Positive Solutions of Singular Sturm-Liouville Boundary Value Problems with Positive Green Function

Qingliu YAO
Department of Applied Mathematics, Nanjing University of Finance and Economics, Jiangsu 210003, P. R. China

Abstract

The existence and multiplicity of positive solutions are studied for a singular Sturm-Liouville boundary value problem with positive Green function, where the nonlinearity may be super-strongly singular with respect to the space variable. By constructing suitable control functions, the a priori bound of solution is exactly estimated. By applying the Guo-Krasnosel'skii fixed point theorem of cone expansion-compression type, several existence results are proved.

Keywords singular ordinary differential equation; Sturm-Liouville boundary value problem; positive solution; existence and multiplicity.

MR(2010) Subject Classification 34B15; 34B16; 34B18

1. Introduction

In this paper, we consider the existence and multiplicity of positive solutions for the nonlinear Sturm-Liouville boundary value problem

$$
(\mathrm{P})\left\{\begin{array}{l}
\left(p(t) u^{\prime}(t)\right)^{\prime}+h(t) f(t, u(t))+g(t, u(t))=0, \quad 0<t<1 \\
a u(0)-b p(0) u^{\prime}(0)=0, \quad c u(1)+d p(1) u^{\prime}(1)=0
\end{array}\right.
$$

where $p:[0,1] \rightarrow(0,+\infty)$ is a continuous function, a, b, c, d are four nonnegative constants such that $d a+a c+c b>0$.

We need the following definitions. For other boundary value problems, the definitions are analogous.

Let $G(t, s)$ be the Green function of the problem (P). $G(t, s)$ is called positive if $\min _{0 \leq t, s \leq 1}$ $G(t, s)>0$, nonnegative if $\min _{0 \leq t, s \leq 1} G(t, s) \geq 0 . g(t, u)$ is called super-strongly singular at $u=0$ if $\lim _{u \rightarrow+0} u^{k} g(t, u)=+\infty$ for any $0<t<1$ and any positive integer $k . u^{*} \in C[0,1]$ is called positive solution of (P) if $u^{*}(t)$ satisfies (P) and $u^{*}(t)>0, \forall 0 \leq t \leq 1$.

The problem (P) arises quite naturally in a variety of mathematical models. For example, the paper [4] considered its applications to the nonlinear diffusion theory generated by nonlinear sources. For the recent existence results of (P) (see $[3,5,7,9,10,13]$ and the references therein).

[^0]However, all of these results are obtained for the problem (P) with nonnegative Green function $G(t, s)$.

It is well known that some periodic or Neumann boundary value problems have positive Green function. The positivity guarantees the existence of positive solutions when the nonlinearity is super-strongly singular at the space variable $u=0$ (see $[6,8,11,12,15]$).

When $b d>0$, the problem (P) has a positive Green function $G(t, s)$, see Section 2. Motivated by above-mentioned papers, the aim of this paper is to study the problem (P) under the following assumptions:
(H1) $b>0, d>0$.
(H2) $h:(0,1) \rightarrow[0,+\infty)$ is continuous and $0<\int_{0}^{1} h(t) \mathrm{d} t<+\infty$.
(H3) $f:[0,1] \times[0,+\infty) \rightarrow[0,+\infty)$ is continuous.
(H4) $g:(0,1) \times(0,+\infty) \rightarrow[0,+\infty)$ is continuous.
(H5) For every pair of positive numbers $r_{2}>r_{1}>0$, there exists a nonnegative function $j_{r_{1}}^{r_{2}} \in C(0,1) \cap L^{1}[0,1]$ such that $g(t, u) \leq j_{r_{1}}^{r_{2}}(t)$ for any $(t, u) \in(0,1) \times\left[\sigma r_{1}, r_{2}\right]$, where

$$
\sigma=\min \left\{\frac{b}{b+a \int_{0}^{1} \frac{\mathrm{~d} t}{p(t)}}, \frac{d}{d+c \int_{0}^{1} \frac{\mathrm{~d} t}{p(t)}}\right\} .
$$

The assumption (H2) allows $h(t)$ to be singular at $t=0, t=1$. (H4) and (H5) show that $g(t, u)$ may be singular at $t=0, t=1$ for any $u \in[0,+\infty)$, and at $u=0$ for any $0<t<1$. Particularly, (H1) implies that $g(t, u)$ may be super-strongly singular at $u=0$, see Section 4.

