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Abstract Kobayashi discussed some kinds of standard embeddings into 3-manifolds of spatial

graphs. He introduced the concept of book presentation, which is a standard embedding of

spatial graphs with good properties, and proved that the book presentation of minimum sheets

of Kn is unique up to the sheet translation and the ambient isotopy. In this present paper

we give the definition of skeleton presentation of spatial graphs, and prove that the skeleton

presentation of minimum floors of a complete bipartite graph Km,n is unique up to ambient

isotopy.
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1. Introduction

Kobayashi discussed some kinds of standard embeddings into 3-manifolds of spatial graphs

in [1] and [2]. He introduced the concept of book presentation, which is a standard embedding

of spatial graphs with good properties. In [1] Kobayashi conjectured that the book presentation

of minimum sheets of Kn is unique up to the sheet translation and the ambient isotopy. In [3]

Yin et al. discussed some properties of book presentation of spatial graphs, and proved that the

book presentation of minimum sheets of a complete graph K2m with even vertices is unique up

to sheet translation and ambient isotopy.

In this paper we give the definition of skeleton presentation of spatial graphs, and prove

that the skeleton presentation of minimum floors of a complete bipartite graph Km,n is unique

up to ambient isotopy.

In Section 2, we will preview some definitions and give some new definitions, and in Section

3, we will give the main results.

2. Preliminary

A graph G is denoted by (V,E), where V is a set. The element in V is called a vertex. Let

E be a subset of V × V . Then each of its elements is called an edge.
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The set of vertices is denoted by V (G), and the set of edges is denoted by E(G), G is called

a finite graph if V (G) and E(G) are both finite sets, otherwise G is called an infinite graph.

Only finite graph will be discussed in this paper. The following Definition 1 to Definition 3 can

be found in [3] and [4].

Definition 1 The graph Ki,j is the graph given by taking two sets of vertices, the first set

having i vertices and the second set having j vertices. All of the vertices in any one of the sets

are connected by edges to all of the vertices in the other two sets but to none of the other vertices

in their own set. We call Ki,j a complete bipartite graph.

Obviously, a complete bipartite graphKm,n contains (m×n) edges. For a spatial embedding

f : G → R3 of a graph G, let SE(G) be the set of embedding from G into R3. An element of

SE(G) is called a spatial embedding of the graph or simply a spatial graph.

Definition 2 Let f, g ∈ SE(G), f, g : G → R3, and I = [0, 1] be a unit closed interval. The

map Φ : G× I → R3 × I is called

(1) Level preserving, if for any t ∈ I, there exists a map Φt : G → R3 so that Φ(x, t) =

(Φt(x), t).

(2) Locally flat, if for any point of the image of Φ, there is a neighborhood N s.t., (N,N ∩

Φ(G × I)) is homeomorphic to the standard pairs of disks (D4, D2) or (D3 × I,Xn × I), n is

non-negative.

(3) Between f and g, if there is a real number, so that for all x ∈ G, 0 ≤ t ≤ θ, Φ(x, t) =

(f(x), t); and for all x ∈ G, 1 − θ ≤ t ≤ 1, Φ(x, t) = (g(x), t).

Definition 3 Let f, g ∈ SE(G), f, g : G→ R3, and I = [0, 1] be a unit closed interval. f and g

are called

(1) An ambient isotopic, if there is a level preserving and locally flat embedding map

Φ : G× I → R3 × I between f and g.

(2) Cobordism, if there is a locally flat map Φ : G× I → R3 × I between f and g.

(3) Isotopic, if there is a level preserving map Φ : G× I → R3 × I between f and g.

Definition 4 Let

P̃+
m = {(x+

m, y
+
m, z

+
m) ∈ R3 | z+

m = −m(y2 − y), 0 ≤ y ≤ 1},

P̃+
m−1 = {(x+

m−1, y
+
m−1, z

+
m−1) ∈ R3 | z+

m−1 = (1 −m)(y2 − y), 0 ≤ y ≤ 1},

. . .

P̃+
1 = {(x+

1 , y
+
1 , z

+
1 ) ∈ R3 | z+

1 = −(y2 − y), 0 ≤ y ≤ 1},

P̃ 0
0 = {(x0

0, y
0
0 , z

0
0) ∈ R3 | z0

0 = 0, 0 ≤ y ≤ 1},

P̃−

1 = {(x−1 , y
−

1 , z
−

1 ) ∈ R3 | z−1 = y2 − y, 0 ≤ y ≤ 1},

. . .

