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Abstract This paper is mainly concerned with stability analysis of neutral differential equa-

tions with multiple delays. Some criteria on instability, stability, asymptotic stability and

exponential stability are obtained. The criterion on asymptotic stability is necessary and suf-

ficient. Two examples are provided to illustrate the applications of our results. Some previous

results are extended.
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1. Introduction

The class of equations involving derivatives as well as the function itself are called neutral
differential equations or neutral differential difference equations. In the past several decades,
neutral differential equations have become important in modeling some real phenomenon such
as oscillatory systems with some interconnections between them, coupled systems, the theory of
automatic control or population dynamics [1, 2], distributed networks containing lossless trans-
mission [3], etc. Neutral differential equations have been investigated since last 1960’s, see [1–24]
and the references therein. Stability analysis for neutral differential equations has been the fo-
cus of researcher’s attention [4–18]. It is necessary to mention the excellent work of Park et
al., which are on stability analysis of neutral differential equations. Readers can refer to, for
example, Ref. [4–8].

In this paper, we mainly discuss the stability, the asymptotical stability, the exponential
stability and the instability for neutral differential equation

ẋ(t) = Ax(t) +
m∑

i=1

Bix(t− τi) +
m∑

i=1

Ciẋ(t− τi), t > 0 (1.1)
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with initial condition

x(t) = φ(t), −τm ≤ t ≤ 0, (1.2)

where x(t) ∈ Rn is the vector, A,Bi and Ci are n × n constant matrices (i = 1, 2, . . . , m), τi is
time-delay satisfying 0 < τ1 < τ2 < · · · < τm, det Cm 6= 0, φ(t) ∈ Rn is the given initial function
vector which is continuous or has finite discontinuous points on interval [−τm, 0].

Denote by {λj} the set of characteristic roots of equation (1.1), Re(λ) the real parts of λ

and Λ = sup{Reλj}. In R1 space, Hale et al [19] obtained the following theorem.

Theorem 1.1 ([19]) If Λ < 0, then the zero solution of Eq. (1.1) is exponentially stable.

For the case Reλj < 0 and Λ = 0, the asymptotical stability of the zero solution of Eq. (1.1)
is complex, which was put forward in [19] and [20]. The problem remains unsolved until Ren [18]
partly solved the problem in 1999. Ren’s results [18] hold only in R1 space. They are as follows.

Theorem 1.2 ([18]) If Reλj < 0 and Λ = 0, then the zero solution of Eq. (1.1) is asymptotically

stable.

Furthermore, Ren [18] obtained a necessary and sufficient criterion.

Theorem 1.3([18]) The zero solution of Eq. (1.1) is asymptotically stable iff the real parts of

all the characteristic roots are negative.

Recently, Eq. (1.1) has been investigated for numerical approximation in Rn space [8, 15–
17, 21, 22]. By methods such as linear the multistep methods, the Lyapunov method, matrix
inequality, the Runge-kutta method and the BDFs methods, etc, many results on stability of
Eq. (1.1) were derived. In 1998, Zhang and Zhou [15] presented a sufficient condition of asymp-
totical stability through the spectral radius of modulus matrices. Later in 2004, He and Cao [16]
gave some simple delay-independent stability criteria for the asymptotic stability in terms of the
spectral radius of modulus matrices. In 2005, Park and Kwon [8] provided a novel stability cri-
terion based on the Lyapunov method. Very recently, Kuang et al. [17] obtained a new sufficient
condition of asymptotic stability. The key theoretical bases in these papers are:

• If the zero solution of Eq. (1.1) is asymptotically stable, then the real parts of all charac-
teristic roots of Eq. (1.1) are negative. Namely, Reλj < 0, where λj is the characteristic roots of
Eq. (1.1);

• If there exists a positive number γ > 0 such that the real parts of all characteristic roots
of Eq. (1.1) satisfy: Λ = sup{Reλj} < −γ, then the zero solution of Eq. (1.1) is asymptotically
stable.

With regard to the case that Reλj < 0 and Λ = 0 in Rn (n ≥ 2) space, we have not
retrieved any results on stability analysis of Eq. (1.1). Motivated by the fact, in this paper we
mainly investigate the stability, the asymptotical stability, the instability and the exponential
stability of Eq. (1.1). We solve the problem put forward in [19] and [20].

Before presenting our results, we first recall some preliminaries which will be used later.

Definition 1.1 ([19]) We say the function x(φ)(t) is a solution of Eq. (1.1) and Eq. (1.2) if
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x(φ)(t) is defined on [−τm,∞], the difference

x(t)−
m∑

i=1

Cix(t− τi)

is almost everywhere differentiable and x(φ)(t) satisfies Eqs. (1.1) and (1.2).

Definition 1.2 ([19]) The zero solution of Eq. (1.1) is said to be

(a) Stable iff for any ε > 0, there exists a positive real number δ(ε) > 0 such that for

∀φ ∈ C = C([−τm, 0],Rn), when |φ| < δ, the solution |x(φ)(t)| of Eqs. (1.1) and (1.2) satisfies:

|x(φ)(t)| ≤ ε for t > 0;

(b) Asymptotically stable iff the zero solution x(φ)(t) of Eq. (1.1) is stable and limt→+∞ |x(φ)
(t)| = 0;

(c) Exponentially stable iff there exist constants a, b > 0 such that the solution x(φ)(t) of

Eqs. (1.1) and (1.2) satisfies: |x(φ)(t)| ≤ a|φ|e−bt for t > 0,

where | · | denotes vector norm. Particularly, for φ ∈ C, define |φ| = sup−r≤θ≤0 |φ(θ)|.

