n=1 α1nα2n < +∞ and
∑∞

n=1 α2
1n < +∞. Then

(i) There exists a sequence {rn} ⊆ (0,∞) such that
∑∞

n=1 rn < +∞ and

‖xn+1 − p‖ ≤ (1 + rn)‖xn − p‖,

for all p ∈ F and n ≥ 1.

(ii) There exists a constant M > 1, for all integer m ≥ 1 such that

‖xn+m − p‖ ≤ M‖xn − p‖,

for all p ∈ F .

Proof (i) Let p ∈ F . By (9), we have

xn = xn+1 + α1nxn − α1nT1y1n

= xn+1 + α1n(I − T1)xn+1 + α2
1n(xn − T1y1n) + α1n(T1xn+1 − T1y1n). (11)

Observe that

p = p + αn(I − T1)p. (12)

Together with (11) and (12), we obtain

xn − p =xn+1 − p + α1n[(I − T1)xn+1 − (I − T1)p]+

α2
1n(xn − T1y1n) + α1n(T1xn+1 − T1y1n).

It follows from Remark 2.1 and (13) that

‖xn − p‖ ≥‖xn+1 − p + α1n[(I − T1)xn+1 − (I − T1)p]‖−
α2

1n‖xn − T1y1n‖ − α1n‖T1xn+1 − T1y1n‖
≥‖xn+1 − p‖ − α2

1n‖xn − T1y1n‖ − α1n‖T1xn+1 − T1y1n‖.

This implies that

‖xn+1 − p‖ ≤ ‖xn − p‖+ α2
n‖xn − T1y1n‖+ α1n‖T1xn+1 − T1y1n‖. (14)

Since

‖xn − T1y1n‖ ≤ ‖xn − p‖+ ‖p− T1y1n‖ ≤ ‖xn − p‖+ L‖y1n − p‖
≤ (1 + Lk)‖xn − p‖, (15)

we have

‖T1xn+1 − T1y1n‖ ≤ L‖xn+1 − y1n‖
≤ L‖xn − y1n + α1n(T1y1n − xn)‖
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≤ L‖xn − y1n‖+ Lα1n‖T1y1n − xn‖
≤ α2nL(1 + Lk−1)‖xn − p‖+ α1nL(1 + Lk)‖xn − p‖. (16)

Substituting (15) and (16) into (14), we get

‖xn+1 − p‖ ≤‖xn − p‖+ α2
1n(1 + Lk)‖xn − p‖+

α1nα2nL(1 + Lk−1)‖xn − p‖+ α2
1nL(1 + Lk)‖xn − p‖

=(1 + rn)‖xn − p‖,

where rn = α2
1n(1 + Lk) + α1nα2nL(1 + Lk−1) + α2

1nL(1 + Lk). Since
∑∞

n=1 α1nα2n < +∞ and∑∞
n=1 α2

1n < +∞, we have
∑∞

n=1 rn < +∞. By Lemma 2.1, we know that limn→∞ ‖xn − p‖
exists.

(ii) It follows from Lemma 3.1(ii) immediately.

Theorem 4.2 Let C be a nonempty closed convex subset of Banach space E. Let {Ti, i =
1, 2, . . . , k} : C → C be a finite family of Lipschitzian pseudocontractive mappings with Lipschitz

constant {Li, i = 1, 2, . . . , k}. Suppose that F :=
⋂k

i=1 Fix(Ti) 6= ∅. Let the sequence be

defined by (9) satisfying the conditions:
∑∞

n=1 α1nα2n < +∞ and
∑∞

n=1 α2
1n < +∞. Then

{xn} converges strongly to a fixed point of F if and only if lim infn→∞ d(xn, F ) = 0, where

d(x, F ) = infq∈F ‖x− q‖

Proof The proof is the same as that of Theorem 3.1, so it is omitted here.

Remark 4.1 Theorem 4.2 is significant generalization of the results of [22] from single Lipschitz
pseudocontractive mapping to a finite family of Lipschitz pseudocontractive mappings. The real
sequence {αin}∞n=1 for all i = 1, 2, . . . , k satisfying the theorem can be chosen by

α1n = α2n =
1

n + 1
, αjn = δ, j = 3, . . . , k,

where δ ∈ (0, 1).

5. Applications

In the following, we provide some numerical experiments for the multistep Ishikawa iteration
scheme (9). We consider the linear system equations:

Ax = b, (17)

where Am×n is a matrix, b ∈ Rm and x is the unknown vector. Our simulations are performed
in Matlab 7.8 environment.

First, suppose the equation of (17) is consistent (i.e., it has a solution), and the matrix A

is a 20 × 20 whose entries are independent N(0, 1) random variables. The iterative sequence is
generated by (9) with relaxation parameters αin = 0.6, for all i = 1, 2, . . . , k and initial point x1

used here is the zero vector. The numerical results are in Figure 2.

Figure 2 exhibits the error of ‖Axn − b‖2 with the increasing of iteration’s numbers, where
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‖ · ‖2 denotes the Euclidean norm. Secondly, we consider the system of linear equations (17) is
corrupted by noise, i.e., Ax ≈ b + r. The matrix A is the same as in the first experiment with
the noise r being Gaussian distribution with mean 0 and variance 0.01. Figure 3 indicates that
the multistep Ishikawa iteration algorithm is robust, even in the presence of small noise.
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Figure 2 Error of each iteration Figure 3 x∗ is the true value of system (17) and

xn is generated by the proposed algorithm

6. Conclusions

In this paper, we use the multistep Ishikawa iterative process to solve the (CFPP), and
hence to solve the (CFP). We found that this iteration scheme is robust when the observed data
is corrupted by small noise. The problem concerned with the multistep Ishikawa iterative process
is slow convergence. How to accelerate the iteration scheme is the work to be undertaken.
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