Journal of Mathematical Research with Applications Jul., 2013, Vol. 33, No. 4, pp. 475–482 DOI:10.3770/j.issn:2095-2651.2013.04.010 Http://jmre.dlut.edu.cn

The Unstabilized Amalgamation of Heegaard Splittings along Disconnected Surfaces

Xutao GAO, Qilong GUO*

School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract Let M be a 3-manifold, $\mathcal{F} = \{F_1, F_2, \ldots, F_n\}$ be a collection of essential closed surfaces in M (for any $i, j \in \{1, \ldots, n\}$, if $i \neq j$, F_i is not parallel to F_j and $F_i \cap F_j = \emptyset$) and $\partial_0 M$ be a collection of components of ∂M . Suppose $M - \bigcup_{F_i \in \mathcal{F}} F_i \times (-1, 1)$ contains k components M_1, M_2, \ldots, M_k . If each M_i has a Heegaard splitting $V_i \bigcup_{S_i} W_i$ with $d(S_i) > 4(g(M_1) + \cdots + g(M_k))$, then any minimal Heegaard splitting of M relative to $\partial_0 M$ is obtained by doing amalgamations and self-amalgamations from minimal Heegaard splittings or ∂ -stabilization of minimal Heegaard splittings of M_1, M_2, \ldots, M_k .

Keywords unstabilized; distance; amalgamation; Heeaggard splitting.

MR(2010) Subject Classification 57M25

1. Introduction

All surfaces and 3-manifolds in this paper are assumed to be compact and orientable.

Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression bodies V and W with $\partial_+ V = \partial_+ W = S$, then we say that $V \bigcup_S W$ is a Heegaard splitting of M, and S is called a Heegaard surface of M. Moreover, if the genus g(S) of S is minimal among all the Heegaard splittings of M, then g(S) is called the genus of M, denoted by g(M). More generally, let M be a 3-manifold with boundary, and $\partial_0 M$ be a collection of boundary components of M. If $M = V \bigcup_S W$ is a Heegaard splitting such that $\partial_0 M = \partial_- V$ or $\partial_0 M = \partial_- W$, then $M = V \bigcup_S W$ is called a Heegaard splitting relative to $\partial_0 M$. The Heegaard genus of M relative to $\partial_0 M$ is the smallest possible genus of a Heegaard splitting of M relative to $\partial_0 M$, denoted by $g(M, \partial_0 M)$.

If there are two essential disks $B \subset V$ and $D \subset W$ such that $\partial B = \partial D$ (resp., $\partial B \bigcap \partial D = \emptyset$), then $V \bigcup_S W$ is said to be reducible (resp., weakly reducible). Otherwise, it is irreducible (resp., strongly irreducible). If there are two essential disks $B \subset V$ and $D \subset W$ such that $\partial B \bigcap \partial D$ consists of a single point in S, then $V \bigcup_S W$ is said to be stabilized. Otherwise, it is unstabilized.

If a properly embedded surface F in a 3-manifold M is incompressible and not parallel to ∂M , then F is said to be essential.

Received March 6, 2012; Accepted May 22, 2012

Supported by the National Natural Science Foundation of China (Grant No. 10901029).

* Corresponding author

E-mail address: gxt1982@sina.com (Xutao GAO); guoqilong1984@hotmail.com (Qilong GUO)

The distance between two isotopy classes of essential simple closed curves α and β on S, denoted by $d(\alpha, \beta)$, is the smallest integer $n \geq 0$ so that there is a sequence of essential simple closed curves $\alpha = \alpha_0, \ldots, \alpha_n = \beta$ on S such that α_{i-1} is disjoint from α_i for $1 \leq i \leq n$. The distance of the Heegaard splitting $V \bigcup_S W$ is defined to be $\min\{d(\alpha, \beta) | \alpha \text{ bounds a disk in } V \}$ and β bounds a disk in $W\}$ (see [1]).

Let M be a 3-manifold, and F be a connected closed surface in M which cuts M into two 3-manifolds M_1 and M_2 . If $M_i = V_i \bigcup_{S_i} W_i$ is a Heegaard splitting of M_i (i = 1, 2), then M has a natural Heegaard splitting called the amalgamation of $V_1 \bigcup_{S_1} W_1$ and $V_2 \bigcup_{S_2} W_2$ (see [2]). It follows from the construction that $g(M) \leq g(M_1) + g(M_2) - g(F)$.