Lemma 1.1 Let x = (x1, x2, . . . , xn)T , A = (aij)n×n. Then the following holds true

|Ax| ≤ |A| · |x|,

where |x| = (
∑n

i=1 |xi|2)1/2 and |A| = (
∑n

i=1

∑n
j=1 |aij |2)1/2.

Lemma 1.2 ([25]) Suppose that V ∈ Cn×n and ρ(V ) < 1. Then (I − V )−1 exists, and

(I − V )−1 = I + V + V 2 + V 3 + · · · ,

where the notation ρ(V ) denotes the spectral norm of the matrix V .

Throughout this paper, notation Rn denotes the n-dimensional Euclidean space, I denotes
the unit matrix of appropriate order, | · | denotes either the Euclidean vector norm or the induced
matrix 2- norm, Reλ denotes the real part of λ, and (·)T denotes the transpose of either the
matrix (·) or the vector(·).

2. Existence and exponential growth

Theorem 2.1 For Eqs. (1.1) and (1.2), there always exists a solution x(φ)(t) defined on [0,∞].

Proof Eq. (1.1) can be written as

[
e−Atx(t)− e−At

m∑

i=1

Cix(t− τi)
]′

= e−At
m∑

i=1

Bix(t− τi) + Ae−At
m∑

i=1

Cix(t− τi). (2.1)

Integrating Eq. (2.1) from 0 to t yields

x(t) =eAt
[
x(0)−

m∑

i=1

Ciφ(−τi)
]

+
m∑

i=1

Cix(t− τi)+

eAt
[ m∑

i=1

∫ t

0

e−AtBix(t− τi)dt +
m∑

i=1

∫ t

0

Ae−AtCix(t− τi)dt
]
.
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For 0 < t < τ1, the following holds true

x(t) =eAt
[
φ(0)−

m∑

i=1

Ciφ(−τi)
]

+
m∑

i=1

Ciφ(t− τi)+

eAt
[ m∑

i=1

∫ t

0

e−AtBiφ(t− τi)dt +
m∑

i=1

∫ t

0

Ae−AtCiφ(t− τi)dt
]
.

Repeating the above process respectively on the intervals [τ1, 2τ1], . . . , [nτ1, (n + 1)τ1], . . . , we
can obtain the solution x(φ)(t) of Eqs. (1.1) and (1.2) on [0,+∞). This completes the proof. 2

Using similar method in [19] or [20], we can easily obtain the following theorem, which is
the basis of applying the Laplace transform on the solution of Eqs. (1.1) and (1.2).

Theorem 2.2 The solution x(φ)(t) of Eqs. (1.1) and (1.2) is exponential bounded. Namely,

there exist constants α > 0 and γ > 0 such that the solution x(φ)(t) of Eqs. (1.1) and (1.2)

satisfies

|x(φ)(t)| ≤ α|φ|eγt.

3. Stability, asymptotic stability and instability

Definition 3.1 If n× n matrix X(t) satisfies

Ẋ(t) = AX(t) +
m∑

i=1

BiX(t− τi) +
m∑

i=1

CiẊ(t− τi), t > 0 (3.1)

and detX(t) 6= 0 for some t ∈ [0,+∞), then we say that matrix X(t) is a nonsingular solution

matrix of Eq. (1.1).

If the matrix X(t) satisfies Eq. (3.1) and

X(t) =





I, t = 0,

0, t < 0,

then we say that X(t) is a fundamental solution of Eq. (1.1).

Suppose that x(t) = eλt~k is a solution of Eq. (1.1), ~k = (k1, k2, . . . , kn)T . Substituting
x(t) = eλt~k into Eq. (1.1) yields

det
(
λI −A−

m∑

i=1

Bie
−λτi −

m∑

i=1

λCie
−λτi

)
= 0.

Definition 3.2 The matrix

H(λ) =
(
λI −A−

m∑

i=1

Bie
−λτi −

m∑

i=1

λCie
−λτi

)

is said to be the characteristic matrix of Eq. (1.1), and the equation detH(λ) , h(λ) = 0 is said

to be the characteristic equation of Eq. (1.1).

Applying the Laplace transform on both sides of Eq. (3.1) yields the following lemma.
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Lemma 3.1 If X(t) is a fundamental solution of Eq. (1.1), then we have

L(X(t); s) = H−1(s), (3.2)

where H(s) is the characteristic matrix of Eq. (1.1), and L(X(t); s) is the Laplace transform of

X(t).

Theorem 3.1 If X(t) is a fundamental solution of Eq. (1.1), then the general solution of

Eqs. (1.1) and (1.2) can be written as

x(φ)(t) =X(t)
[
φ(0)−

m∑

i=1

Ciφ(−τi)
]

+
m∑

i=1

∫ 0

−τi

X(t− τi − θ)Biφ(θ)dθ+

m∑

i=1

∫ 0

−τi

Ẋ(t− τi − θ)Ciφ(θ)dθ +
m∑

i=1

Ciφ̂(−τi + t)ω(−τi + t), (3.3)

where

ω(t) =





1, t < 0,

0, t ≥ 0,
and φ̂(θ) =





φ(θ), θ < 0,

φ(0), θ ≥ 0.