This paper is organized as follows. In Section 2, we transfer the problem (P) into a Hammerstein integral equation by using the Green function $G(t, s)$. (H1)-(H5) will ensure the compactness of the associated integral operator (see Lemma 2.1). In Section 3, we construct two control functions for estimating the a priori bound of solution. By applying the Guo-Krasnosel'skii fixed point theorem of norm expansion-compression type, we establish three existence theorems concerned with one, two and three positive solutions. Finally, we give an example to demonstrate the main result.

If $b d=0$, then the Green function $G(t, s)$ is nonnegative. In such a case, $g(t, u)$ cannot be super-strongly singular at $u=0$, otherwise the associated integral operator may be noncompact. For the other singular boundary value problems with nonnegative Green function, we refer to $[1,2,7,14]$.

2. Preliminaries

Let $C[0,1]$ be the Banach space of all continuous functions on $[0,1]$ equipped with the norm $\|u\|=\max _{0 \leq t \leq 1}|u(t)|$.

Let $\rho=d a+a c \int_{0}^{1} \frac{d t}{p(t)}+c b$. Since $d a+a c+c b>0$, one has $\rho>0$. Let

$$
q(t)=\min \left\{\frac{b+a \int_{0}^{t} \frac{\mathrm{~d} s}{p(s)}}{b+a \int_{0}^{1} \frac{\mathrm{~d} s}{p(s)}}, \frac{d+c \int_{t}^{1} \frac{\mathrm{~d} s}{p(s)}}{d+c \int_{0}^{1} \frac{\mathrm{~d} s}{p(s)}}\right\}, \quad 0 \leq t \leq 1
$$

Then $q(t)>0, \forall 0 \leq t \leq 1$ and $\sigma=\min _{0 \leq t \leq 1} q(t)$. By (H1), $0<\sigma<1$. Let

$$
K=\{u \in C[0,1]: u(t) \geq \sigma\|u\|, 0 \leq t \leq 1\}
$$

Then K is a cone of nonnegative functions in $C[0,1]$. Write

$$
\Omega(r)=\{u \in K:\|u\|<r\}, \quad \partial \Omega(r)=\{u \in K:\|u\|=r\} .
$$

Let $G(t, s)$ be the Green function of the homogeneous linear problem

$$
\left\{\begin{array}{l}
-\left(p(t) u^{\prime}(t)\right)^{\prime}=0, \quad 0<t<1 \\
a u(0)-b p(0) u^{\prime}(0)=0, \quad c u(1)+d p(1) u^{\prime}(1)=0
\end{array}\right.
$$

Then $G(t, s)$ has the precise expression

$$
G(t, s)= \begin{cases}\frac{1}{\rho}\left(b+a \int_{0}^{s} \frac{\mathrm{~d} \tau}{p(\tau)}\right)\left(d+c \int_{t}^{1} \frac{\mathrm{~d} \tau}{p(\tau)}\right), & 0 \leq s \leq t \leq 1 \\ \frac{1}{\rho}\left(b+a \int_{0}^{t} \frac{\mathrm{~d} \tau}{p(\tau)}\right)\left(d+c \int_{s}^{1} \frac{\mathrm{~d} \tau}{p(\tau)}\right), & 0 \leq t \leq s \leq 1\end{cases}
$$

Clearly, $G:[0,1] \times[0,1] \rightarrow[0,1]$ is continuous and

$$
\min _{0 \leq t, s \leq 1} G(t, s)=G(1,0)=G(0,1)=\frac{b d}{\rho}>0
$$

For $u \in K \backslash\{0\}$, define the operator T as follows

$$
(T u)(t)=\int_{0}^{1} G(t, s)[h(s) f(s, u(s))+g(s, u(s))] \mathrm{d} s, \quad 0 \leq t \leq 1
$$

It is not difficult to see that the operator $T: K \backslash\{0\} \rightarrow C[0,1]$ is well-defined if the assumptions (H1)-(H5) hold.

