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Abstract The existence and multiplicity of positive solutions are studied for a singular

Sturm-Liouville boundary value problem with positive Green function, where the nonlinearity

may be super-strongly singular with respect to the space variable. By constructing suit-

able control functions, the a priori bound of solution is exactly estimated. By applying the

Guo-Krasnosel’skii fixed point theorem of cone expansion-compression type, several existence

results are proved.
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1. Introduction

In this paper, we consider the existence and multiplicity of positive solutions for the non-

linear Sturm-Liouville boundary value problem

(P)







(p(t)u′(t))′ + h(t)f(t, u(t)) + g(t, u(t)) = 0, 0 < t < 1,

au(0) − bp(0)u′(0) = 0, cu(1) + dp(1)u′(1) = 0,

where p : [0, 1] → (0,+∞) is a continuous function, a, b, c, d are four nonnegative constants such

that da+ ac+ cb > 0.

We need the following definitions. For other boundary value problems, the definitions are

analogous.

Let G(t, s) be the Green function of the problem (P). G(t, s) is called positive if min0≤t,s≤1

G(t, s) > 0, nonnegative if min0≤t,s≤1G(t, s) ≥ 0. g(t, u) is called super-strongly singular at

u = 0 if limu→+0 u
kg(t, u) = +∞ for any 0 < t < 1 and any positive integer k. u∗ ∈ C[0, 1] is

called positive solution of (P) if u∗(t) satisfies (P) and u∗(t) > 0, ∀0 ≤ t ≤ 1.

The problem (P) arises quite naturally in a variety of mathematical models. For example,

the paper [4] considered its applications to the nonlinear diffusion theory generated by nonlinear

sources. For the recent existence results of (P) (see [3, 5, 7, 9, 10, 13] and the references therein).
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However, all of these results are obtained for the problem (P) with nonnegative Green function

G(t, s).

It is well known that some periodic or Neumann boundary value problems have positive

Green function. The positivity guarantees the existence of positive solutions when the nonlin-

earity is super-strongly singular at the space variable u = 0 (see [6, 8, 11, 12, 15]).

When bd > 0, the problem (P) has a positive Green functionG(t, s), see Section 2. Motivated

by above-mentioned papers, the aim of this paper is to study the problem (P) under the following

assumptions:

(H1) b > 0, d > 0.

(H2) h : (0, 1) → [0,+∞) is continuous and 0 <
∫ 1

0 h(t)dt < +∞.

(H3) f : [0, 1]× [0,+∞) → [0,+∞) is continuous.

(H4) g : (0, 1) × (0,+∞) → [0,+∞) is continuous.

(H5) For every pair of positive numbers r2 > r1 > 0, there exists a nonnegative function

jr2
r1

∈ C(0, 1) ∩ L1[0, 1] such that g(t, u) ≤ jr2
r1

(t) for any (t, u) ∈ (0, 1)× [σr1, r2], where

σ = min
{ b

b+ a
∫ 1

0
dt

p(t)

,
d

d+ c
∫ 1

0
dt

p(t)

}

.

The assumption (H2) allows h(t) to be singular at t = 0, t = 1. (H4) and (H5) show that

g(t, u) may be singular at t = 0, t = 1 for any u ∈ [0,+∞), and at u = 0 for any 0 < t < 1.

Particularly, (H1) implies that g(t, u) may be super-strongly singular at u = 0, see Section 4.

This paper is organized as follows. In Section 2, we transfer the problem (P) into a Hammer-

stein integral equation by using the Green function G(t, s). (H1)–(H5) will ensure the compact-

ness of the associated integral operator (see Lemma 2.1). In Section 3, we construct two control

functions for estimating the a priori bound of solution. By applying the Guo-Krasnosel’skii fixed

point theorem of norm expansion-compression type, we establish three existence theorems con-

cerned with one, two and three positive solutions. Finally, we give an example to demonstrate

the main result.

If bd = 0, then the Green function G(t, s) is nonnegative. In such a case, g(t, u) cannot be

super-strongly singular at u = 0, otherwise the associated integral operator may be noncompact.

For the other singular boundary value problems with nonnegative Green function, we refer to

[1, 2, 7, 14].