Proof Applying the Laplace transform on both side of Eq. (1.1), we get by Lemma 3.1 that

x̄(s) =L(X(t); s)
[
φ(0)−

m∑

i=1

Ciφ(−τi) +
m∑

i=1

Bie
−sτi

∫ 0

−τi

φ(θ)e−sθdθ+

s
m∑

i=1

Cie
−sτi

∫ 0

−τi

φ(θ)e−sθdθ
]
,

where X(t) is a fundamental solution of Eq. (1.1), and the Laplace transform of x(t) is x̄(s), i.e.,
L(x(t); s) = x̄(s), L(X(t); s) = X̄(s). By the definitions of φ̂(θ) and ω(θ), we get

m∑

i=1

Bie
−sτi

∫ 0

−τi

φ(θ)e−sθdθ =
m∑

i=1

Bi

∫ τi

0

φ(θ − τi)e−sθdθ

=
m∑

i=1

Bi

[ ∫ τi

0

φ̂(θ − τi)ω(θ − τi)e−sθdθ +
m∑

i=1

∫ +∞

τi

φ̂(θ − τi)ω(θ − τi)e−sθdθ
]

=
m∑

i=1

Bi

∫ +∞

0

φ̂(θ − τi)ω(θ − τi)e−sθdθ = L
( m∑

i=1

Biφ̂(θ − τi)ω(θ − τi); s
)

and
m∑

i=1

Cie
−sτi

∫ 0

−τi

φ(θ)e−sθdθ = L
( m∑

i=1

Ciφ̂(θ − τi)ω(θ − τi); s
)
.

By the formula L(Ẋ(t); s) = sX̄(s)−X(0) = sL(X(t); s)−X(0), we get

sL(X(t); s) = L(Ẋ(t); s) + X(0).

Thus, it follows

x̄(s) =L(X(t); s)
[
φ(0)−

m∑

i=1

Ciφ(−τi)
]

+ L(X(t); s)L
( m∑

i=1

Biφ̂(θ − τi)ω(θ − τi); s
)
+
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[L(Ẋ(t); s) + X(0)]L
( m∑

i=1

Ciφ̂(θ − τi)ω(θ − τi); s
)
.

Applying the inverse Laplace transform and Convolution Theorem yields

x(φ)(t) =X(t)
[
φ(0)−

m∑

i=1

Ciφ(−τi)
]

+
∫ t

0

X(t− θ)
m∑

i=1

Biφ̂(θ − τi)ω(θ − τi)dθ+

∫ t

0

Ẋ(t− θ)
m∑

i=1

Ciφ̂(θ − τi)ω(θ − τi)dθ +
m∑

i=1

Ciφ̂(t− τi)ω(t− τi).

Set θ − τi = u. Then, it follows

x(φ)(t) =X(t)
[
φ(0)−

m∑

i=1

Ciφ(−τi)
]

+
m∑

i=1

∫ 0

−τi

X(t− τi − θ)Biφ(θ)dθ+

m∑

i=1

∫ 0

−τi

Ẋ(t− τi − θ)Ciφ(θ)dθ +
m∑

i=1

Ciφ̂(−τi + t)ω(−τi + t).

This completes the proof. 2

Lemma 3.2 Suppose that λ is an m-multiple characteristic root of Eq. (1.1). Then there exists

a vector ~α = (k1, k2, . . . , kn)T such that ~αtkeλt (k = 0, 1, . . . , m−1) are the solutions of Eq. (1.1).

Proof Since λ is an m-multiple characteristic root of Eq. (1.1), so there exists a vector ~α =
(k1, k2, . . . , kn)T such that

H(λ)~αeλt = 0, (3.4)

where H(λ) is the characteristic matrix of Eq. (1.1). Taking the kth-order (k = 0, 1, 2, . . . , m−1)
derivative of λ on both sides of Eq. (3.4) yields

k∑

i=0

P i
kH(k−i)(λ)tieλt~α = 0, (3.5)

here P j
k = k!

j!(k−j)! . Now we prove that x(t) = ~αtkeλt (k = 0, 1, . . . , m − 1) are the solutions of
Eq. (1.1). Substituting x(t) = ~αtkeλt into the left of Eq. (1.1) yields

ẋ(t)−Ax(t)−
m∑

i=1

Bix(t− τi)−
m∑

i=1

Ciẋ(t− τi)

=
[
λtkeλtI + ktk−1eλtI −Atkeλt −

m∑

i=1

Bi(t− τi)keλ(t−τi)−
m∑

i=1

Ciλ(t− τi)keλ(t−τi) −
m∑

i=1

Cik(t− τi)k−1eλ(t−τi)
]
~α

=
[
λtkI + ktk−1I −Atk −

m∑

i=1

Bi(t− τi)ke−λτi−
m∑

i=1

Ciλ(t− τi)ke−λτi −
m∑

i=1

Cik(t− τi)k−1e−λτi

]
eλt~α. (3.6)
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Inserting

(t− τi)k = P 0
k tk + P 1

k tk−1(−τi) + P 2
k tk−2(−τi)2 + · · ·+ P k

k (−τi)k (3.7)

and

(t− τi)k−1 = P 0
k−1t

k−1 + P 1
k−1t

k−2(−τi) + P 2
k−1t

k−3(−τi)2 + · · ·+ P k−1
k−1 (−τi)k−1 (3.8)

into the right side of Eq. (3.6) yields

ẋ(t)−Ax(t)−
m∑

i=1

Bix(t− τi)−
m∑

i=1

Ciẋ(t− τi)

=
[
tkH(λ) + P 1

k tk−1H
′
(λ) + P 2

k tk−2H
′′
(λ) + · · ·+ P k−1

k tH(k−1)(λ) + H(k)(λ)
]
~αeλt.

By the equality (3.5) we have

ẋ(t)−Ax(t)−
m∑

i=1

Bix(t− τi)−
m∑

i=1

Ciẋ(t− τi) = 0.

Thus x(t) = ~αtkeλt (k = 0, 1, . . . , m− 1) are solutions of Eq. (1.1).

Theorem 3.2 Suppose that h(λ) = 0 is the characteristic equation of Eq. (1.1).

(1) If the real parts of all roots of h(λ) = 0 are negative, then the zero solution of Eq. (1.1)

is asymptotically stable;

(2) If the real parts of all roots of h(λ) = 0 are non-positive and there exist finite single

roots with zero real parts, then the zero solution of Eq. (1.1) is stable, but is not asymptotically

stable;

(3) If the real parts of all roots of h(λ) = 0 are non-negative and there exist multiple roots

with zero real parts, or there exists a root with positive real parts, then the zero solution of

Eq. (1.1) is unstable.