Lemma 2.1 Suppose that (H1)-(H5) hold. Then $T: \overline{\Omega\left(r_{2}\right)} \backslash \Omega\left(r_{1}\right) \rightarrow K$ is compact for any $r_{2}>r_{1}>0$.

Proof Let $j_{r_{1}}^{r_{2}}(t)$ be as in (H5). For $n=3,4, \ldots$, let

$$
\xi_{n}(t)= \begin{cases}\min \left\{j_{r_{1}}^{r_{2}}(t), n t j_{r_{1}}^{r_{2}}\left(\frac{1}{n}\right)\right\}, & 0 \leq t \leq \frac{1}{n} \\ j_{r_{1}}^{r_{2}}(t), & \frac{1}{n} \leq t \leq \frac{n-1}{n} \\ \min \left\{j_{r_{1}}^{r_{2}}(t), n(1-t) j_{r_{1}}^{r_{2}}\left(\frac{n-1}{n}\right)\right\}, & \frac{n-1}{n} \leq t \leq 1\end{cases}
$$

Then $\xi_{n} \in C[0,1], \xi_{n}(0)=\xi_{n}(1)=0$ and

$$
\int_{0}^{1}\left[j_{r_{1}}^{r_{2}}(t)-\xi_{n}(t)\right] \mathrm{d} t \rightarrow 0, \quad n \rightarrow \infty
$$

Further, let

$$
g_{n}(t, u)= \begin{cases}\min \left\{g(t, u), \xi_{n}(t)\right\}, & \sigma r_{1} \leq u<+\infty \\ \min \left\{g\left(t, \sigma r_{1}\right), \xi_{n}(t)\right\}, & 0 \leq u \leq \sigma r_{1}\end{cases}
$$

Then $g_{n}:[0,1] \times[0,+\infty) \rightarrow[0,+\infty)$ is continuous.
For $u \in K$, define the operator T_{n} as follows

$$
\left(T_{n} u\right)(t)=\int_{0}^{1} G(t, s)\left[h(s) f(s, u(s))+g_{n}(s, u(s))\right] \mathrm{d} s, \quad 0 \leq t \leq 1
$$

Then $T_{n}: \overline{\Omega\left(r_{2}\right)} \backslash \Omega\left(r_{1}\right) \rightarrow C[0,1]$ is compact by the Arzela-Ascoli theorem [3, 13]. Moreover, by [3, Lemma 2.1], one has

$$
q(t) \max _{0 \leq t \leq 1} G(t, s) \leq G(t, s) \leq \max _{0 \leq t \leq 1} G(t, s), \quad \forall 0 \leq t, s \leq 1
$$

So, for $0 \leq t \leq 1$ and $u \in \overline{\Omega\left(r_{2}\right)} \backslash \Omega\left(r_{1}\right)$,

$$
\begin{aligned}
\left(T_{n} u\right)(t) & \geq q(t) \int_{0}^{1} \max _{0 \leq t \leq 1} G(t, s)\left[h(s) f(s, u(s))+g_{n}(s, u(s))\right] \mathrm{d} s \\
& \geq q(t) \max _{0 \leq t \leq 1} \int_{0}^{1} G(t, s)\left[h(s) f(s, u(s))+g_{n}(s, u(s))\right] \mathrm{d} s \\
& =\left\|T_{n} u\right\| q(t)
\end{aligned}
$$

It follows that $T_{n}: \overline{\Omega\left(r_{2}\right)} \backslash \Omega\left(r_{1}\right) \rightarrow K$. Direct computations give that

$$
\begin{aligned}
\sup _{u \in \Omega\left(r_{2}\right) \backslash \Omega\left(r_{1}\right)}\left\|T u-T_{n} u\right\| & =\sup _{u \in \overline{\Omega\left(r_{2}\right) \backslash} \backslash \Omega\left(r_{1}\right)} \max _{0 \leq t \leq 1} \int_{0}^{1} G(t, s)\left[g(s, u(s))-g_{n}(s, u(s))\right] \mathrm{d} s \\
& \leq \max _{0 \leq t, s \leq 1} G(t, s) \int_{0}^{1}\left[j_{r_{1}}^{r_{2}}(s)-\xi_{n}(s)\right] \mathrm{d} s \rightarrow 0
\end{aligned}
$$

This shows that the compact operators T_{n} uniformly converge to the operator T on $\overline{\Omega\left(r_{2}\right)} \backslash \Omega\left(r_{1}\right)$. Therefore, $T: \overline{\Omega\left(r_{2}\right)} \backslash \Omega\left(r_{1}\right) \rightarrow K$ is compact.