2. Preliminaries

Let C[0, 1] be the Banach space of all continuous functions on [0, 1] equipped with the norm

‖u‖ = max0≤t≤1 |u(t)|.
Let ρ = da+ ac

∫ 1

0
dt

p(t) + cb. Since da+ ac+ cb > 0, one has ρ > 0. Let

q(t) = min
{ b+ a

∫ t

0
ds

p(s)

b+ a
∫ 1

0
ds

p(s)

,
d+ c

∫ 1

t
ds

p(s)

d+ c
∫ 1

0
ds

p(s)

}

, 0 ≤ t ≤ 1.
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Then q(t) > 0, ∀0 ≤ t ≤ 1 and σ = min0≤t≤1 q(t). By (H1), 0 < σ < 1. Let

K = {u ∈ C[0, 1] : u(t) ≥ σ‖u‖, 0 ≤ t ≤ 1}.

Then K is a cone of nonnegative functions in C[0, 1]. Write

Ω(r) = {u ∈ K : ‖u‖ < r}, ∂Ω(r) = {u ∈ K : ‖u‖ = r}.

Let G(t, s) be the Green function of the homogeneous linear problem






−(p(t)u′(t))′ = 0, 0 < t < 1,

au(0) − bp(0)u′(0) = 0, cu(1) + dp(1)u′(1) = 0.

Then G(t, s) has the precise expression

G(t, s) =







1
ρ
(b+ a

∫ s

0
dτ

p(τ))(d+ c
∫ 1

t
dτ

p(τ) ), 0 ≤ s ≤ t ≤ 1,

1
ρ
(b+ a

∫ t

0
dτ

p(τ) )(d+ c
∫ 1

s
dτ

p(τ) ), 0 ≤ t ≤ s ≤ 1.

Clearly, G : [0, 1] × [0, 1] → [0, 1] is continuous and

min
0≤t,s≤1

G(t, s) = G(1, 0) = G(0, 1) =
bd

ρ
> 0.

For u ∈ K\{0}, define the operator T as follows

(Tu)(t) =

∫ 1

0

G(t, s)[h(s)f(s, u(s)) + g(s, u(s))]ds, 0 ≤ t ≤ 1.

It is not difficult to see that the operator T : K\{0} → C[0, 1] is well-defined if the assumptions

(H1)–(H5) hold.

Lemma 2.1 Suppose that (H1)–(H5) hold. Then T : Ω(r2)\Ω(r1) → K is compact for any

r2 > r1 > 0.

Proof Let jr2
r1

(t) be as in (H5). For n = 3, 4, . . . , let

ξn(t) =



















min{jr2
r1

(t), ntjr2
r1

( 1
n
)}, 0 ≤ t ≤ 1

n
,

jr2
r1

(t), 1
n
≤ t ≤ n−1

n
,

min{jr2
r1

(t), n(1 − t)jr2
r1

(n−1
n

)}, n−1
n

≤ t ≤ 1.

Then ξn ∈ C[0, 1], ξn(0) = ξn(1) = 0 and
∫ 1

0

[jr2
r1

(t) − ξn(t)]dt → 0, n→ ∞.

Further, let

gn(t, u) =







min{g(t, u), ξn(t)}, σr1 ≤ u < +∞,

min{g(t, σr1), ξn(t)}, 0 ≤ u ≤ σr1.

Then gn : [0, 1]× [0,+∞) → [0,+∞) is continuous.

For u ∈ K, define the operator Tn as follows

(Tnu)(t) =

∫ 1

0

G(t, s)[h(s)f(s, u(s)) + gn(s, u(s))]ds, 0 ≤ t ≤ 1.
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Then Tn : Ω(r2)\Ω(r1) → C[0, 1] is compact by the Arzela-Ascoli theorem [3, 13]. Moreover, by

[3, Lemma 2.1], one has

q(t) max
0≤t≤1

G(t, s) ≤ G(t, s) ≤ max
0≤t≤1

G(t, s), ∀0 ≤ t, s ≤ 1.

So, for 0 ≤ t ≤ 1 and u ∈ Ω(r2)\Ω(r1),

(Tnu)(t) ≥ q(t)

∫ 1

0

max
0≤t≤1

G(t, s)[h(s)f(s, u(s)) + gn(s, u(s))]ds

≥ q(t) max
0≤t≤1

∫ 1

0

G(t, s)[h(s)f(s, u(s)) + gn(s, u(s))]ds

= ‖Tnu‖q(t).