Proof (1) First, it is easy to check that if M(t) is a nonsingular solution matrix of Eq. (1.1).
Then for any nonsingular constant matrix G, M(t)G is a nonsingular solution matrix of Eq. (1.1).
Secondly, the conditions that 0 < τ1 < τ2 < · · · < τm and detCm 6= 0 ensure that Eq. (1.1)
possesses at least n characteristic roots.

Case (i) Let λi (i = 1, 2, . . . , n) be different roots of h(λ) = 0 with Reλi < 0. Then there exist
nonzero characteristic vectors: ~αi = (αi1, αi2, . . . , αin)T such that xi(t) = eλit~αi are solutions of
Eq. (1.1), i = 1, 2, . . . , n. Thus

M(t) =
(

x1(t) x2(t) · · · xn(t)
)

is a solution matrix of Eq. (1.1). There exists a nonsingular constant matrix

K =




k11 k12 · · · k1n

k21 k22 · · · k2n

· · · · · · · · · · · ·
kn1 kn2 · · · knn
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such that M(t)K|t=0 = I. Extend the matrix M(t)K to M̄(t)K such that

M̄(t)K =

{
M(t)K, t ≥ 0,

O, t < 0,

where O denotes the n-order zero matrix. Thus, the matrix X(t) = M̄(t)K is a fundamental
solution of Eq. (1.1), where

M̄(t)K =




n∑
i=1

α1iki1e
λit

n∑
i=1

α1iki2e
λit · · ·

n∑
i=1

α1ikineλit

n∑
i=1

α2iki1e
λit

n∑
i=1

α2iki2e
λit · · ·

n∑
i=1

α2ikineλit

· · · · · · · · · · · ·
n∑

i=1

αniki1e
λit

n∑
i=1

αniki2e
λit · · ·

n∑
i=1

αnikineλit




, t > 0.

By computation, we get

Ẋ(t) =




n∑
i=1

λiα1iki1e
λit

n∑
i=1

λiα1iki2e
λit · · ·

n∑
i=1

λiα1ikineλit

n∑
i=1

λiα2iki1e
λit

n∑
i=1

λiα2iki2e
λit · · ·

n∑
i=1

λiα2ikineλit

· · · · · · · · · · · ·
n∑

i=1

λiαniki1e
λit

n∑
i=1

λiαniki2e
λit · · ·

n∑
i=1

λiαnikineλit




, t > 0.

Since Reλi < 0, i = 1, 2, . . . , n, we have |X(t)| → 0 and |Ẋ(t)| → 0 as t → +∞. By the formula
(3.2), we know that the zero solution of Eq. (1.1) is asymptotically stable.

Case (ii) Without loss of generality, let λ1 be a k-multiple (2 ≤ k ≤ n) root of the characteristic
equation h(λ) = 0 with Reλ1 < 0. Suppose further that the other (n− k) roots of h(λ) = 0 are
λk+1, λk+2, · · · and λn, which are different from each other with negative real parts. By Lemma
3.2, there exist vector functions ~αi(t) = (α1i(t), α2i(t), . . . , αni(t))T such that x1(t) = eλ1t~α0(t),
x2(t) = eλ1t~α1(t), . . . , xk(t) = eλ1t~αk−1(t) are solutions of Eq. (1.1), where αji(t) are polynomials
in t with degree i, i = 0, 2, . . . , k − 1, j = 1, 2, . . . , n. There exist vectors ~αk+1, . . . , ~αn such that
xk+1(t) = eλk+1t~αk+1, . . . , xn(t) = eλnt~αn are solutions of Eq. (1.1). Thus,

M(t) =
(

x1(t) x2(t) · · · xn(t)
)

is a nonsingular solution matrix of Eq.(1.1). The remainder of the proof is similar to that of
Case (i).

(2) First, without loss of generality, we suppose that λj = βi is a characteristic root
of Eq. (1.1) with i2 = −1, where β ∈ R and β 6= 0. Suppose that other n − 1 charac-
teristic roots of Eq. (1.1) are λ1, λ2, . . . , λj−1, λj+1, . . . , λn, with Reλl < 0 (l = 1, 2, . . . , j −
1, j + 1, . . . , n). Then there exist nonzero characteristic vectors: ~c1 = (c11, c21, . . . , cn1)T ,



Stability analysis of n-dimensional neutral differential equations with multiple delays 639

~c2 = (c12, c22, . . . , cn2)T , . . . ,~cn = (c1n, c2n, . . . , cnn)T such that the matrix

M(t) =




eλ1tc11 · · · eλj−1tc1,j−1 eβtic1j eλj+1tc1,j+1 · · · eλntc1n

eλ1tc21 · · · eλj−1tc2,j−1 eβtic2j eλj+1tc2,j+1 · · · eλntc2n

· · · · · · · · · · · · · · · · · · · · ·
eλ1tcn1 · · · eλj−1tcn,j−1 eβticnj eλj+1tcn,j+1 · · · eλntcnn




is a nonsingular solution matrix of Eq. (3.1), where the vector ~cl is the characteristic vector with
regard to the characteristic root λl (l = 1, 2, . . . , n). There exists a nonsingular constant matrix
K satisfying

K =




k11 k12 · · · k1n

k21 k22 · · · k2n

· · · · · · · · · · · ·
kn1 kn2 · · · knn




such that M(t)K|t=0 = I. Extend the matrix M(t)K to M̄(t)K such that

M̄(t)K =

{
M(t)K, t ≥ 0,

O, t < 0.