In order that the paper is self-contained, we state the Guo-Krasnosel'skii fixed point theorem of norm expansion-compression type.

Lemma 2.2 Let X be a Banach space, K be a cone in $X, \Omega_{1}, \Omega_{2}$ be two bounded open subsets of K satisfying $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$. If $T: \overline{\Omega_{2}} \backslash \Omega_{1} \rightarrow K$ is a compact operator such that either
(1) $\|T u\| \leq\|u\|, u \in \partial \Omega_{1}$ and $\|T u\| \geq\|u\|, u \in \partial \Omega_{2}$, or
(2) $\|T u\| \geq\|u\|, u \in \partial \Omega_{1}$ and $\|T u\| \leq\|u\|, u \in \partial \Omega_{2}$.

Then T has a fixed point in $\overline{\Omega_{2}} \backslash \Omega_{1}$.

3. Main results

In this section, we use the following constants:

$$
\begin{gathered}
A=\max _{0 \leq t \leq 1} \int_{0}^{1} G(t, s) h(s) \mathrm{d} s, \quad B=\min _{0 \leq t \leq 1} \int_{0}^{1} G(t, s) h(s) \mathrm{d} s \\
C=\max _{0 \leq t, s \leq 1} G(t, s), \quad D=\min _{0 \leq t, s \leq 1} G(t, s)
\end{gathered}
$$

If $p(t), h(t), a, b, c, d$ are known, then A, B, C, D are computable. Moreover, for $r>0$, we use the following two control functions:

$$
A \varphi(r)+C \mu(r), \quad B \psi(r)+D \nu(r)
$$

where

$$
\begin{aligned}
& \varphi(r)=\max \{f(t, u):(t, u) \in[0,1] \times[\sigma r, r]\} \\
& \psi(r)=\min \{f(t, u):(t, u) \in[0,1] \times[\sigma r, r]\}
\end{aligned}
$$

$$
\begin{aligned}
& \mu(r)=\int_{0}^{1} \max \{g(t, u): u \in[\sigma r, r]\} \mathrm{d} t, \\
& \nu(r)=\int_{0}^{1} \min \{g(t, u): u \in[\sigma r, r]\} \mathrm{d} t .
\end{aligned}
$$

If (H1)-(H5) hold, then $\varphi(r), \psi(r), \mu(r), \nu(r)$ are nonnegative real numbers.
We obtain the following existence results.
Theorem 3.1 Suppose that (H1)-(H5) hold and there exist two positive numbers $r_{1}<r_{2}$ such that one of the following conditions is satisfied:
(a1) $A \varphi\left(r_{1}\right)+C \mu\left(r_{1}\right) \leq r_{1}, B \psi\left(r_{2}\right)+D \nu\left(r_{2}\right) \geq r_{2}$.
(a2) $B \psi\left(r_{1}\right)+D \nu\left(r_{1}\right) \geq r_{1}, A \varphi\left(r_{2}\right)+C \mu\left(r_{2}\right) \leq r_{2}$.
Then the problem (P) has at least one positive solution $u^{*} \in K$ and $r_{1} \leq\left\|u^{*}\right\| \leq r_{2}$.
Proof Without loss of generality, we only prove the case (a1).
If $u \in \partial \Omega\left(r_{1}\right)$, then $\|u\|=r_{1}$ and $\sigma r_{1} \leq u(t) \leq r_{1}, \forall 0 \leq t \leq 1$. Thus, $\max _{0 \leq t \leq 1} f(t, u(t)) \leq$ $\varphi\left(r_{1}\right)$ and $\int_{0}^{1} g(t, u(t)) \mathrm{d} t \leq \mu\left(r_{1}\right)$. It follows that