P̃−

n−1 = {(x−n−1, y
−

n−1, z
−

n−1) ∈ R3 | z−n−1 = (n− 1)(y2 − y), 0 ≤ y ≤ 1},

P̃−

n = {(x−n , y
−

n , z
−

n ) ∈ R3 | z−n = n(y2 − y), 0 ≤ y ≤ 1}.
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Let B̃ be the set of P̃+
m , . . . , P̃

+
1 , P̃

0
0 , P̃

−

1 , . . . , P̃
−

n . We call it a skeleton. Let A = {(x, y, z) ∈

R3 | y = z = 0}, B = {(x, y, z) ∈ R3 | y = 1, z = 0}. We call A and B the binder of B̃. Let

Bn = {P̃1, P̃2, . . . , P̃n}, where P̃1, P̃2, . . . , P̃n are different elements of B̃. Let Pi = P̃i − (A ∪B).

We call Pi the i-th floor of Bn. Thus Bn =
⋃n

i=1 P̃i =
⋃n

i=1 Pi ∪A∪B is a skeleton with n floors

{Pi} and two binders A and B.

Definition 5 Let ψ : G→ Bn be an embedding satisfying that

(1) ψ(V (G)) ⊂ (A ∪B);

(2) For any edge e ∈ E(G), ψ(Int(e)) ⊂ Pi for some Pi;

(3) For any floor Pi there is at least one edge e of G with ψ(Int(e)) ⊂ Pi.

Then we call G̃ = ψ(G) (or the embedding ψ) a skeleton presentation of G with n floors. It is

clear that 1 ≤ n ≤| E(G) |. When n is minimum, we call G̃ a skeleton presentation of G with

minimum floors.

Definition 6 For a finite bipartite graph Km,n, there are two sets of vertices such that each

two vertices in the same set do not have any edge between them. Denote the two vertex subsets

by V 1(Km,n) = {V1, V2, . . . , Vm}, V 2(Km,n) = {V ′

1 , V
′

2 , . . . , V
′

n}. If a skeleton presentation ψ :

Km,n → Bs satisfies ψ(V 1) ⊂ A, ψ(V 2) ⊂ B, where A and B are the binders of Bs, we call

G̃ = ψ(G) a normal skeleton presentation, or N.S.P for short.

3. The main Theorem

Lemma 1 Let ψ : Km,m → Bp be an N.S.P of a complete bipartite graph Km,m. Then there

are m floors at least.

Proof There are two sets of points, V 1(Km,m) = {V1, V2, . . . , Vm}, V 2(Km,m) = {V ′

1 , V
′

2 , . . . , V
′

m}.

We denote (Va, V
′

b ) to be an edge of the graph, where Va ∈ V 1, V ′

b ∈ V 2. And the sum of (Va, V
′

b )

is denoted by (a+ b), and the set of edges with the sum l is denoted by E(l). There are m edges

(V1, V
′

m), (V2, V
′

m−1), . . . , (Vm − 1, V ′

2), (Vm, V
′

1) in E(m+ 1). And these m edges cannot pairwise

lie in one floor as shown in Figure 1.

1
V

m
V

1m
V

-

2m
V

-

3
V

2
V

'
1

V

'
m

V

'
1

V
m-

1
'
m

V
-

'
3

V

'
2

V

Figure 1 m edges pairwise intersect

So these m edges in E(m+ 1) must be in m distinguished floors, respectively. Next we will

give a way to show there exist an N.S.P of complete bipartite graph Km,m with m floors.
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First, we put edges (V1, V
′

1), (V1, V
′

2), . . . , (V1, V
′

m), (V2, V
′

m), . . . , (Vm, V
′

m) in P1, as shown in

Figure 2.
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m
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V
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V

'
1
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'
m
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'
1
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m-

'
3

V

'
2

V

1m
V

-

Figure 2 P1

Second, we put edges (V2, V
′

1), (V2, V
′

2), . . . , (V2, V
′

m−1), (V3, V
′

m−1), . . . , (Vm, V
′

m−1) in P2.