Thus, the matrix X(t) = M̄(t)K is a fundamental solution of Eq. (1.1), where

M̄(t)K =




n∑
m=1

c1mkm1e
λmt

n∑
m=1

c1mkm2e
λmt · · ·

n∑
m=1

c1mkmneλmt

n∑
m=1

c2mkm1e
λmt

n∑
m=1

c2mkm2e
λmt · · ·

n∑
m=1

c2mkmneλmt

· · · · · · · · · · · ·
n∑

m=1
cnmkm1e

λmt
n∑

m=1
cnmkm2e

λmt · · ·
n∑

m=1
cnmkmneλmt




, t > 0.

Since Reλm < 0, m = 1, 2, . . . , j − 1, j + 1, . . . , n, it holds that

|X(t)| = |M̄(t)K| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣




|
n∑

m=1
c1mkm1e

λmt| |
n∑

m=1
c1mkm2e

λmt| · · · |
n∑

m=1
c1mkmneλmt|

|
n∑

m=1
c2mkm1e

λmt| |
n∑

m=1
c2mkm2e

λmt| · · · |
n∑

m=1
c2mkmneλmt|

· · · · · · · · · · · ·
|

n∑
m=1

cnmkm1e
λmt| |

n∑
m=1

cnmkm2e
λmt| · · · |

n∑
m=1

cnmkmneλmt|




∣∣∣∣∣∣∣∣∣∣∣∣∣∣
tends to ∣∣∣∣∣∣∣∣∣∣




|c1jkj1e
λjt| |c1jkj2e

λjt| · · · |c1jkjneλjt|
|c2jkj1e

λjt| |c2jkj2e
λjt| · · · |c2jkjneλjt|

· · · · · · · · · · · ·
|cnjkj1e

λjt| |cnjkj2e
λjt| · · · |cnjkjneλjt|




∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣




|c1jkj1| |c1jkj2| · · · |c1jkjn|
|c2jkj1| |c2jkj2| · · · |c2jkjn|
· · · · · · · · · · · ·

|cnjkj1| |cnjkj2| · · · |cnjkjn|




∣∣∣∣∣∣∣∣∣∣

6= 0 (3.9)
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as t → +∞. In fact, there exists at least a nonzero element cµjkjν in the matrix



c1jkj1 c1jkj2 · · · c1jkjn

c2jkj1 c2jkj2 · · · c2jkjn

· · · · · · · · · · · ·
cnjkj1 cnjkj2 · · · cnjkjn




, (3.10)

where µ, ν ∈ {1, 2, . . . , n}. Otherwise, if all elements in the first column of the matrix (3.10) are
equal to zero, then by the vector ~cj = (c1j , c2j , . . . , cnj)T 6= 0, we have kj1 = 0. If all elements in
the second column of the matrix (3.10) are equal to zero, then by vector ~cj = (c1j , c2j , . . . , cnj)T 6=
0, we have kj2 = 0. Continuing this process, we can obtain kj3 = 0, kj4 = 0, . . . , kjn = 0. Thus,
all elements of j row of the matrix K are zero. This contradicts the fact that the matrix K

is nonsingular. Therefore, |X(t)| → a nonzero finite number as t → +∞. By using similar
arguments, we can prove that |Ẋ(t)| → a nonzero finite number as t → +∞. By the formula
(3.2), the zero solution of Eq. (1.1) is stable, but not asymptotically stable.

Secondly, without loss of generality, suppose that Eq. (1.1) possesses several different char-
acteristic roots with zero real parts. Using the similar arguments used above, we can prove that
the zero solution of Eq. (1.1) is stable, but not asymptotically stable.

(3) Without loss of generality, assume that λ1 = βi is a k-multiple characteristic root of
Eq. (1.1) with i2 = −1, then there exist function vectors ~c1(t),~c2(t), . . . ,~ck(t) such that eβti~c1(t),
eβti~c2(t), . . . , eβti~ck(t) are solution vectors of Eq. (1.1), where all elements of the vector ~cj(t),
j = 1, · · · , k, are polynomials in t with degree j − 1. Since the other characteristic roots of
Eq. (1.1) have negative real parts, we can choose n − k different roots λk+1, λk+2, . . . , λn with
Reλj < 0, j = k + 1, k + 2, . . . , n. Then there exist vectors ~ck+1,~ck+2, . . . ,~cn such that matrix

M(t) = (eβti~c1, e
βti~c2(t), eβti~c3(t), . . . , eβti~ck(t), eλk+1t~ck+1, e

λk+2t~ck+2, . . . , e
λnt~cn)

is a nonsingular solution matrix of Eq. (3.1). There exists a nonsingular constant matrix K such
that M(t)K|t=0 = I. Extend the matrix M(t)K to M̄(t)K such that

M̄(t)K =

{
M(t)K, t ≥ 0,

O, t < 0,

where O denotes the n-order zero matrix. Thus, the matrix X(t) = M̄(t)K is a fundamental
solution of Eq. (1.1). As the proof in (2), we can prove that |X(t)| → ∞ and |Ẋ(t)| → +∞ as
t → +∞. Therefore, the zero solution of Eq. (1.1) is unstable. Obviously, if a characteristic root
of Eq. (1.1) has positive real part, then the zero solution of Eq. (1.1) is unstable. This completes
the proof. 2

The following corollary is necessary and sufficient, which is an extension of [18].

Corollary 3.1 Suppose that h(λ) = 0 is the characteristic equation of Eq. (1.1). Then the

zero solution of Eq. (1.1) is asymptotically stable iff the real parts of all characteristic roots of

Eq. (1.1) are negative.