Figure 1 Amalgamation of Heegaard splittings

Suppose now F is an essential non-separating closed surface in M. Let $M' = M - F \times (0, 1)$, $F_1 = F \times \{0\}$ and $F_2 = F \times \{1\}$. If $V' \bigcup_{S'} W'$ is a Heegaard splitting of M' such that F_1 and F_2 lie in the same side of S', say in W', then there is a natural Heegard splitting of M as follows. See Figure 1.

Since W' is obtained by attaching some 1-handles to $\partial_- W' \times I$, we can take two unknotted arcs $a = \{a_0\} \times I$ and $b = \{b_0\} \times I$ in $\partial_- W' \times I$, where a_0 and b_0 lie in F, such that they are disjoint from all 1-handles in W'. Let c be another unknotted arc in $F \times [0,1]$, such that $r = a \bigcup b \bigcup c$ is a properly embedded arc in $W' \bigcup F \times [0,1]$. Let $V = V' \bigcup \overline{N(r)}, W = \overline{(M-V)}$. It is easy to see that V and W are compression bodies. The Heegaard splitting $V \bigcup_S W$ is said to be the self-amalgamation of $V' \bigcup_{S'} W'$. From this construction, it is easy to see that $g(M) \leq g(M', F_1 \bigcup F_2) + 1$.

Suppose $M = V \bigcup_S W$ is a Heegaard splitting for M and F is a boundary component of M lying in V. Since V is a compression body, we can take an arc $r = \{r_0\} \times I$ in $V - F \times [0, \frac{1}{2}]$ where $\{r_0\} \times 0 \subset F \times \{\frac{1}{2}\}$ and $\{r_0\} \times 1 \subset S$. See Figure 2. Let $W' = W \bigcup N(r) \bigcup F \times [0, \frac{1}{2}]$, $V' = \operatorname{cl}(M - W')$. It is easy to see that $V' \bigcup_{S'} W'$ is a Heegaard splitting of M (see [3]). The Heegaard splitting $V' \bigcup_{S'} W'$ is said to be the ∂ -stabilization of $V \bigcup_S W$ along F.

An important problem on the amalgamation of Heegaard splitting is when $g(M) < g(M_1) + g(M_2) - g(F)$ and when $g(M) = g(M_1) + g(M_2) - g(F)$. In [4] and [5], the authors constructed their examples of $g(M) < g(M_1) + g(M_2) - g(F)$.

In [6], Lackenby proved that if M is obtained by gluing two simple manifolds M_1 and M_2 via a sufficiently complicated mapping $\phi : \partial M_1 \to \partial M_2$, then $g(M) = g(M_1) + g(M_2) - g(F)$. Souto and Li also obtained two different versions of Lackenby's result [7,8]. From another perspective, Kobayashi and Qiu in [9] proved that if M_1 and M_2 have high distance Heegaard splittings, then the minimal Heegaard splitting of the amalgamated 3-manifold of M_1 and M_2 along F is unique. Yang and Lei in [10] extended the result in [9]. Du in [11] proved that if F is an essential non-separating closed surface in an irreducible 3-manifold M and $M - F \times (-1, +1)$ has a high distance Heegaard splitting, then the minimal Heegaard splitting of M is unique up to isotopy.

In [15], Kobayashi and Rieck defined the amalgamation of two Heegaard splittings along disconnected surfaces. In this paper, we prove that:

Figure 2 ∂ -stabilization of Heegaard splitting

Theorem 1.1 Let M be a 3-manifold, $\mathcal{F} = \{F_1, F_2, \ldots, F_n\}$ be a collection of essential closed surfaces in M (for any $i, j \in \{1, \ldots, n\}$, if $i \neq j, F_i$ is not parallel to F_j and $F_i \cap F_j = \emptyset$) and $\partial_0 M$ be a collection of components of ∂M . Suppose $M - \bigcup_{F_i \in \mathcal{F}} F_i \times (-1, 1)$ consists of k components M_1, M_2, \ldots, M_k . If each M_i has a Heegaard splitting $V_i \bigcup_{S_i} W_i$ with $d(S_i) >$ $4(g(M_1) + \cdots + g(M_k))$, then any minimal Heegaard splitting of M relative to $\partial_0 M$ is obtained by doing amalgamations and self-amalgamations from minimal Heegaard splittings or ∂ -stabilization of minimal Heegaard splittings of M_1, M_2, \ldots, M_k .