· · ·

Next, we put edges (Vm−1, V
′

1), (Vm−1, V
′

2), (Vm, V
′

2 ) in Pm−1.

Above all, we put edge (Vm, V
′

1) in Pm.

So, there is an N.S.P of complete bipartite graph Km,m with m floors and m is the smallest

number of floors.

Lemma 2 Let ψ : Km,n → Bp be an N.S.P of a complete bipartite graph Km,n. Then there

are k floors at least, where k is the smaller number of {m,n}.

Proof Without loss of generality, assume m 6 n. The two sets of vertices are V 1(Km,n) =

{V1, V2, . . . , Vm}, V 2(Km,n) = {V ′

1 , V
′

2 , . . . , V
′

n}. Consider the edges in E(n+1), where E(n+1) =

{(V1, V
′

n), (V2, V
′

n−1), . . . , (Vm−1, V
′

n+m+2), (Vm, V
′

n−m+1)}.

And these m edges cannot pairwise lie in one floor. So they must be put in m distinguished

floors, respectively.

Now we give a way to show there exist an N.S.P of complete bipartite graph Km,n with m

floors.

First, we put edges (V1, V
′

1), (V1, V
′

2), . . . , (V1, V
′

n), (V2, V
′

n), . . . , (Vm, V
′

n) in P1.

Secondly, we put edges (V2, V
′

1), (V2, V
′

2), . . . , (V2, V
′

n−1), (V3, V
′

n−1), . . . , (Vm, V
′

n−1) in P2.

· · ·

Next, we put edge (Vm−1, V
′

1), (Vm−1, V
′

2), . . . , (Vm−1, V
′

n−m+2), (Vm, V
′

n−m+2) in Pm−1.

Above all, we put edge (Vm, V
′

1), (Vm, V
′

2), . . . , (Vm, V
′

n−m+1) in Pm.

So, there is anN.S.P of a complete bipartite graphKm,n with m floors and m is the smallest

number of floors.

Theorem 3 The N.S.P of the complete bipartite graph Km,m with minimum floors is unique

up to ambient isotopy.

Proof By Lemma 1, the N.S.P of K(m,m) with minimum floors contains m floors denoted by

P1, P2, . . . , Pm. There arem edges with the sum beingm+1 inK(m,m), namely (V1, V
′

m), (V2, V
′

m−1),
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. . . , (Vm, V
′

1). And they must be in m distinguished floors, respectively. Without loss of gener-

ality, assume (V1, V
′

m) ⊂ P1, (V2, V
′

m−1) ⊂ P2, . . . , (Vm, V
′

1) ⊂ Pm, as shown in Figure 3.
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Figure 3 m floors with the sum m + 1

We will put the edges with the sum k (2 ≤ k ≤ m) upper of the edges of E(m+ 1). While

we put the edges with the sum k (m + 2 ≤ k ≤ 2m) lower of the edges of E(m + 1). We only

need consider the case of putting edges with the sum k (2 ≤ k ≤ m), the other cases are similar.

So we divide it into m− 1 steps and construct all possible N.S.P of Km,m.

First, we put the edges E(m) = {(V1, V
′

m−1), (V2, V
′

m−2), . . . , (Vm−1, V
′

1)}. We only have the

following two kinds of possibilities:

Case 1̄ If (V1, V
′

m−1) is put into floor P1, we have,

(V1, V
′

m−1) ⊂ P1 ; (V2, V
′

m−2) ⊂ P2 ; . . . ; (Vk, V
′

m−k) ⊂ Pk ;

(Vk+1, V
′

m−k−1) ⊂ Pk+2 ; . . . ; (Vm−1, V
′

1) ⊂ Pm (1 ≤ k ≤ m− 2).

Case 2̄ If (V1, V
′

m−1) is put into floor P2, we have

(V1, V
′

m−1) ⊂ P2; (V2, V
′

m−2) ⊂ P3; . . . ; (Vm−1, V
′

1) ⊂ Pm.

In the above two cases, for Case 1̄ by an isotopy as

P1

(V1,V ′

m−1)
−−−−−−−→ P2

(V2,V ′

m−2)
−−−−−−−→ P3

(V3,V ′

m−3)
−−−−−−−→ · · ·

(Vk−1,V ′

m−k+1)
−−−−−−−−−−→ Pk

(Vk,V ′

m−k)
−−−−−−−→ Pk+1,

we get Case 2̄.