$$
\begin{aligned}
\|T u\| & =\max _{0 \leq t \leq 1} \int_{0}^{1} G(t, s)[h(s) f(s, u(s))+g(s, u(s))] \mathrm{d} s \\
& \leq \max _{0 \leq t \leq 1} \int_{0}^{1} G(t, s) h(s) f(s, u(s)) \mathrm{d} s+\max _{0 \leq t \leq 1} \int_{0}^{1} G(t, s) g(s, u(s)) \mathrm{d} s \\
& \leq \varphi\left(r_{1}\right) \max _{0 \leq t \leq 1} \int_{0}^{1} G(t, s) h(s) \mathrm{d} s+\max _{0 \leq t, s \leq 1} G(t, s) \int_{0}^{1} g(s, u(s)) \mathrm{d} s \\
& \leq A \varphi\left(r_{1}\right)+C \mu\left(r_{1}\right) \leq r_{1}=\|u\| .
\end{aligned}
$$

If $u \in \partial \Omega\left(r_{2}\right)$, then $\|u\|=r_{2}$ and $\sigma r_{2} \leq u(t) \leq r_{2}, \forall 0 \leq t \leq 1$. Thus, $\min _{0 \leq t \leq 1} f(t, u(t)) \geq$ $\psi\left(r_{2}\right)$ and $\int_{0}^{1} g(t, u(t)) \mathrm{d} t \geq \nu\left(r_{2}\right)$. It follows that

$$
\begin{aligned}
\|T u\| & \geq \min _{0 \leq t \leq 1} \int_{0}^{1} G(t, s)[h(s) f(s, u(s))+g(s, u(s))] \mathrm{d} s \\
& \geq \min _{0 \leq t \leq 1} \int_{0}^{1} G(t, s) h(s) f(s, u(s)) \mathrm{d} s+\min _{0 \leq t \leq 1} \int_{0}^{1} G(t, s) g(s, u(s)) \mathrm{d} s \\
& \geq \psi\left(r_{2}\right) \min _{0 \leq t \leq 1} \int_{0}^{1} G(t, s) h(s) \mathrm{d} s+\min _{0 \leq t, s \leq 1} G(t, s) \int_{0}^{1} g(s, u(s)) \mathrm{d} s \\
& \geq B \psi\left(r_{2}\right)+D \nu\left(r_{2}\right) \geq r_{2}=\|u\| .
\end{aligned}
$$

By Lemmas 2.1 and 2.2, T has at least one fixed point $u^{*} \in \overline{\Omega\left(r_{2}\right)} \backslash \Omega\left(r_{1}\right)$. So, $r_{1} \leq\left\|u^{*}\right\| \leq r_{2}$ and $u^{*}(t) \geq \sigma r_{1}>0, \forall 0 \leq t \leq 1$.

Direct verifications show that $u^{*}(t)$ satisfies (P). Therefore, $u^{*}(t)$ is a positive solution of the problem (P).

Theorem 3.2 Suppose that (H1)-(H5) hold and there exist three positive numbers $r_{1}<r_{2}<r_{3}$ such that one of the following conditions is satisfied:
(b1) $A \varphi\left(r_{1}\right)+C \mu\left(r_{1}\right) \leq r_{1}, B \psi\left(r_{2}\right)+D \nu\left(r_{2}\right)>r_{2}, A \varphi\left(r_{3}\right)+C \mu\left(r_{3}\right) \leq r_{3}$.
(b2) $B \psi\left(r_{1}\right)+D \nu\left(r_{1}\right) \geq r_{1}, A \varphi\left(r_{2}\right)+C \mu\left(r_{2}\right)<r_{2}, B \psi\left(r_{3}\right)+D \nu\left(r_{3}\right) \geq r_{3}$.
Then the problem (P) has at least two positive solutions $u_{1}^{*}, u_{2}^{*} \in K$ and $r_{1} \leq\left\|u_{1}^{*}\right\|<r_{2}<$ $\left\|u_{2}^{*}\right\| \leq r_{3}$.

Proof Let $\Phi(r)=A \varphi(r)+C \mu(r), \Psi(r)=B \psi(r)+D \nu(r)$. Then $\Phi, \Psi:(0,+\infty) \rightarrow[0,+\infty)$ are continuous by (H2)-(H5).