It follows that Tn : Ω(r2)\Ω(r1) → K. Direct computations give that

sup
u∈Ω(r2)\Ω(r1)

‖Tu− Tnu‖ = sup
u∈Ω(r2)\Ω(r1)

max
0≤t≤1

∫ 1

0

G(t, s)[g(s, u(s)) − gn(s, u(s))]ds

≤ max
0≤t,s≤1

G(t, s)

∫ 1

0

[jr2
r1

(s) − ξn(s)]ds → 0.

This shows that the compact operators Tn uniformly converge to the operator T on Ω(r2)\Ω(r1).

Therefore, T : Ω(r2)\Ω(r1) → K is compact. �

In order that the paper is self-contained, we state the Guo-Krasnosel’skii fixed point theorem

of norm expansion-compression type.

Lemma 2.2 Let X be a Banach space, K be a cone in X , Ω1,Ω2 be two bounded open subsets

of K satisfying 0 ∈ Ω1, Ω1 ⊂ Ω2. If T : Ω2\Ω1 → K is a compact operator such that either

(1) ‖Tu‖ ≤ ‖u‖, u ∈ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ ∂Ω2, or

(2) ‖Tu‖ ≥ ‖u‖, u ∈ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ ∂Ω2.

Then T has a fixed point in Ω2\Ω1.

3. Main results

In this section, we use the following constants:

A = max
0≤t≤1

∫ 1

0

G(t, s)h(s)ds, B = min
0≤t≤1

∫ 1

0

G(t, s)h(s)ds,

C = max
0≤t,s≤1

G(t, s), D = min
0≤t,s≤1

G(t, s).

If p(t), h(t), a, b, c, d are known, then A,B,C,D are computable. Moreover, for r > 0, we use the

following two control functions:

Aϕ(r) + Cµ(r), Bψ(r) +Dν(r),

where

ϕ(r) = max{f(t, u) : (t, u) ∈ [0, 1] × [σr, r]},
ψ(r) = min{f(t, u) : (t, u) ∈ [0, 1] × [σr, r]},
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µ(r) =

∫ 1

0

max{g(t, u) : u ∈ [σr, r]}dt,

ν(r) =

∫ 1

0

min{g(t, u) : u ∈ [σr, r]}dt.

If (H1)–(H5) hold, then ϕ(r), ψ(r), µ(r), ν(r) are nonnegative real numbers.

We obtain the following existence results.

Theorem 3.1 Suppose that (H1)–(H5) hold and there exist two positive numbers r1 < r2 such

that one of the following conditions is satisfied:

(a1) Aϕ(r1) + Cµ(r1) ≤ r1, Bψ(r2) +Dν(r2) ≥ r2.

(a2) Bψ(r1) +Dν(r1) ≥ r1, Aϕ(r2) + Cµ(r2) ≤ r2.

Then the problem (P) has at least one positive solution u∗ ∈ K and r1 ≤ ‖u∗‖ ≤ r2.

Proof Without loss of generality, we only prove the case (a1).

If u ∈ ∂Ω(r1), then ‖u‖ = r1 and σr1 ≤ u(t) ≤ r1, ∀0 ≤ t ≤ 1. Thus, max0≤t≤1 f(t, u(t)) ≤
ϕ(r1) and

∫ 1

0
g(t, u(t))dt ≤ µ(r1). It follows that

‖Tu‖ = max
0≤t≤1

∫ 1

0

G(t, s)[h(s)f(s, u(s)) + g(s, u(s))]ds

≤ max
0≤t≤1

∫ 1

0

G(t, s)h(s)f(s, u(s))ds + max
0≤t≤1

∫ 1

0

G(t, s)g(s, u(s))ds

≤ ϕ(r1) max
0≤t≤1

∫ 1

0

G(t, s)h(s)ds+ max
0≤t,s≤1

G(t, s)

∫ 1

0

g(s, u(s))ds

≤ Aϕ(r1) + Cµ(r1) ≤ r1 = ‖u‖.