Secondly, we will prove the following different kinds of possibilities are ambient isotopy by

induction. Suppose in the i-th step, the floors with edges of sum m− i+ 1 satisfy,

(V1, V
′

m−i) ⊂ Px1
; (V2, V

′

m−i−1) ⊂ Px2
; . . . ; (Vm−i, V

′

1) ⊂ Pxm−i
.

Where {x1, x2, . . . , xm−i} is a subset of {1, 2, . . . ,m} and x1 < x2 < · · · < xm−i. E(m − i) =

{(V1, V
′

m−i−1), (V2, V
′

m−i−2), . . . , (Vm−i−1, V
′

1)}.

1) If we put thesem−i−1 edges into the m−i floors {Px1
, Px2

, . . . , Pxm−i
}. (V1, V

′

m−i−1)

can be put in two ways, one is in floor Px1
, and the other is in floor Px2

.
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Case 1 If (V1, V
′

m−i−1) is fixed in Px1
, we have

(V1, V
′

m−i−1) ⊂ Px1
; (V2, V

′

m−i−2) ⊂ Px2
; . . . ; (Vk, V

′

m−i−k) ⊂ Pxk
;

(Vk+1, V
′

m−i−k−1) ⊂ Pxk+2
; . . . ; (Vm−i−1, V

′

1) ⊂ Pxm−i
(1 ≤ s ≤ m− i− 2).

Case 2 If (V1, V
′

m−i−1) is fixed in Px2
, we have,

(V1, V
′

m−i−1) ⊂ Px2
; (V2, V

′

m−i−2) ⊂ Px3
; . . . ; (Vm−i−1, V

′

1) ⊂ Pxm−i
.

In the above two cases, for Case 1 by an isotopy as

Px1

(V1,V ′

m−i−1)
−−−−−−−−→ Px2

(V2,V ′

m−i−2)
−−−−−−−−→ Px3

(V3,V ′

m−i−3)
−−−−−−−−→ · · ·

(Vk−1,V ′

m−i−k+1)
−−−−−−−−−−−→ Pxk

(Vk,V ′

m−i−k)
−−−−−−−−→ Pxk+1

,

we get Case 2.

2) If an edge (Vk, V
′

m−i−k) is not in the floor Px1
, Px2

, . . . , Pxm−i
. Suppose (Vk, V

′

m−i−k) ∈

Pxa
. Then xa ∈ {1, 2, . . . ,m} and xa 6∈ {x1, x2, . . . , xm−i}. Let us consider the two sets of edges

as follows

E1 = {(V1, V
′

m−i−1), (V2, V
′

m−i−2), . . . , (Vk−1, V
′

m−i−k+1)},

E2 = {(Vk+1, V
′

m−i−k−1), (Vk+2, V
′

m−i−k−2), . . . , (Vm−i−1, V
′

1)}.

The edges in E1 can be put in k floors Px1
, Px2

, . . . , Pxk
, and the edges in E2 can be put in floors

Pxk+1
, Pxk+2

, . . . , Pxm−i
.

(a) If (V1, V
′

m−i−1) is fixed in Px1
, we get

(V1, V
′

m−i−1) ⊂ Px1
; (V2, V

′

m−i−2) ⊂ Px2
; . . . ; (Vs, V

′

m−i−s) ⊂ Pxs
;

(Vs+1, V
′

m−i−s−1) ⊂ Pxs+2
; . . . ; (Vk−1, V

′

m−i−k+1) ⊂ Pxk
(1 ≤ s ≤ k − 2).

(b) If (V1, V
′

m−i−1) is fixed in Px2
, we get

(V1, V
′

m−i−1) ⊂ Px2
; (V2, V

′

m−i−2) ⊂ Px3
; . . . ; (Vk−1, V

′

m−i−k+1) ⊂ Pxk
.

(a’) If (Vk+1, V
′

m−i−k−1) is fixed in Pxk+1
, we get

(Vk+1, V
′

m−i−k−1) ⊂ Pxk+1
; (Vk+2, V

′

m−i−k−2) ⊂ Pxk+2
; . . . ; (Vt, V

′

m−i−t) ⊂ Pxt
;

(Vt+1, V
′

m−i−t−1) ⊂ Pxt+2
; . . . ; (Vm−i−1, V

′

1) ⊂ Pxm−i
(k + 1 ≤ t ≤ m− i− 2).