Proof Sufficiency. See the proof of Theorem 3.1 (1).
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Necessity. Suppose that Eq. (1.1) possesses a characteristic root with zero real part. Then
by Theorem 3.1 (2), the zero solution of Eq. (1.1) is stable but not asymptotically stable. This is
a contradiction. If Eq. (1.1) has a characteristic root with positive real parts, then by Theorem
3.1 (3), the zero solution of Eq. (1.1) is unstable. This is also a contradiction. Thus, the necessity
of the theorem holds. This completes the proof. 2

Remark 3.1 Corollary 3.1 holds in n-dimensional space and is an extension of [18]. The
methods used in this paper are different from ones in [18]. Corollary 3.1 is also an answer to the
problem put forward in [19] and [20] .

Next, we will investigate the stability of the perturbed equation

ẋ(t) = Ax(t) + B(t)x(t) +
m∑

i=1

Bix(t− τi) +
m∑

i=1

Ciẋ(t− τi), t > 0, (3.11)

x(t) = φ(t), −τm ≤ t ≤ 0, (3.12)

where x(t), A, Bi, Ci, τi and φ(t) are the same meanings as in Eq. (1.1), B(t) is an n× n matrix
depending on time t. We have the following theorem.

Theorem 3.3 Suppose that h(λ) = 0 is the characteristic equation of Eq. (1.1), and that B(t)
is bounded, i.e., there exists some M > 0 such that |B(t)| ≤ M .

(1) If all roots of h(λ) = 0 have negative part, then the zero solution of Eq. (3.11) is

asymptotically stable;

(2) If all roots of h(λ) = 0 are not positive, there is at least a single root with zero real part

and
∫ +∞
0

|B(t)|dt is bounded, then the zero solution of Eq. (3.11) is stable, but not asymptotically

stable;

(3) If all roots of h(λ) = 0 are not positive, and there exists at least a multiple root with

zero real parts for h(λ) = 0, or there exists at least a root with positive real part for h(λ) = 0,

then the zero solution of Eq. (3.11) is unstable.

Proof Let X(t) be a fundamental solution of Eq. (1.1). Then the general solution of equation
(3.11) can be written as

x(φ)(t) =X(t)
[
φ(0)−

m∑

i=1

Ciφ(−τi)
]

+
m∑

i=1

∫ 0

−τi

X(t− τi − θ)Biφ(θ)dθ+

m∑

i=1

∫ 0

−τi

Ẋ(t− τi − θ)Ciφ(θ)dθ +
m∑

i=1

Ciφ̂(−τi + t)ω(−τi + t)+

∫ t

0

B(t− θ)X(θ)x(θ)dθ, (3.13)

where

ω(t) =

{
1, t < 0,

0, t ≥ 0,
and φ̂(θ) =

{
φ(θ), θ < 0,

φ(0), θ ≥ 0.
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Thus, we get

|x(φ)(t)| ≤
∣∣∣X(t)

[
φ(0)−

m∑

i=1

Ciφ(−τi)
]

+
m∑

i=1

∫ 0

−τi

X(t− τi − θ)Biφ(θ)dθ+

m∑

i=1

∫ 0

−τi

Ẋ(t− τi − θ)Ciφ(θ)dθ +
m∑

i=1

Ciφ̂(−τi + t)ω(−τi + t)
∣∣∣+

∫ t

0

|B(t− θ)||X(θ)||x(θ)|dθ.

Applying Gronwall inequality, we get

|x(t)| ≤ M0exp
{∫ t

0

|X(t− θ)||B(θ)|dθ
}

= M0 exp
{∫ t

0

|X(θ)| · |B(t− θ)|dθ
}

, (3.14)

where

M0 =
∣∣∣X(t)

[
φ(0)−

m∑

i=1

Ciφ(−τi)
]

+
m∑

i=1

∫ 0

−τi

X(t− τi − θ)Biφ(θ)dθ+

m∑

i=1

∫ 0

−τi

Ẋ(t− τi − θ)Ciφ(θ)dθ +
m∑

i=1

Ciφ̂(−τi + t)ω(−τi + t)
∣∣∣.

(1) If all roots of h(λ) = 0 have negative parts, then using similar method in Theorem 3.2, we
can easily prove that |X(t)| → 0 and |Ẋ(t)| → 0 as t → +∞. By inequality (3.14), we know that
Eq. (3.11) is asymptotically stable. The proof of (2) and (3) is similar to that of Theorem 3.2.
This completes the proof. 2

Now we investigate the perturbed equation

ẋ(t) = Ax(t) +
m∑

i=1

Bix(t− τi) +
m∑

i=1

Ciẋ(t− τi) + f(t, x(t)), t > 0, (3.15)

x(t) = φ(t), −τi ≤ t ≤ 0, (3.16)

where f(t, x(t)) ∈ C(R × Rn,Rn), f(t, 0) ≡ 0, x(t), A, Bi, Ci, τi, φ(t) are the same meanings as
in Eqs. (1.1) and (1.2). The following theorem holds.

Theorem 3.4 Suppose that h(λ) = 0 is the characteristic equation of Eq. (1.1).

(1) If all roots of h(λ) = 0 have negative real parts, and |f(t, x(t))| ≤ ε|x(t)|, then the zero

solution of Eq. (3.15) is asymptotically stable;

(2) If all roots of h(λ) = 0 are not positive, there exists at least a single root of h(λ) = 0 with

zero real part, |f(t, x(t))| ≤ |B(t)||x(t)|, and
∫ +∞
0

|B(t)|dt is bounded, then the zero solution of

Eq. (3.15) is stable, but not asymptotically stable;

(3) If all roots of h(λ) = 0 are not positive, there exists at least a k-multiple root with zero

real part, |f(t, x(t))| ≤ |B(t)||x(t)|, ∫ +∞
0

|B(t)|dt is bounded, or there exists a root with positive

real part, then the zero solution of Eq. (3.15) is unstable.

Proof The proof is similar to that of Theorem 3.3.