If (b1) holds, then there exist $\bar{r}_{2} \in\left(r_{1}, r_{2}\right), \tilde{r}_{2} \in\left(r_{2}, r_{3}\right)$ such that $\Psi\left(\bar{r}_{2}\right) \geq \bar{r}_{2}, \Psi\left(\tilde{r}_{2}\right) \geq \tilde{r}_{2}$. It follows that

$$
\begin{aligned}
& A \varphi\left(r_{1}\right)+C \mu\left(r_{1}\right) \leq r_{1}, \quad B \psi\left(\bar{r}_{2}\right)+D \nu\left(\bar{r}_{2}\right) \geq \bar{r}_{2} \\
& B \psi\left(\tilde{r}_{2}\right)+D \nu\left(\tilde{r}_{2}\right) \geq \tilde{r}_{2}, \quad A \varphi\left(r_{3}\right)+C \mu\left(r_{3}\right) \leq r_{3}
\end{aligned}
$$

By Theorem 3.1, (P) has two positive solutions $u_{1}^{*}, u_{2}^{*} \in K$ and $r_{1} \leq\left\|u_{1}^{*}\right\| \leq \bar{r}_{2}<r_{2}<\tilde{r}_{2} \leq$ $\left\|u_{2}^{*}\right\| \leq r_{3}$.

If (b2) holds, the proof is similar.
Theorem 3.3 Suppose that (H1)-(H5) hold and there exist four positive numbers $r_{1}<r_{2}<$ $r_{3}<r_{4}$ such that one of the following conditions is satisfied:
(c1) $A \varphi\left(r_{1}\right)+C \mu\left(r_{1}\right) \leq r_{1}, B \psi\left(r_{2}\right)+D \nu\left(r_{2}\right)>r_{2}, A \varphi\left(r_{3}\right)+C \mu\left(r_{3}\right)<r_{3}$ and $B \psi\left(r_{4}\right)+$ $D \nu\left(r_{4}\right) \geq r_{4}$.
(c2) $B \psi\left(r_{1}\right)+D \nu\left(r_{1}\right) \geq r_{1}, A \varphi\left(r_{2}\right)+C \mu\left(r_{2}\right)<r_{2}, B \psi\left(r_{3}\right)+D \nu\left(r_{3}\right)>r_{3}$ and $A \varphi\left(r_{4}\right)+$ $C \mu\left(r_{4}\right) \leq r_{4}$.
Then the problem (P) has at least three positive solutions $u_{1}^{*}, u_{2}^{*}, u_{3}^{*} \in K$ and $r_{1} \leq\left\|u_{1}^{*}\right\|<r_{2}<$ $\left\|u_{2}^{*}\right\|<r_{3}<\left\|u_{3}^{*}\right\| \leq r_{4}$.

Obviously, we can prove similar results for any positive integer k.
If $\lim _{u \rightarrow+0} \min _{0 \leq t \leq 1} g(t, u)=+\infty$, then Corollary 3.4 is very convenient.
Corollary 3.4 Suppose that (H1)-(H5) hold and the following conditions are satisfied:
(d1) There exist $\hat{r}>0,0 \leq \theta<1$ and a nonnegative function $\gamma \in L^{1}[0,1]$ such that $g(t, u) \leq \gamma(t) u^{\theta}, \forall(t, u) \in[0,1] \times[\sigma \hat{r},+\infty)$.
(d2) There exist $0 \leq \alpha<\beta \leq 1$ such that $\lim _{u \rightarrow+0} \min _{\alpha \leq t \leq \beta} g(t, u)>0$.
(d3) $\lim _{u \rightarrow+\infty} \max _{0 \leq t \leq 1} \frac{f(t, u)}{u}<A^{-1}$.
Then the problem (P) has at least one positive solution $u^{*} \in K$.
Proof By (d2), there exist $L>0$ and $\bar{r}>0$ such that

$$
\max \{g(t, u):(t, u) \in[\alpha, \beta] \times(0, \bar{r}]\} \geq L
$$

Let $r_{1}=\min \{D L(\beta-\alpha), \bar{r}\}$. Then $r_{1}>0$ and

$$
\max \left\{g(t, u):(t, u) \in[\alpha, \beta] \times\left[\sigma r_{1}, r_{1}\right]\right\} \geq L
$$