(b’) If (Vk+1, V
′

m−i−k−1) is fixed in Pxk+2
, we get

(Vk+1, V
′

m−i−k−1) ⊂ Pxk+1
; (Vk+2, V

′

m−i−k−2) ⊂ Pxk+2
; . . . ; (Vm−i−1, V

′

1) ⊂ Pxm−i
.

Then we can put the edges into the skeleton in the following ways

Case 3, bb′ ; Case 4, ab′ ; Case 5, ba′ ; Case 6, aa′.

For Case 3, by an isotopy as, Pxa

(Vk,V ′

m−i−k)
−−−−−−−−→ Pxk+1

, we get Case 2.

For Case 4, by an isotopy as,

Px1

(V1,V ′

m−i−1)
−−−−−−−−→ Px2

(V2,V ′

m−i−2)
−−−−−−−−→ Px3

(V3,V ′

m−i−3)
−−−−−−−−→ · · ·

(Vs−1,V ′

m−i−s+1)
−−−−−−−−−−−→ Pxs

(Vs,V ′

m−i−s)
−−−−−−−−→ Pxs+1

,

Pxa

(Vk,V ′

m−i−k)
−−−−−−−−→ Pxk+1

,
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we get Case 2.

For Case 5, by isotopy as,

Pxk+1

(Vk+1,V ′

m−i−k−1)
−−−−−−−−−−−→ Pxk+2

(Vk+2,V ′

m−i−k−2)
−−−−−−−−−−−→ Pxk+3

(Vk+3,V ′

m−i−k−3)
−−−−−−−−−−−→ · · ·

(Vt−1,V ′

m−i−t+1)
−−−−−−−−−−−→ Pxt

(Vt,V ′

m−i−t)
−−−−−−−−→ Pxt+1

,

Pxa

(Vk,V ′

m−i−k)
−−−−−−−−→ Pxk+1

,

we get Case 2.

For Case 6, by isotopy as,

Px1

(V1,V ′

m−i−1)
−−−−−−−−→ Px2

(V2,V ′

m−i−2)
−−−−−−−−→ Px3

(V3,V ′

m−i−3)
−−−−−−−−→ · · ·

(Vs−1,V ′

m−i−s+1)
−−−−−−−−−−−→ Pxs

(Vs,V ′

m−i−s)
−−−−−−−−→ Pxs+1

,

Pxk+1

(Vk+1,V ′

m−i−k−1)
−−−−−−−−−−−→ Pxk+2

(Vk+2,V ′

m−i−k−2)
−−−−−−−−−−−→ Pxk+3

(Vk+3,V ′

m−i−k−3)
−−−−−−−−−−−→ · · ·

(Vt−1,V ′

m−i−t+1)
−−−−−−−−−−−→ Pxt

(Vt,V
′

m−i−t)
−−−−−−−−→ Pxt+1

,

Pxa

(Vk,V ′

m−i−k)
−−−−−−−−→ Pxk+1

,

we get Case 2.

Similarly, if the number of edges not in Px1
, Px2

, . . . , Pxm−i
is more than one, we can get

the similar conclusion. The induction will end in the (m− 1) steps.

Finally, there are m− 1 steps, so without loss of generality, denote the character string by

{y1, y2, . . . , ym−1 | yi ∈ R}. Consider the (i+ 1)-th step in the construction before.

Now we choose N.S.P which are different only on the (i+ 1)-th step. We can consider only

6 cases as what has discussed before.

The cases are denoted by

Case 1, {a1, . . . , ai+1, . . . , am−1};

Case 2, {b1, . . . , bi+1, . . . , bm−1};

Case 3, {c1, . . . , ci+1, . . . , cm−1};

Case 4, {d1, . . . , di+1, . . . , dm−1};

Case 5, {e1, . . . , ei+1, . . . , em−1};

Case 6, {f1, . . . , fi+1, . . . , fm−1},

where aj = bj = cj = dj = ej = fj when j 6= i + 1, ai+1 6= bi+1 6= ci+1 6= di+1 6= ei+1 6= fi+1.