4. Exponential stability



Stability analysis of n-dimensional neutral differential equations with multiple delays 643

In this section and after this section, we assume that delays τi (i = 1, 2, . . . , m) are rational
numbers.

Lemmas 4.1 and 4.2 will be used in the proof of Lemma 4.3, which is a key lemma in the
proof of Theorem 4.1.

Lemma 4.1 Let the h(λ) = 0 be the characteristic equation of Eq. (1.1). Denote α0 = sup{Reλ :
h(λ) = 0}. Then,

α0 = max
{

Reλ : det
(
I −

m∑

i=1

Cie
−λτi

)
= 0

}
,

where Reλ denotes the real parts of λ.

Proof Let all roots of h(λ) = 0 be {λj}. Since 0 < τ1 < τ2 < · · · < τm and det Cm 6= 0, there
exist constants α, β ∈ R such that

α ≤ Reλj ≤ β.

For the delay τi, there exists a positive integer M such that τiM = Ti with Ti being positive
integer, i = 1, 2, . . . , m. Thus,

det
(
I −

m∑

i=1

Cie
−λτi

)
= 0

can be written as

det
(
I −

m∑

i=1

Ci(e−λ/M )Ti

)
= 0.

Denote e−λ/M = u. Then,

det
(
I −

m∑

i=1

Ciu
Ti

)
= 0 (4.1)

is an algebraic equation in u, and Eq. (4.1) possesses only finite nonzero roots. Without loss of
generality, suppose these nonzero roots are u1, u2, . . . , ul. Therefore,

e−λ/M = uν , ν = 1, 2, . . . , l.

That is

λ = −M [ln |uν |+ 2kπi], ν = 1, 2, . . . , l; k = ±1,±2, . . . .

Thus,

max
{

Reλ : det
(
I −

m∑

i=1

Cie
−λτi

)
= 0

}

is well defined.

The characteristic equation h(λ) = 0 can be written as

λn det
(
I −

m∑

i=1

Cie
−λτi

)
+ λn−1Rn−1(e−λτ1 , e−λτ2 , . . . , e−λτm) + · · ·+

λR1(e−λτ1 , e−λτ2 , . . . , e−λτm) + R0(e−λτ1 , e−λτ2 , . . . , e−λτm) = 0,
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where Ri(Z1, Z2, . . . , Zm) (i = 0, 1, 2, . . . , n− 1) are polynomials in Z1, Z2, . . . , Zm. Let {λ′j} be
a subsequence of characteristic roots {λj} satisfying

|λ′j | → ∞, j →∞.

Thus, it follows

det
(
I −

m∑

i=1

Cie
−λ′jτi

)
→ 0, j →∞.

Otherwise, |h(λ′j)| À 0 as j → ∞. This contradicts h(λ′j) = 0. Then there exists an n0 ∈
{1, 2, . . . , l} such that

Reλ′j → −M [ln |un0 |+ 2kπi], j →∞.

On the other hand, there exists a subsequence {λ′′j } of all roots {λj} of h(λ) = 0 satisfying

|λ′′j | → ∞, j →∞

such that

Re(λ′′j ) → max
{

Reλ : det
(
I −

m∑

i=1

Cie
−λτi

)
= 0

}
, j →∞.

Otherwise, |h(λ′′j )| À 0 as j →∞. This is a contradiction. Thus, it follows

α0 = max
{

Reλ : det
(
I −

m∑

i=1

Cie
−λτi

)
= 0

}
.

This completes the proof. 2

Lemma 4.2 If α > 0, then
∫
(α)

eλ(t+jr)λ−1dλ = 1; If α ≤ 0, then
∫
(α)

eλ(t+jr)λ−1dλ ≤ 1, where

r is a constant, t, j satisfy t + jr > 0,
∫
(α)

= limT→∞ 1
2πi

∫ α+iT

α−iT
.

Proof Denote σ = t + jr, then it holds
∫

(α)

eλ(t+jr)λ−1dλ =
1

2πi

∫

L

eλσλ−1dλ,

where L = {α + iu : −∞ ≤ u ≤ ∞}. On the line L, we get

eλ(t+jr)λ−1 =
e(α+iu)σ

α + iu
=

eασeiσu(α− iu)
α2 + u2

=
eασ(α cos σu + u sinσu− iu cos σu + iα sinσu)

α2 + u2

=
α cos σu + u sinσu

α2 + u2
eασ + ieασ−u cos σu + α sinσu

α2 + u2
.

Denote A(u) = α cos σu+u sin σu
α2+u2 eασ, B(u) = eασ −u cos σu+α sin σu

α2+u2 , and f(λ) = eλ(t+jr)λ−1. Then
it holds ∫

L

f(λ)dλ =
( ∫

L

A(u)dα−B(u)du
)

+
(
i

∫

L

A(u)du + B(u)dα
)

=
∫ ∞

−∞
−B(u)du + i

∫ ∞

−∞
A(u)du.
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Since B(u) is an odd function, we have
∫∞
−∞B(u)du = 0. By computation, we get

∫ ∞

−∞
A(u)du =

∫ ∞

−∞

α cos σu + u sinσu

α2 + u2
eασdu

=
∫ ∞

−∞

α cos σu

α2 + u2
eασdu +

∫ ∞

−∞

u sinσu

α2 + u2
eασdu

and ∫ ∞

−∞

α cos σu

α2 + u2
eασdu = eασ

∫ ∞

−∞

cos σα u
α

1 + ( u
α )2

d
u

α
.

By the fact that ∫ ∞

−∞

cos mx

1 + x2
dx = πe−m, m > 0,

we get ∫ ∞

−∞

cos σα u
α

1 + ( u
α )2

d
u

α
= πe−σα, σα > 0 or α(t + jr) > 0.

Therefore, ∫ ∞

−∞

α cos σu

α2 + u2
eασdu = π.