If $u \in \partial \Omega\left(r_{1}\right)$, then $\sigma r_{1} \leq u(t) \leq r_{1}, 0 \leq t \leq 1$. Thus,

$$
\nu\left(r_{1}\right) \geq \int_{\alpha}^{\beta} \min \left\{g(t, u): \sigma r_{1} \leq u \leq r_{1}\right\} \mathrm{d} t \geq L(\beta-\alpha)
$$

It follows that

$$
B \psi\left(r_{1}\right)+D \nu\left(r_{1}\right) \geq D \nu\left(r_{1}\right) \geq D L(\beta-\alpha) \geq r_{1}
$$

Let $\varepsilon=\frac{1}{3}\left[A^{-1}-\lim _{u \rightarrow+\infty} \max _{0 \leq t \leq 1} \frac{f(t, u)}{u}\right]$. By (d3), then $\varepsilon>0$. So, there exists $r_{2}>0$ such that

$$
\max \left\{\frac{f(t, u)}{u}:(t, u) \in[0,1] \times\left[r_{2},+\infty\right)\right\} \leq A^{-1}-2 \varepsilon
$$

Since $f:[0,1] \times[0,+\infty) \rightarrow[0,+\infty)$ is continuous, one has

$$
W=\max \left\{f(t, u):(t, u) \in[0,1] \times\left[0, r_{2}\right]\right\}<+\infty
$$

By (d1), then for any $r \geq \hat{r}$,

$$
\max \{g(t, u): \sigma r \leq u \leq r\} \leq \gamma(t) r^{\theta}, \quad \forall 0 \leq t \leq 1
$$

It follows that

$$
\lim _{r \rightarrow+\infty} \frac{\mu(r)}{r} \leq \lim _{r \rightarrow+\infty} \frac{1}{r^{1-\theta}} \int_{0}^{1} \gamma(t) \mathrm{d} t=0
$$

So, there exists $r_{3}>0$ such that $C \mu(r)<A \varepsilon r, \forall r \geq r_{3}$.
Choose $r_{4}=\max \left\{r_{1}+\hat{r}, r_{2}, r_{3}, W \varepsilon^{-1}\right\}$. Then

$$
\begin{aligned}
\varphi\left(r_{4}\right) & =\max \left\{f(t, u):(t, u) \in[0,1] \times\left[0, r_{4}\right]\right\} \\
& \leq \max \left\{f(t, u):(t, u) \in[0,1] \times\left[0, r_{2}\right]\right\}+\max \left\{f(t, u):(t, u) \in[0,1] \times\left[r_{2}, r_{4}\right]\right\} \\
& \leq W+\left(A^{-1}-2 \varepsilon\right) r_{4}<\left(A^{-1}-\varepsilon\right) r_{4}
\end{aligned}
$$

It follows that

$$
A \varphi\left(r_{4}\right)+C \mu\left(r_{4}\right)<A\left(A^{-1}-\varepsilon\right) r_{4}+A \varepsilon r_{4}=r_{4}
$$

By Theorem 3.1 (a2), (P) has at least one positive solution $u^{*} \in K$.

4. An example

Consider the following nonlinear Sturm-Liouville boundary value problem

$$
\left\{\begin{array}{l}
\left(e^{-t} u^{\prime}(t)\right)^{\prime}+\frac{(1+\sin (u(t)) \sqrt{u(t)}}{\sqrt{t(1-t)}}+[2+t \arctan u(t)]^{\frac{1}{u(t)}}=0, \quad 0<t<1 \\
u(0)-u^{\prime}(0)=0, \quad u(1)+\frac{1}{e} u^{\prime}(1)=0
\end{array}\right.
$$

Here, $a=b=c=d=1, p(t)=e^{-t}, h(t)=\frac{1}{\sqrt{t(1-t)}}$,

$$
f(t, u)=f(u)=(1+\sin u) \sqrt{u}, \quad g(t, u)=[2+t \arctan u]^{\frac{1}{u}}
$$

