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Abstract Let M be a 3-manifold, F= {F1, F2, . . . , Fn} be a collection of essential closed

surfaces in M (for any i, j ∈ {1, ..., n}, if i 6= j, Fi is not parallel to Fj and Fi∩Fj = ∅) and ∂0M

be a collection of components of ∂M . Suppose M−⋃
Fi∈F Fi× (−1, 1) contains k components

M1, M2, . . . , Mk. If each Mi has a Heegaard splitting Vi

⋃
Si

Wi with d(Si) > 4(g(M1) +

· · ·+ g(Mk)), then any minimal Heegaard splitting of M relative to ∂0M is obtained by doing

amalgamations and self-amalgamations from minimal Heegaard splittings or ∂-stabilization of

minimal Heegaard splittings of M1, M2, . . . , Mk.
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1. Introduction

All surfaces and 3-manifolds in this paper are assumed to be compact and orientable.
Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression

bodies V and W with ∂+V = ∂+W = S, then we say that V
⋃

S W is a Heegaard splitting of
M , and S is called a Heegaard surface of M . Moreover, if the genus g(S) of S is minimal among
all the Heegaard splittings of M , then g(S) is called the genus of M , denoted by g(M). More
generally, let M be a 3-manifold with boundary, and ∂0M be a collection of boundary components
of M . If M = V

⋃
S W is a Heegaard splitting such that ∂0M = ∂−V or ∂0M = ∂−W , then

M = V
⋃

S W is called a Heegaard splitting relative to ∂0M . The Heegaard genus of M relative
to ∂0M is the smallest possible genus of a Heegaard splitting of M relative to ∂0M , denoted by
g(M, ∂0M).

If there are two essential disks B ⊂ V and D ⊂ W such that ∂B = ∂D (resp., ∂B
⋂

∂D =
∅), then V

⋃
S W is said to be reducible (resp., weakly reducible). Otherwise, it is irreducible

(resp., strongly irreducible). If there are two essential disks B ⊂ V and D ⊂ W such that
∂B

⋂
∂D consists of a single point in S, then V

⋃
S W is said to be stabilized. Otherwise, it is

unstabilized.
If a properly embedded surface F in a 3-manifold M is incompressible and not parallel to

∂M , then F is said to be essential.
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The distance between two isotopy classes of essential simple closed curves α and β on S,
denoted by d(α, β), is the smallest integer n ≥ 0 so that there is a sequence of essential simple
closed curves α = α0, . . . , αn = β on S such that αi−1 is disjoint from αi for 1 ≤ i ≤ n. The
distance of the Heegaard splitting V

⋃
S W is defined to be min{d(α, β)|α bounds a disk in V

and β bounds a disk in W} (see [1]).
Let M be a 3-manifold, and F be a connected closed surface in M which cuts M into two

3-manifolds M1 and M2. If Mi = Vi

⋃
Si

Wi is a Heegaard splitting of Mi (i = 1, 2), then M has
a natural Heegaard splitting called the amalgamation of V1

⋃
S1

W1 and V2

⋃
S2

W2 (see [2]). It
follows from the construction that g(M) ≤ g(M1) + g(M2)− g(F ).

Figure 1 Amalgamation of Heegaard splittings

Suppose now F is an essential non-separating closed surface in M . Let M ′ = M−F ×(0, 1),
F1 = F ×{0} and F2 = F ×{1}. If V ′⋃

S′ W
′ is a Heegaard splitting of M ′ such that F1 and F2

lie in the same side of S′, say in W ′, then there is a natural Heegarrd splitting of M as follows.
See Figure 1.

Since W ′ is obtained by attaching some 1-handles to ∂−W ′× I, we can take two unknotted
arcs a = {a0} × I and b = {b0} × I in ∂−W ′ × I, where a0 and b0 lie in F , such that they
are disjoint from all 1-handles in W ′. Let c be another unknotted arc in F × [0, 1], such that
r = a

⋃
b
⋃

c is a properly embedded arc in W ′⋃ F × [0, 1]. Let V = V ′⋃ N(r), W = (M − V ).
It is easy to see that V and W are compression bodies. The Heegaard splitting V

⋃
S W is

said to be the self-amalgamation of V ′⋃
S′ W

′. From this construction, it is easy to see that
g(M) ≤ g(M ′, F1

⋃
F2) + 1.