2. Premilinary

Definition 2.1 Let M be a 3-manifold. A good separating system \mathcal{H} in M is a collection of closed surfaces H_1, H_2, \ldots, H_l , such that

- (1) $M \bigcup_{i=1}^{l} H_i \times (-1, 1)$ consists of two components, and
- (2) for any proper subset \mathcal{H}' of \mathcal{H} , $M \bigcup_{H \in \mathcal{H}'} H \times (-1, 1)$ is connected.

Lemma 2.1 Let $\mathcal{F} = \{F_1, F_2, \ldots, F_n\}$ be a collection of closed surfaces in M. Suppose $M - \bigcup_{i=1}^n F_i \times (-1, 1)$ has k components M_1, M_2, \ldots, M_k . Then there exits a unique subset \mathcal{F}_0 of \mathcal{F} , such that

(1) $M - \bigcup_{i=1}^{n} F_i \times (-1, 1)$ consists of k components $\overline{M_1}, \overline{M_2}, \ldots, \overline{M_k}$, and $M_i \subset \overline{M_i}$ for each i;

(2) \mathcal{F}_0 is minimal among all the subsets of \mathcal{F} satisfying (1).

Proof We construct a graph with respect to $(\mathcal{M}, \mathcal{F})$ as follows:

(1) The set of vertices is $\{M_1, M_2, \ldots, M_k\}$ and the set of edges is $\{F_1, F_2, \ldots, F_n\}$;

(2) If $F_i \times \{-1\} \subset M_{i_1}$ and $F_i \times \{+1\} \subset M_{i_2}$, then the edge F_i connects M_{i_1} and M_{i_2} (it is possible that $i_1 = i_2$ for some F_i). Let $\mathcal{F}_0 = \{F_i : F_i \text{ connects distinct vertices } M_{i_1} \text{ and } M_{i_2}\}$. It is easy to see that \mathcal{F}_0 meets the requirement.

Lemma 2.2 ([12, 13]) Let $M = V \bigcup_S W$ be a Heegaard splitting, and F be an incompressible surface in M. Then either F can be isotoped to be disjoint from S or $d(S) \leq 2 - \chi(F)$.

Lemma 2.3 ([3]) Suppose P and Q are two Heegaard surfaces for a compact orientable 3manifold M. Then either $d(P) \leq 2g(Q)$ or Q is isotopic to P or to a stabilization or ∂ -stabilization to P.

Lemma 2.4 ([3]) Let $V \bigcup_S W$ be a Heegaard splitting such that d(S) > 2g(M). Then $V \bigcup_S W$ is the unique minimal Heegaard splitting of M up to isotopy.

Lemma 2.5 ([9]) Let $M = V \bigcup_S W$ be a strongly irreducible Heegaard splitting, and F be an essential closed surface which cuts M into M_1 and M_2 . Then S can be isotoped so that

- (1) Each component of $S \cap F$ is an essential simple closed curve on both S and F, and
- (2) one of $S \cap M_1$ and $S \cap M_2$ is incompressible.

In a good separating system, it is the same.

3. Proof of main result

Lemma 3.1 Suppose that M is a 3-manifold, $\mathcal{F} = \{F_1, F_2, \ldots, F_n\}$ is a collection of essential closed surfaces (for any $i, j \in \{1, \ldots n\}$, if $i \neq j, F_i$ is not parallel to F_j) and $\partial_0 M$ is a collection of components of ∂M . Suppose that \mathcal{F} is a good separating system of M, and $M - \bigcup_{i=1}^n F_i \times (-1, +1) = M_1 \bigcup M_2$. If each M_i has a Heegaard splitting $V_i \bigcup_{S_i} W_i$ with $d(S_i) > 4(g(M_1) + g(M_2))$, then any minimal Heegaard splitting $V \bigcup_S W$ of M relative to $\partial_0 M$ is obtained by doing amalgamations and self-amalgamations from minimal Heegaard splittings or ∂ -stabilization of minimal Heegaard splittings of M_1 and M_2 .

Proof First, we show that S is weakly reducible.