If u ∈ ∂Ω(r2), then ‖u‖ = r2 and σr2 ≤ u(t) ≤ r2, ∀0 ≤ t ≤ 1. Thus, min0≤t≤1 f(t, u(t)) ≥
ψ(r2) and

∫ 1

0 g(t, u(t))dt ≥ ν(r2). It follows that

‖Tu‖ ≥ min
0≤t≤1

∫ 1

0

G(t, s)[h(s)f(s, u(s)) + g(s, u(s))]ds

≥ min
0≤t≤1

∫ 1

0

G(t, s)h(s)f(s, u(s))ds + min
0≤t≤1

∫ 1

0

G(t, s)g(s, u(s))ds

≥ ψ(r2) min
0≤t≤1

∫ 1

0

G(t, s)h(s)ds + min
0≤t,s≤1

G(t, s)

∫ 1

0

g(s, u(s))ds

≥ Bψ(r2) +Dν(r2) ≥ r2 = ‖u‖.

By Lemmas 2.1 and 2.2, T has at least one fixed point u∗ ∈ Ω(r2)\Ω(r1). So, r1 ≤ ‖u∗‖ ≤ r2

and u∗(t) ≥ σr1 > 0, ∀0 ≤ t ≤ 1.

Direct verifications show that u∗(t) satisfies (P). Therefore, u∗(t) is a positive solution of

the problem (P). �

Theorem 3.2 Suppose that (H1)–(H5) hold and there exist three positive numbers r1 < r2 < r3

such that one of the following conditions is satisfied:

(b1) Aϕ(r1) + Cµ(r1) ≤ r1, Bψ(r2) +Dν(r2) > r2, Aϕ(r3) + Cµ(r3) ≤ r3.
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(b2) Bψ(r1) +Dν(r1) ≥ r1, Aϕ(r2) + Cµ(r2) < r2, Bψ(r3) +Dν(r3) ≥ r3.

Then the problem (P) has at least two positive solutions u∗1, u
∗
2 ∈ K and r1 ≤ ‖u∗1‖ < r2 <

‖u∗2‖ ≤ r3.

Proof Let Φ(r) = Aϕ(r) +Cµ(r), Ψ(r) = Bψ(r) +Dν(r). Then Φ,Ψ : (0,+∞) → [0,+∞) are

continuous by (H2)–(H5).

If (b1) holds, then there exist r̄2 ∈ (r1, r2), r̃2 ∈ (r2, r3) such that Ψ(r̄2) ≥ r̄2, Ψ(r̃2) ≥ r̃2.

It follows that

Aϕ(r1) + Cµ(r1) ≤ r1, Bψ(r̄2) +Dν(r̄2) ≥ r̄2;

Bψ(r̃2) +Dν(r̃2) ≥ r̃2, Aϕ(r3) + Cµ(r3) ≤ r3.

By Theorem 3.1, (P) has two positive solutions u∗1, u
∗
2 ∈ K and r1 ≤ ‖u∗1‖ ≤ r̄2 < r2 < r̃2 ≤

‖u∗2‖ ≤ r3.

If (b2) holds, the proof is similar. �

Theorem 3.3 Suppose that (H1)–(H5) hold and there exist four positive numbers r1 < r2 <

r3 < r4 such that one of the following conditions is satisfied:

(c1) Aϕ(r1) + Cµ(r1) ≤ r1, Bψ(r2) +Dν(r2) > r2, Aϕ(r3) + Cµ(r3) < r3 and Bψ(r4) +

Dν(r4) ≥ r4.

(c2) Bψ(r1) +Dν(r1) ≥ r1, Aϕ(r2) + Cµ(r2) < r2, Bψ(r3) +Dν(r3) > r3 and Aϕ(r4) +

Cµ(r4) ≤ r4.

Then the problem (P) has at least three positive solutions u∗1, u
∗
2, u

∗
3 ∈ K and r1 ≤ ‖u∗1‖ < r2 <

‖u∗2‖ < r3 < ‖u∗3‖ ≤ r4.

Obviously, we can prove similar results for any positive integer k.

If limu→+0 min0≤t≤1 g(t, u) = +∞, then Corollary 3.4 is very convenient.

Corollary 3.4 Suppose that (H1)–(H5) hold and the following conditions are satisfied:

(d1) There exist r̂ > 0, 0 ≤ θ < 1 and a nonnegative function γ ∈ L1[0, 1] such that

g(t, u) ≤ γ(t)uθ, ∀(t, u) ∈ [0, 1]× [σr̂,+∞).