Suppose M = V
⋃

S W is a Heegaard splitting for M and F is a boundary component of
M lying in V . Since V is a compression body, we can take an arc r = {r0} × I in V − F × [0, 1

2 ]
where {r0} × 0 ⊂ F × { 1

2} and {r0} × 1 ⊂ S. See Figure 2. Let W ′ = W
⋃

N(r)
⋃

F × [0, 1
2 ],

V ′ = cl (M −W ′). It is easy to see that V ′⋃
S′ W

′ is a Heegarrd splitting of M (see [3]). The
Heegaard splitting V ′⋃

S′ W
′ is said to be the ∂-stabilization of V

⋃
S W along F .

An important problem on the amalgamation of Heegaard splitting is when g(M) < g(M1)+
g(M2)− g(F ) and when g(M) = g(M1) + g(M2)− g(F ). In [4] and [5], the authors constructed
their examples of g(M) < g(M1) + g(M2)− g(F ).

In [6], Lackenby proved that if M is obtained by gluing two simple manifolds M1 and M2

via a sufficiently complicated mapping φ : ∂M1 → ∂M2, then g(M) = g(M1) + g(M2) − g(F ).
Souto and Li also obtained two different versions of Lackenby’s result [7, 8].
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From another perspective, Kobayashi and Qiu in [9] proved that if M1 and M2 have high
distance Heegaard splittings, then the minimal Heegaard splitting of the amalgamated 3-manifold
of M1 and M2 along F is unique. Yang and Lei in [10] extended the result in [9]. Du in [11]
proved that if F is an essential non-separating closed surface in an irreducible 3-manifold M and
M − F × (−1,+1) has a high distance Heegaard splitting, then the minimal Heegaard splitting
of M is unique up to isotopy.

In [15], Kobayashi and Rieck defined the amalgamation of two Heegaard splittings along
disconnected surfaces. In this paper, we prove that:

Figure 2 ∂-stabilization of Heegaard splitting

Theorem 1.1 Let M be a 3-manifold, F= {F1, F2, . . . , Fn} be a collection of essential closed

surfaces in M (for any i, j ∈ {1, . . . , n}, if i 6= j,Fi is not parallel to Fj and Fi ∩ Fj = ∅)
and ∂0M be a collection of components of ∂M . Suppose M − ⋃

Fi∈F Fi × (−1, 1) consists

of k components M1,M2, . . . , Mk. If each Mi has a Heegaard splitting Vi

⋃
Si

Wi with d(Si) >

4(g(M1)+· · ·+g(Mk)), then any minimal Heegaard splitting of M relative to ∂0M is obtained by

doing amalgamations and self-amalgamations from minimal Heegaard splittings or ∂-stabilization

of minimal Heegaard splittings of M1,M2, . . . , Mk.

2. Premilinary

Definition 2.1 Let M be a 3-manifold. A good separating system H in M is a collection of

closed surfaces H1,H2, . . . , Hl, such that

(1) M −⋃l
i=1 Hi × (−1, 1) consists of two components, and

(2) for any proper subset H′ of H, M −⋃
H∈H′ H × (−1, 1) is connected.

Lemma 2.1 Let F = {F1, F2, . . . , Fn} be a collection of closed surfaces in M . Suppose M −⋃n
i=1 Fi× (−1, 1) has k components M1,M2, . . . , Mk. Then there exits a unique subset F0 of F ,

such that

(1) M −⋃n
i=1 Fi× (−1, 1) consists of k components M1,M2, . . . ,Mk, and Mi ⊂ Mi for each

i;

(2) F0 is minimal among all the subsets of F satisfying (1).

Proof We construct a graph with respect to (M,F) as follows:

(1) The set of vertices is {M1,M2, . . . , Mk} and the set of edges is {F1, F2, . . . , Fn};
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(2) If Fi × {−1} ⊂ Mi1 and Fi × {+1} ⊂ Mi2 , then the edge Fi connects Mi1 and Mi2(it
is possible that i1 = i2 for some Fi). Let F0 = {Fi : Fi connects distinct vertices Mi1 and Mi2}.
It is easy to see that F0 meets the requirement.

Lemma 2.2 ([12, 13]) Let M = V
⋃

S W be a Heegaard splitting, and F be an incompressible

surface in M . Then either F can be isotoped to be disjoint from S or d(S) ≤ 2− χ(F ).