Suppose that S is strongly irreducible. In this case, S can be isotoped so that all components of $S \cap F_i$ are essential on both S and F_i (i = 1, ..., n), and some $S \cap M_i$ are incompressible in M_i , by Lemma 2.5. We note that $\chi(S \cap M_i) \ge \chi(S)$. Since $d(S_i) > 4(g(M_1) + g(M_2)) \ge 2g(S) \ge$ $2 - \chi(S) \ge 2 - \chi(S \cap M_i)$, by Lemma 2.2, $S \cap M_i$ can be isotoped to disjoint from S_i , hence each component of $S \cap M_i$ is parallel into $\bigcup_{i=1}^n F_i$. Then we can isotope S so that $S \cap F_i = \emptyset$. This is impossible.

Since S is weakly reducible, by [14], $V \bigcup_S W$ is the amalgamation of strongly irreducible Heegaard splittings, i.e.,

$$V\bigcup_{S}W = (V_1'\bigcup_{S_1'}W_1')\bigcup_{H_1}(V_2'\bigcup_{S_2'}W_2')\bigcup_{H_2},\ldots,\bigcup_{H_{m-1}}(V_m'\bigcup_{S_m'}W_m')$$

where each H_i is essential, otherwise $V \bigcup_S W$ is not a minimal Heegard splitting of M relative to $\partial_0 M$. It is not hard to see that each component of H_1 is parallel to some F_i .

Now we prove the lemma by induction on $n = |\mathcal{F}|$. When n = 1. Considering H_1 , there are two cases:

 $\text{Figure 3} \ V \bigcup_S W = ((\overline{V_1} \bigcup_{\overline{S_1}} \overline{W_1}) \bigcup (\overline{V_2} \bigcup_{\overline{S_2}} \overline{W_2})) \bigcup_{F_1 \times \{\pm 1\}} (V_2'' \bigcup_{S_2''} W_2'')$

Case 1 H_1 contains only one copy of F_1 , then $V \bigcup_S W = (V'_1 \bigcup_{S'_1} W'_1) \bigcup_{F_1} (\overline{V_2} \bigcup_{\overline{S_2}} \overline{W_2})$. Without loss of generality, assume $M_1 = V'_1 \bigcup_{S'_1} W'_1$, $M_2 = \overline{V_2} \bigcup_{\overline{S_2}} \overline{W_2}$. Notice that $g(S'_1) < g(S) = g(M, \partial_0 M) \leq 2(g(M_1) + g(M_2)) < \frac{1}{2}d(S_i)$. By Lemma 2.3, S'_1 is isotopic to S_1 or to a ∂ -stabilization of S_1 (it is easy to see S'_1 is not a stabilization of S_1). For the same reason, $\overline{S_2}$ is isotopic to S_2 or to be ∂ -stabilization of S_2 . So S is as stated.

Case 2 H_1 contains two copies of F_1 .

Since F_1 is separating, $V \bigcup_S W = ((\overline{V_1} \bigcup_{\overline{S_1}} \overline{W_1}) \bigcup (\overline{V_2} \bigcup_{\overline{S_2}} \overline{W_2})) \bigcup_{F_1 \times \{\pm 1\}} (V_2'' \bigcup_{S_2''} W_2'')$, where $\overline{V_1} \bigcup_{\overline{S_1}} \overline{W_1}$ is a Heegaard splitting of M_1 , $\overline{V_2} \bigcup_{\overline{S_2}} \overline{W_2}$ is a Heegaard splitting of M_2 and $V_2'' \bigcup_{S_2''} W_2''$ is the unique minimal Heegaard splitting of $F_1 \times I$ relative to $F_1 \times \partial I$, then

$$V\bigcup_{S}W = (\overline{V_1}\bigcup_{\overline{S_1}}\overline{W_1}) \bigcup_{F_1 \times \{-1\}} (V_2''\bigcup_{S_2''}W_2'') \bigcup_{F_1 \times \{+1\}} (\overline{V_2}\bigcup_{\overline{S_2}}\overline{W_2})$$
$$= (V_1''\bigcup_{S_1''}W_1'') \bigcup_{F_1 \times \{+1\}} (\overline{V_2}\bigcup_{\overline{S_2}}\overline{W_2}).$$

It is easy to see that $V_1'' \bigcup_{S_1''} W_1''$ is a ∂ -stabilization of $\overline{V_1} \bigcup_{\overline{S_1}} \overline{W_1}$. As in Case 1, $S_1'(\overline{S_2})$ is isotopic to $S_1(S_2)$ or a ∂ -stabilization of $S_1(S_2)$. So S is a stated. (See Figure 3)

Suppose the lemma is true for $n \leq k$.