(d2) There exist 0 ≤ α < β ≤ 1 such that limu→+0 minα≤t≤β g(t, u) > 0.

(d3) limu→+∞ max0≤t≤1
f(t,u)

u
< A−1.

Then the problem (P) has at least one positive solution u∗ ∈ K.

Proof By (d2), there exist L > 0 and r̄ > 0 such that

max{g(t, u) : (t, u) ∈ [α, β] × (0, r̄]} ≥ L.

Let r1 = min{DL(β − α), r̄}. Then r1 > 0 and

max{g(t, u) : (t, u) ∈ [α, β] × [σr1, r1]} ≥ L.

If u ∈ ∂Ω(r1), then σr1 ≤ u(t) ≤ r1, 0 ≤ t ≤ 1. Thus,

ν(r1) ≥
∫ β

α

min{g(t, u) : σr1 ≤ u ≤ r1}dt ≥ L(β − α).
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It follows that

Bψ(r1) +Dν(r1) ≥ Dν(r1) ≥ DL(β − α) ≥ r1.

Let ε = 1
3 [A−1 − limu→+∞ max0≤t≤1

f(t,u)
u

]. By (d3), then ε > 0. So, there exists r2 > 0

such that

max{f(t, u)

u
: (t, u) ∈ [0, 1] × [r2,+∞)} ≤ A−1 − 2ε.

Since f : [0, 1]× [0,+∞) → [0,+∞) is continuous, one has

W = max{f(t, u) : (t, u) ∈ [0, 1]× [0, r2]} < +∞.

By (d1), then for any r ≥ r̂,

max{g(t, u) : σr ≤ u ≤ r} ≤ γ(t)rθ , ∀0 ≤ t ≤ 1.

It follows that

lim
r→+∞

µ(r)

r
≤ lim

r→+∞

1

r1−θ

∫ 1

0

γ(t)dt = 0.

So, there exists r3 > 0 such that Cµ(r) < Aεr, ∀r ≥ r3.

Choose r4 = max{r1 + r̂, r2, r3,Wε−1}. Then

ϕ(r4) =max{f(t, u) : (t, u) ∈ [0, 1] × [0, r4]}
≤max{f(t, u) : (t, u) ∈ [0, 1] × [0, r2]} + max{f(t, u) : (t, u) ∈ [0, 1] × [r2, r4]}
≤W + (A−1 − 2ε)r4 < (A−1 − ε)r4.

It follows that

Aϕ(r4) + Cµ(r4) < A(A−1 − ε)r4 +Aεr4 = r4.

By Theorem 3.1 (a2), (P) has at least one positive solution u∗ ∈ K. �

4. An example

Consider the following nonlinear Sturm-Liouville boundary value problem






(e−tu′(t))′ +
(1+sin(u(t))

√
u(t)√

t(1−t)
+ [2 + t arctanu(t)]

1
u(t) = 0, 0 < t < 1,

u(0) − u′(0) = 0, u(1) + 1
e
u′(1) = 0.

Here, a = b = c = d = 1, p(t) = e−t, h(t) = 1√
t(1−t)

,

f(t, u) = f(u) = (1 + sinu)
√
u, g(t, u) = [2 + t arctanu]

1
u .

So, h(t) is singular at t = 0, t = 1, and g(t, u) is singular at u = 0.

Obviously, the assumptions (H1)–(H5) are satisfied. Moreover,

lim
u→+0

min
0≤t≤1

g(t, u) ≥ lim
u→+0

2
1
u = +∞,

lim
u→+∞

max
0≤t≤1

f(t, u)

u
= lim

u→+∞

f(u)

u
≤ lim

u→+∞

2
√
u

u
= 0.
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For u ≥ 2 and 0 < t < 1, one has

g(t, u) ≤ [2 + tu]
1
u ≤ [2 + tu]

1
2 ≤ [u+ tu]

1
2 =

√
1 + tu

1
2 .

By Corollary 3.4, the problem has a positive solution u∗ ∈ K. Since for any 0 ≤ t ≤ 1 and any

k,

lim
u→+0

ukg(t, u) ≥ lim
u→+0

uk2
1
u = +∞,

the function g(t, u) is super-strongly singular at u = 0.

The conclusion cannot be derived from the existing literature, for example, from [5, 7, 9, 10],

because of the super-strong singularities of g(t, u) at u = 0.
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