The edges in floor Pxj
whose summation are smaller than or equal to m − i are denoted by

Sj = (E(m− i) ∪ E(m− i− 1) ∪ · · · ∪ E(2)) ∩ Pxj
.

(1) Changing {a1, . . . , ai+1, . . . , am−1} by isotopy as

Px1

S1−→ Px2

S2−→ Px3

S3−→ · · ·
Sk−1

−−−→ Pxk

Sk−−→ Pxk+1

Sk+1

−−−→ Px1
,

we will get {b1, . . . , bi+1, . . . , bm−1}.

(2) Changing {c1, . . . , ci+1, . . . , cm−1} by isotopy as

Pxa

Sa−−→ Pxk+1
,

we will get {b1, . . . , bi+1, . . . , bm−1}.
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(3) Changing {d1, . . . , di+1, . . . , dm−1} by isotopy as

Px1

S1−→ Px2

S2−→ Px3

S3−→ · · ·
Ss−1

−−−→ Pxs

Ss−→ Pxs+1

Ss+1

−−−→ Px1
, Pxa

Sa−−→ Pxk+1
,

we will get {b1, . . . , bi+1, . . . , bm−1}.

(4) Changing {e1, . . . , ei+1, . . . , em−1} by isotopy as

Pxk+1

Sk+1

−−−→ Pxk+2

Sk+2

−−−→ Pxk+3

Sk+3

−−−→ · · ·
St−1

−−−→ Pxt

St−→ Pxt+1

St+1

−−−→ Pxk+1
, Pxa

Sa−−→ Pxk
,

we will get {b1, . . . , bi+1, . . . , bm−1}.

(5) Changing {f1, . . . , fi+1, . . . , fm−1} by isotopy as

Px1

S1−→ Px2

S2−→ Px3

S3−→ · · ·
Ss−1

−−−→ Pxs

Ss−→ Pxs+1

Ss+1

−−−→ Px1
,

Pxk+1

Sk+1

−−−→ Pxk+2

Sk+2

−−−→ Pxk+3

Sk+3

−−−→ · · ·
St−1

−−−→ Pxt

St−→ Pxt+1

St+1

−−−→ Pxk+1
, Pxa

Sa−−→ Pxk
,

we will get {b1, . . . , bi+1, . . . , bm−1}.

Similarly, for the other cases with more than one edge not in Px1
, Px2

, . . . , Pxm−i
, we will

get the same conclusion. For any two cases, if they are different in k steps by induction, they

are equivalent to each other by k steps as before.

Theorem 4 The N.S.P of the complete bipartite graph Km,n with minimum floors is unique

up to ambient isotopy.

Proof Without loss of generality, assume m 6 n. By Lemma 2, the N.S.P of K(m,n) with

minimum floors containsm floors denoted by P1, P2, . . . , Pm. Assume (V1, V
′

n) ⊂ P1, (V2, V
′

n−1) ⊂

P2, . . . , (Vm, V
′

n−m+1) ⊂ Pm, as shown in Figure 3.

The sum could be 2, 3, . . . ,m+n, then we have the following three sets of edges R = {E(k) |

2 6 k 6 m}, S = {E(k) | m+ 1 6 k 6 n}, T = {E(k) | n+ 2 6 k 6 m+ n}.

Firstly, put the edges in S, that is,

m+ 1 6 k 6 n, E(k) = {(V1, V
′

k−1), (V2, V
′

k−2), . . . , (Vm, V
′

k−m)}.

We get

(Vm, V
′

k−m) ⊂ Pm; (Vm−1, V
′

k−m+1) ⊂ Pm−1; · · · ; (V1, V
′

k−1) ⊂ P1.

Next, put the edges in R and T . We will put the edge in R upper of the edges in E(m+ 1)

as shown in Figure 4, and put the edges in T lower of the edges in E(n+ 1) as shown in Figure

5.
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Figure 5 m floors with the sum n + 1

Then with the same process as in Theorem 3.1, we get the N.S.P of the complete bipartite

graph Km,n with minimum floors being unique up to ambient isotopy.

Corollary 5 The N.S.P of Ka,b,c and Ka,b,c,d with minimum floors is unique up to ambient

isotopy.
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