When n = k + 1. There are again two cases:

Case 1 H_1 contains a good separating system. Similarly to case 1 when n = 1, S is as stated.

Case 2 H_1 contains two copies of some F_j .

In this case, $V \bigcup_S W$ is the amalgamation of Heegaard splitting $\overline{V} \bigcup_{\overline{S}} \overline{W}$ of $\overline{M} = \overline{M - F_j \times I}$ and a unique minimal Heegaard splitting $V_2'' \bigcup_{S_2''} W_2''$ of $F_j \times I$ relative to $F_j \times \partial I$. Let $\overline{F_j} = (\bigcup_{i=1}^n F_i - F_j)$ and $\overline{M} = \overline{M - F_j \times I}$. Then $\overline{V} \bigcup_{\overline{S}} \overline{W}$ is a minimal Heegaard splitting of \overline{M} relative to $\overline{\partial_0 M}$, where $\overline{\partial_0 M}$ is a collection of the components of $\overline{\partial M}$, since $V \bigcup_S W$ is a minimal Heegaard splitting of M relative to $\partial_0 M$. In fact, $\overline{\partial_0 M} = \partial_0 M$ or $\partial_0 M \bigcup F_j \times \partial I$. Since $\overline{M} = M_1 \bigcup_{\overline{F_j}} M_2$, by induction, $\overline{V} \bigcup_{\overline{S}} \overline{W} = (\overline{V_1} \bigcup_{\overline{S_1}} \overline{W_1}) \bigcup_{\overline{F_j}} (\overline{V_2} \bigcup_{\overline{S_2}} \overline{W_2})$ where $M_1 = \overline{V_1} \bigcup_{\overline{S_1}} \overline{W_1}$ and $M_2 = \overline{V_2} \bigcup_{\overline{S_2}} \overline{W_2}$. Since $d(S_1) \ge 4(g(M_1) + g(M_2)) > 2g(M) > 2g(\overline{S_1})$, by Lemma 2.3, $\overline{S_1}$ is isotopic to S_1 or a ∂ -stabilization to S_1 .

Without loss of generality, as illustrated in Figure 4,

$$V\bigcup_{S}W = (\overline{V}_1\bigcup_{\overline{S}_1}\overline{W}_1)\bigcup_{F_j\times\{-1\}}(V_2''\bigcup_{S_{2''}}W_2'')\bigcup_{F_j\times\{+1\}}(\overline{V}_2\bigcup_{\overline{S}_2}\overline{W}_2)$$

is the amalgamation of a ∂ -stabilization of \overline{S}_1 and $\overline{V''_2} \bigcup_{\overline{S_{2''}}} \overline{W''_2}$. Hence S is as stated.

Lemma 3.2 Let M be a 3-manifold, $\mathcal{F} = \{F_1, F_2, \ldots, F_n\}$ be a collection of essential closed surfaces in M, and $\partial_0 M$ be a collection of components of ∂M . Suppose $M_1 = M - \bigcup_{i=1}^n F_i \times$ (-1,+1) is connected and $V_1 \bigcup_{S_1} W_1$ is a Heegaard splitting of M_1 with $d(S_1) > 4g(M_1)$. Then any minimal Heegaard splitting of M relative to $\partial_0 M$ is obtained by doing self-amalgamations from minimal Heegaard splittings or ∂ -stabilization of minimal Heegaard splittings of M_1 .

The proof is essentially the same as that of Theorem 1 in [11], and is omitted.

Figure 4 Amalgamation of a ∂ -stabilization of \overline{S}_1 and $\overline{V_2''} \bigcup_{\overline{S}_{0''}} \overline{W_2''}$

Proof of Theorem 1.1 Let \mathcal{F}_0 be the subset of \mathcal{F} as stated in Lemma 2.1, $\mathcal{F}_1 = \mathcal{F} - \mathcal{F}_0$ and let M_i be as in Lemma 2.1.