Lemma 2.3 ([3]) Suppose P and Q are two Heegaard surfaces for a compact orientable 3-

manifold M . Then either d(P ) ≤ 2g(Q) or Q is isotopic to P or to a stabilization or ∂-stabilization

to P .

Lemma 2.4 ([3]) Let V
⋃

S W be a Heegaard splitting such that d(S) > 2g(M). Then V
⋃

S W

is the unique minimal Heegaard splitting of M up to isotopy.

Lemma 2.5 ([9]) Let M = V
⋃

S W be a strongly irreducible Heegaard splitting, and F be an

essential closed surface which cuts M into M1 and M2. Then S can be isotoped so that

(1) Each component of S
⋂

F is an essential simple closed curve on both S and F , and

(2) one of S
⋂

M1 and S
⋂

M2 is incompressible.

In a good separating system, it is the same.

3. Proof of main result

Lemma 3.1 Suppose that M is a 3-manifold, F = {F1, F2, . . . , Fn} is a collection of essential

closed surfaces (for any i, j ∈ {1, ...n},if i 6= j,Fi is not parallel to Fj ) and ∂0M is a collection

of components of ∂M . Suppose that F is a good separating system of M , and M −⋃n
i=1 Fi ×

(−1,+1) = M1

⋃
M2. If each Mi has a Heegaard splitting Vi

⋃
Si

Wi with d(Si) > 4(g(M1) +
g(M2)), then any minimal Heegaard splitting V

⋃
S W of M relative to ∂0M is obtained by doing

amalgamations and self-amalgamations from minimal Heegaard splittings or ∂-stabilization of

minimal Heegaard splittings of M1 and M2.

Proof First, we show that S is weakly reducible.
Suppose that S is strongly irreducible. In this case, S can be isotoped so that all components

of S
⋂

Fi are essential on both S and Fi (i = 1, . . . , n), and some S
⋂

Mi are incompressible in
Mi, by Lemma 2.5. We note that χ(S

⋂
Mi) ≥ χ(S). Since d(Si) > 4(g(M1)+g(M2)) ≥ 2g(S) ≥

2 − χ(S) ≥ 2 − χ(S
⋂

Mi), by Lemma 2.2, S
⋂

Mi can be isotoped to disjoint from Si, hence
each component of S

⋂
Mi is parallel into

⋃n
i=1 Fi. Then we can isotope S so that S

⋂
Fi = ∅.

This is impossible.
Since S is weakly reducible, by [14], V

⋃
S W is the amalgamation of strongly irreducible

Heegaard splittings, i.e.,

V
⋃

S

W = (V ′
1

⋃

S′1

W ′
1)

⋃

H1

(V ′
2

⋃

S′2

W ′
2)

⋃

H2

, . . . ,
⋃

Hm−1

(V ′
m

⋃

S′m

W ′
m)

where each Hi is essential, otherwise V
⋃

S W is not a minimal Heegarrd splitting of M relative
to ∂0M . It is not hard to see that each component of H1 is parallel to some Fi.
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Now we prove the lemma by induction on n = |F|.
When n = 1. Considering H1, there are two cases:

Figure 3 V
⋃

S W = ((V1

⋃
S1

W1)
⋃

(V2

⋃
S2

W2))
⋃

F1×{±1}(V
′′
2

⋃
S′′2

W ′′
2 )

Case 1 H1 contains only one copy of F1, then V
⋃

S W = (V ′
1

⋃
S′1

W ′
1)

⋃
F1

(V2

⋃
S2

W2). Without
loss of generality, assume M1 = V ′

1

⋃
S′1

W ′
1, M2 = V2

⋃
S2

W2. Notice that g(S′1) < g(S) =
g(M, ∂0M) ≤ 2(g(M1) + g(M2)) < 1

2d(Si). By Lemma 2.3, S′1 is isotopic to S1 or to a ∂-
stabilization of S1 (it is easy to see S′1 is not a stabilization of S1). For the same reason, S2 is
isotopic to S2 or to be ∂-stabilization of S2. So S is as stated.