So, $h(t)$ is singular at $t=0, t=1$, and $g(t, u)$ is singular at $u=0$.
Obviously, the assumptions (H1)-(H5) are satisfied. Moreover,

$$
\begin{gathered}
\lim _{u \rightarrow+0} \min _{0 \leq t \leq 1} g(t, u) \geq \lim _{u \rightarrow+0} 2^{\frac{1}{u}}=+\infty \\
\lim _{u \rightarrow+\infty} \max _{0 \leq t \leq 1} \frac{f(t, u)}{u}=\lim _{u \rightarrow+\infty} \frac{f(u)}{u} \leq \lim _{u \rightarrow+\infty} \frac{2 \sqrt{u}}{u}=0
\end{gathered}
$$

For $u \geq 2$ and $0<t<1$, one has

$$
g(t, u) \leq[2+t u]^{\frac{1}{u}} \leq[2+t u]^{\frac{1}{2}} \leq[u+t u]^{\frac{1}{2}}=\sqrt{1+t} u^{\frac{1}{2}}
$$

By Corollary 3.4, the problem has a positive solution $u^{*} \in K$. Since for any $0 \leq t \leq 1$ and any k,

$$
\lim _{u \rightarrow+0} u^{k} g(t, u) \geq \lim _{u \rightarrow+0} u^{k} 2^{\frac{1}{u}}=+\infty
$$

the function $g(t, u)$ is super-strongly singular at $u=0$.
The conclusion cannot be derived from the existing literature, for example, from [5, 7, 9, 10], because of the super-strong singularities of $g(t, u)$ at $u=0$.

References

[1] R. P. AGARWAL, D. O'REGAN. Twin solutions to singular boundary value problems. Proc. Amer. Math. Soc., 2000, 128(7): 2085-2094.
[2] R. P. AGARWAL, D. O'REGAN. Multiplicity results for singular conjugate, focal, and (n, p) problems. J. Differential Equations, 2001, 170(1): 142-156.
[3] V. ANURADHA, D. D. HAI, R. SHIVAJI. Existence results for superlinear semipositone BVP's. Proc. Amer. Math. Soc., 1996, 124(3): 757-763.
[4] D. ARONSON, M. G. CRANDALL, L. A. PELETIER. Stabilization of solutions of a degenerate nonlinear diffusion problem. Nonlinear Anal., 1982, 6(10): 1001-1022.
[5] M. DUHOUX. Nonlinear singular Sturm-Liouville problems. Nonlinear Anal., Ser. A, 1999, 38(7): 897-918.
[6] Daqing JIANG, Jifeng CHU, D. O'REGAN, et al. Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces. J. Math. Anal. Appl., 2003, 286(2): 563-576.
[7] I. RACHUNKOVA, S. STANEK. Sturm-Liouville and focal higher order BVPs with singularties in physe variables. Georgian Math. J., 2003, 10(1): 165-191.
[8] P. J. TORRES. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem. J. Differential Equations, 2003, 190(2): 643-662.
[9] P. J. Y. WONG. Solution of constant signs of a system of Sturm-Liouville boundary value problems. Math. Comput. Modelling, 1999, 29(9): 27-38.
[10] Qingliu YAO. Existence of n solutions to a semipositone Sturm-Liouville boundary value problem. Adv. Math. (China), 2004, 33(6): 719-725.
[11] Qingliu YAO. Positive periodic solutions of a class of singular second-order boundary value problems. Acta Math. Sinica (Chin. Ser.), 2007, 50(6): 1357-1364. (in Chinese)
[12] Qingliu YAO. Positive solutions of nonlinear second-order periodic boundary value problems. Appl. Math. Lett., 2007, 20(5): 583-590.
[13] Qingliu YAO. An existence theorem of a positive solution to a semipositone Sturm-Liouville boundary value problem. Appl. Math. Lett., 2010, 23(12): 1401-1406.
[14] Qingliu YAO. Positive solutions of nonlinear beam equations with time and space singularities. J. Math. Anal. Appl., 2011, 374(2): 681-692.
[15] Qingliu YAO. Multiple positive solutions of nonlinear Neumann problems with time and space singularities. Appl. Math. Lett., 2012, 25(2): 93-98.

[^0]: Received May 24, 2012; Accepted September 3, 2012
 Supported by the National Natural Science Foundation of China (Grant No. 11071109).
 E-mail address: yaoqingliu2002@hotmail.com