For any such pair (M, \mathcal{F}) , define complexity $C(M, \mathcal{F}) = (k, |\mathcal{F}_0|, |\mathcal{F}_1|)$. The proof proceeds by induction on $C(M, \mathcal{F})$. In Lemmas 3.1 and 3.2, we have dealt with the case k = 2 and k = 1, $|\mathcal{F}_1| = 0$.

Assume $k \ge 2$, suppose that $V \bigcup_S W$ is a minimal Heegaard splitting of M relative to $\partial_0 M$ and $\partial_0 M \subset V$. There are two cases to consider:

480

Case 1 S is strongly irreducible.

It is easy to see that S can be isotoped so that some $S \cap \overline{M_i}$ are incompressible in $\overline{M_i}$ for some i, and each component of $S \cap F_i$ is essential on both S and F_i . Hence $S \cap M_i$ is incompressible in M_i and $\chi(S \cap M_i) \ge \chi(S \cap \overline{M_i}) \ge \chi(S)$, so $d(S_i) > 4(g(M_1) + \dots + g(M_n)) \ge 2g(S) = 2 - \chi(S) > 2 - \chi(S \cap M_i)$, where S_i is a minimal Heegaard splitting of M_i . As before, $S \cap M_i$ can be isotopied to disjoint from S_i , hence disjoint from M_i . That is impossible.

Case 2 S is weakly reducible.

By [14], $V \bigcup_S W$ is the amalgamation of m strongly irreducible Heegaard splittings as

$$(V_1'\bigcup_{S_1'}W_1')\bigcup_{H_1}(V_2'\bigcup_{S_2'}W_2')\bigcup_{H_2}\cdots\bigcup_{H_{m-1}}(V_m'\bigcup_{S_m'}W_m')$$

where each H_i is essential and each component of each H_i is parallel to some F_i . Considering H_1 , there are two cases:

Case 2.1 H_1 contains two copies of some F_i . Without loss of generality, let $H_1 = F_i \times \{-1, +1\}$, $M'_1 = V'_1 \bigcup_{S'_1} W'_1 = F_i \times [-1, +1]$ and $M'_2 = (V'_2 \bigcup_{S'_2} W'_2) \bigcup_{H_2} \dots \bigcup_{H_{m-1}} (V'_m \bigcup_{S'_m} W'_m) = V''_2 \bigcup_{S''_1} W''_2$ (See Figure 5).

Then $V \bigcup_S W$ is an amalgamation of $V'_1 \bigcup_{S'_1} W'_1$ and $V''_2 \bigcup_{S''_2} W''_2$. Since $V \bigcup_S W$ is a minimal Heegaard splitting of M relative to $\partial_0 M$, $V'_1 \bigcup_{S'_1} W'_1$ is a minimal Heegaard splitting of $M'_1 = F_i \times [-1, +1]$ relative to $F_i \times \{\pm 1\}$ and $M'_2 = V''_2 \bigcup_{S''_2} W''_2$ is a minimal Heegaard splitting M'_2 relative to $\partial_0 M \bigcup F_i \times \{-1, +1\}$.

By Scharlemann-Thompson [16], we see that $V \bigcup_S W$ is obtained by doing self-amalgamation to $V_2'' \bigcup_{S_2''} W_2''$. Let $\mathcal{F}' = \mathcal{F} - \{F_i\}$. It is easy to see that (M_2', \mathcal{F}') satisfies the hypothesis of Theorem 1.1 and $C(M_2', \mathcal{F}') < C(M, \mathcal{F})$. By induction, $V_2'' \bigcup_{S_2''} W_2''$ is obtained by doing amalgamations and self-amalgamations of minimal Heegaard splittings or ∂ -stabilization of minimal Heegaard splittings of $M_2' - \bigcup_{F \in \mathcal{F}'} F \times (-1, +1) = M_1 \bigcup M_2 \bigcup \cdots \bigcup M_k$. Hence $V \bigcup_S W$ is as stated.

Case 2.2 H_1 does not contain two copies of any F_i .

In this case, H_1 contains a good separating system, each component of which is parallel to some F_i . Without loss of generality, we may assume that $H_1 = \{F_1, \ldots, F_j\}$ is a good separating system of M, and S_i in H_1 are not mutually parallel. Assume $M - H_1 \times (-1, +1) = M'_1 \bigcup M'_2$.