Case 2 H1 contains two copies of F1.
Since F1 is separating, V

⋃
S W = ((V1

⋃
S1

W1)
⋃

(V2

⋃
S2

W2))
⋃

F1×{±1}(V
′′
2

⋃
S′′2

W ′′
2 ), where

V1

⋃
S1

W1 is a Heegaard splitting of M1, V2

⋃
S2

W2 is a Heegaard splitting of M2 and V ′′
2

⋃
S′′2

W ′′
2

is the unique minimal Heegaard splitting of F1 × I relative to F1 × ∂I, then

V
⋃

S

W = (V1

⋃

S1

W1)
⋃

F1×{−1}
(V ′′

2

⋃

S′′2

W ′′
2 )

⋃

F1×{+1}
(V2

⋃

S2

W2)

= (V ′′
1

⋃

S′′1

W ′′
1 )

⋃

F1×{+1}
(V2

⋃

S2

W2).

It is easy to see that V ′′
1

⋃
S′′1

W ′′
1 is a ∂-stabilization of V1

⋃
S1

W1. As in Case 1, S′1 (S2) is
isotopic to S1 (S2) or a ∂-stabilization of S1 (S2). So S is as stated. (See Figure 3)

Suppose the lemma is true for n ≤ k.
When n = k + 1. There are again two cases:

Case 1 H1 contains a good separating system. Similarly to case 1 when n = 1, S is as stated.

Case 2 H1 contains two copies of some Fj .
In this case, V

⋃
S W is the amalgamation of Heegaard splitting V

⋃
S W of M = M − Fj × I

and a unique minimal Heegaard splitting V ′′
2

⋃
S′′2

W ′′
2 of Fj × I relative to Fj × ∂I.
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Let Fj = (
⋃n

i=1 Fi − Fj) and M = M − Fj × I. Then V
⋃

S W is a minimal Heegaard
splitting of M relative to ∂0M , where ∂0M is a collection of the components of ∂M , since V

⋃
S W

is a minimal Heegaard splitting of M relative to ∂0M . In fact, ∂0M = ∂0M or ∂0M
⋃

Fj × ∂I.
Since M = M1

⋃
Fj

M2, by induction, V
⋃

S W = (V 1

⋃
S1

W 1)
⋃

F j
(V 2

⋃
S2

W 2) where M1 =
V 1

⋃
S1

W 1 and M2 = V 2

⋃
S2

W 2. Since d(S1) ≥ 4(g(M1) + g(M2)) > 2g(M) > 2g(S1), by
Lemma 2.3, S1 is isotopic to S1 or a ∂-stabilization to S1 (Obviously, S1 is not a stabilization of
S1). Similarly, S2 is isotopic to S2 or a ∂-stabilization to S2.

Without loss of generality, as illustrated in Figure 4,

V
⋃

S

W = (V 1

⋃

S1

W 1)
⋃

Fj×{−1}
(V ′′

2

⋃

S2”

W ′′
2 )

⋃

Fj×{+1}
(V 2

⋃

S2

W 2)

is the amalgamation of a ∂-stabilization of S1 and V ′′
2

⋃
S2′′

W ′′
2 . Hence S is as stated.

Lemma 3.2 Let M be a 3-manifold, F = {F1, F2, . . . , Fn} be a collection of essential closed

surfaces in M , and ∂0M be a collection of components of ∂M . Suppose M1 = M −⋃n
i=1 Fi ×

(−1,+1) is connected and V1

⋃
S1

W1 is a Heegaard splitting of M1 with d(S1) > 4g(M1). Then

any minimal Heegaard splitting of M relative to ∂0M is obtained by doing self-amalgamations

from minimal Heegaard splittings or ∂-stabilization of minimal Heegaard splittings of M1.

The proof is essentially the same as that of Theorem 1 in [11], and is omitted.

Figure 4 Amalgamation of a ∂-stabilization of S1 and V ′′
2

⋃
S2′′

W ′′
2

Proof of Theorem 1.1 Let F0 be the subset of F as stated in Lemma 2.1, F1 = F − F0 and
let Mi be as in Lemma 2.1.

For any such pair (M,F), define complexity C(M,F) = (k, |F0|, |F1|). The proof proceeds
by induction on C(M,F). In Lemmas 3.1 and 3.2, we have dealt with the case k = 2 and k = 1,
|F1| = 0.

Assume k ≥ 2, suppose that V
⋃

S W is a minimal Heegaard splitting of M relative to ∂0M

and ∂0M ⊂ V . There are two cases to consider:
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Case 1 S is strongly irreducible.

It is easy to see that S can be isotoped so that some S
⋂

Mi are incompressible in Mi

for some i, and each component of S
⋂

Fi is essential on both S and Fi. Hence S
⋂

Mi is
incompressible in Mi and χ(S

⋂
Mi) ≥ χ(S

⋂
Mi) ≥ χ(S), so d(Si) > 4(g(M1) + · · ·+ g(Mn)) ≥

2g(S) = 2− χ(S) > 2− χ(S
⋂

Mi), where Si is a minimal Heegaard splitting of Mi. As before,
S

⋂
Mi can be isotopied to disjoint from Si, hence disjoint from Mi. That is impossible.

Case 2 S is weakly reducible.

By [14], V
⋃

S W is the amalgamation of m strongly irreducible Heegaard splittings as

(V ′
1

⋃

S′1

W ′
1)

⋃

H1

(V ′
2

⋃

S′2

W ′
2)

⋃

H2

· · ·
⋃

Hm−1

(V ′
m

⋃

S′m

W ′
m)

where each Hi is essential and each component of each Hi is parallel to some Fi. Considering
H1, there are two cases:

Case 2.1 H1 contains two copies of some Fi. Without loss of generality, let H1 = Fi×{−1,+1},
M ′

1 = V ′
1

⋃
S′1

W ′
1 = Fi × [−1,+1] and M ′

2 = (V ′
2

⋃
S′2

W ′
2)

⋃
H2

. . .
⋃

Hm−1
(V ′

m

⋃
S′m

W ′
m) =

V ′′
2

⋃
S′′2

W ′′
2 (See Figure 5).

Then V
⋃

S W is an amalgamation of V ′
1

⋃
S′1

W ′
1 and V ′′

2

⋃
S′′2

W ′′
2 . Since V

⋃
S W is a

minimal Heegaard splitting of M relative to ∂0M , V ′
1

⋃
S′1

W ′
1 is a minimal Heegaard splitting of

M ′
1 = Fi× [−1,+1] relative to Fi×{±1} and M ′

2 = V ′′
2

⋃
S′′2

W ′′
2 is a minimal Heegaard splitting

M ′
2 relative to ∂0M

⋃
Fi × {−1,+1}.

By Scharlemann-Thompson [16], we see that V
⋃

S W is obtained by doing self-amalgamation
to V ′′

2

⋃
S′′2

W ′′
2 . Let F ′ = F − {Fi}. It is easy to see that (M ′

2,F ′) satisfies the hypothesis of
Theorem 1.1 and C(M ′

2,F ′) < C(M,F). By induction, V ′′
2

⋃
S′′2

W ′′
2 is obtained by doing amal-

gamations and self-amalgamations of minimal Heegaard splittings or ∂-stabilization of minimal
Heegaard splittings of M ′

2 −
⋃

F∈F ′ F × (−1,+1) = M1

⋃
M2

⋃ · · ·⋃ Mk. Hence V
⋃

S W is as
stated.

Case 2.2 H1 does not contain two copies of any Fi.

In this case, H1 contains a good separating system, each component of which is parallel to
some Fi. Without loss of generality, we may assume that H1 = {F1, . . . , Fj} is a good separating
system of M , and Si in H1 are not mutually parallel. Assume M −H1 × (−1,+1) = M ′

1

⋃
M ′

2.

V
⋃

S W is an amalgamation of Heegaard splittings of M ′
1 and M ′

2, either of which is a
minimal Heegaard splitting of M ′

i relative to some collection of boundary components of ∂M ′
i ,

say ∂0M
′
i . Consider M ′

1 and F ′1 = {F : F ∈ F , F ⊂ M −H1}. Obviously, C(M ′
1,F ′1) < C(M,F)

and (M ′
1,F ′1) also satisfies the hypothesis of Theorem 1.1. By induction, V ′

1

⋃
S′1

W ′
1 is obtained by

doing amalgamations and self-amalgamations on minimal Heegaard splittings or ∂-stabilization
of minimal Heegaard splittings of M ′

1 −
⋃

F∈F ′1 F × (−1,+1), so is V ′′
2

⋃
S′′2

W ′′
2 (see Figure 6).

Thus V
⋃

S W is obtained as stated.
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Figure 5
⋃

S W = (F × I)
⋃

Fj×{±1}(V
′′
2

⋃
S2”

W ′′
2 )

Figure 6 V
⋃

S W = (V ′
1

⋃
S′1 W ′

1)
⋃

(V ′′
2

⋃
S2”

W ′′
2 )
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