 $V \bigcup_S W$ is an amalgamation of Heegaard splittings of M'_1 and M'_2 , either of which is a minimal Heegaard splitting of M'_i relative to some collection of boundary components of $\partial M'_i$, say $\partial_0 M'_i$. Consider M'_1 and $\mathcal{F}'_1 = \{F : F \in \mathcal{F}, F \subset M - H_1\}$. Obviously, $C(M'_1, \mathcal{F}'_1) < C(M, \mathcal{F})$ and (M'_1, \mathcal{F}'_1) also satisfies the hypothesis of Theorem 1.1. By induction, $V'_1 \bigcup_{S'_1} W'_1$ is obtained by doing amalgamations and self-amalgamations on minimal Heegaard splittings or ∂ -stabilization of minimal Heegaard splittings of $M'_1 - \bigcup_{F \in \mathcal{F}'_1} F \times (-1, +1)$, so is $V''_2 \bigcup_{S''_2} W''_2$ (see Figure 6). Thus $V \bigcup_S W$ is obtained as stated.

Figure 5 $\bigcup_S W = (F \times I) \bigcup_{F_j \times \{\pm 1\}} (V_2'' \bigcup_{S_{2"}} W_2'')$

Figure 6 $V \bigcup_{S} W = (V'_{1}^{\mathsf{F}_{\mathfrak{s}}} \bigcup_{S'_{1}} W'_{1}) \bigcup (V''_{2} \bigcup_{S_{2"}} W''_{2})$

Acknowledgements The authors would like to thank Professor Ruifeng QIU for his patient advice.

References

- [1] J. HEMPEL. 3-manifolds as viewed from the curve complex. Topology, 2001, 40(3): 631-657.
- J. SCHULTENS. The classification of Heegaard splittings for (compact orientable surface)×S¹. Proc. London Math. Soc. (3), 1993, 67(2): 425–448.
- [3] M. SCHARLEMANN, M. TOMOVA. Alternate Heegaard genus bounds distance. Geom. Topol., 2006, 10: 593-617.
- [4] T. KOBAYASHI, Ruifeng QIU, Y. RIECK, et al. Separating incompressible surfaces and stabilizations of Heegaard splittings. Math. Proc. Cambridge Philos. Soc., 2004, 137(3): 633–643.
- [5] J. SCHULTENS, R. WEIDMANN. Destabilizing amalgamated Heegaard splittings. Geom. Topol. Monogr., 2007, 12: 319–334.
- [6] M. LACKENBY. The Heegaard genus of amalgamated 3-manifolds. Geom. Dedicata, 2004, 109: 139-145.
- [7] J. SOUTO. Distances in the curve complex and the Heegaard genus. Preprint.
- [8] Tao LI. On the Heegaard splittings of amalgamated 3-manifolds. Geom. Topol. Monogr., 2007, 12: 157–190.
- T. KOBAYASHI, Ruifeng QIU. The amalgamation of high distance Heegaard splittings is always efficient. Math. Ann., 2008, 341(3): 707–715.
- [10] Guoqiu YANG, Fengchun LEI. On amalgamations of Heegaard splittings with high distance. Proc. Amer. Math. Soc., 2009, 137(2): 723–731.
- [11] Kun DU, Ruifeng QIU. The self-amalgamation of high distance Heegaard splittings is always efficient. Topology Appl., 2010, 157(7): 1136–1141.
- [12] K. HARTSHORN. Heegaard splittings of Haken manifolds have bounded distance. Pacific J. Math., 2002, 204(1): 61–75.
- M. SCHARLEMANN. Proximity in the curve complex: boundary reduction and bicompressible surfaces. Pacific J. Math., 2006, 228(2): 325–348.
- [14] M. SCHARLEMANN, A. THOMPSON. Thin position for 3-manifolds. AMS Contemporary Math., 1994, 164: 231–238.
- [15] T. KOBAYASHI, Y. RIECK. Heegaard genus of the connected sum of m-small knots. Comm. Anal. Geom., 2006, 14(5): 1037–1077.
- [16] M. SCHARLEMANN, A. THOMPSON. Heegaard splittings of (surface)× I are standard. Math. Ann., 1993, 295(3): 549–564.

482