Now we will solve
∫∞
−∞

u sin σu
α2+u2 eασdu. Denote f(z) = zαe−σα

α2+z2 . It is obvious that f(z) has two
primary zero points: z = ±iα.

If α > 0, then

Res f(z) =
iαe−σα

2iα
=

e−σα

2
,

where Res f(z) denotes the residue of the function f(z). Thus, it follows
∫ ∞

−∞

u sinσu

α2 + u2
du = 2πi

e−σα

2
= πie−σα.

Comparing the real part and imaginary part of f(z), we get
∫ ∞

−∞

u sinσu

α2 + u2
du = πe−σα.

Namely, ∫ ∞

−∞

u sinσu

α2 + u2
eασdu = π.

Therefore, it follows that
∫ ∞

−∞
A(u)du =

∫ ∞

−∞

α cos σu + u sinσu

α2 + u2
eασ = 2π.

So it holds that ∫

(α)

eλ(t+jr)λ−1dλ =
1

2πi

∫

L

eλσλ−1dλ =
1
2π

· 2π = 1.

If α < 0, then σα < 0. It follows
∫ ∞

−∞

α cos σu

α2 + u2
du = πeσα.
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That is ∫ ∞

−∞

α cos σu

α2 + u2
eσαdu = πe2σα.

By the fact ∫ ∞

−∞

u sinσu

α2 + u2
du = πeασ,

we can get ∫

(α)

eλ(t+jr)λ−1dλ =
1
2π

(πe2σα + πeασ) =
1
2
(e2σα + eασ) < 1.

This completes the proof. 2

The idea used in the proof of the following lemma, which plays an important role in proving
Theorem 4.1, mainly comes from [19].

Lemma 4.3 Let H(λ) be the characteristic matrix of Eq. (1.1). If α0 = sup{Reλ : det H(λ) =
0}, then for any α > α0, there exists a constant k = k(α) such that the fundamental solution

X(t) of Eq. (1.1) satisfies

|X(t)| ≤ keαt

and

|Ẋ(t)| ≤ keαt,

where t ≥ 0, t 6= Nτi, i = 1, 2, . . . , m, and N is any positive integer.

Proof The characteristic equation of Eq. (1.1)

det H(λ) = det
(
λI −

m∑

i=1

Ciλe−λτi −A−
m∑

i=1

Bie
−λτi

)
= 0

can be written as

detH(λ) =λn det
(
I −

m∑

i=1

Cie
−λτi

)
+ λn−1Rn−1(e−λτ1 , e−λτ2 , . . . , e−λτm) + · · ·+

λR1(e−λτ1 , e−λτ2 , . . . , e−λτm) + R0(e−λτ1 , e−λτ2 , . . . , e−λτm)

=0,

where Ri(Z1, Z2, . . . , Zm) is polynomial in Zj , i = 0, 1, . . . , n− 1, j = 1, 2, . . . , m. By Theorems
2.5 and 3.1, there exists a real number d satisfying

X(t) =
∫

(d)

eλtH−1(λ)dλ,

where
∫
(d)

= limT→∞ 1
2πi

∫ d+iT

d−iT
.

First, we will prove

X(t) =
∫

(α)

eλtH−1(λ)dλ

for any α > α0. Consider the integral of eλtH−1(λ) along the closed curve Γ = L1M1L2M2 (see
the following figure)
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Figure 4.1 The closed curve Γ

where
L1 = {d + iu : −T ≤ u ≤ T}, L2 = {α + iu : −T ≤ u ≤ T},
M1 = {ν + iT : α ≤ ν ≤ d}, M2 = {ν − iT : α ≤ ν ≤ d}.

Denote S = {λ ∈ C : α ≤ Reλ ≤ d}. det H(λ) 6= 0 as λ ∈ S. Thus, there exists no zero point in
the rectangle Γ. So every element of H−1(λ) is analytic in Γ. Thus, it follows

∫

Γ

eλtH−1(λ)dλ

=
∫

L1

eλtH−1(λ)dλ +
∫

M1

eλtH−1(λ)dλ +
∫

L2

eλtH−1(λ)dλ +
∫

M2

eλtH−1(λ)dλ

= 0.

We will prove:
∫

M1
eλtH−1(λ)dλ → 0 and

∫
M2

eλtH−1(λ)dλ → 0 as T → ∞. Since λ ∈ S, we
have H(λ) 6= 0. In consequence, H−1(λ) exists. Let H∗(λ) be the adjoint matrix of H(λ), and
denote h(λ) = det H(λ). Then it follows that

H−1(λ) =
1

h(λ)
H∗(λ).

Since the most large power in λ of every element of H−1(λ) is less than that of h(λ), and e−λt

is bounded as λ ∈ S, we have ∫

M2

eλtH−1(λ)dλ → 0

and ∫

M1

eλtH−1(λ)dλ → 0

as T →∞. Thus, it follows

X(t) =
∫

(α)

eλtH−1(λ)dλ.

Secondly, we will prove ∣∣∣
∫

(α)

eλtH−1(λ)dλ
∣∣∣ ≤ keαt.
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It is obvious that

H−1(λ) =
[ 1

λn det(I −
m∑

i=1

e−λτiCi)
− λn−1Rn−1 + · · ·+ λR1 + R0

λn det(I −
m∑

i=1

e−λτiCi)h(λ)

]
H∗(λ).

On the line Reλ = α, it holds
∣∣∣
∫

(α)

λn−1Rn−1 + · · ·+ λR1 + R0

λn det(I −
m∑

i=1

e−λτiCi)h(λ)
H∗(λ)eλtdλ

∣∣∣

≤ eαt

∫

(α)

∣∣∣λ
n−1Rn−1 + · · ·+ λR1 + R0

λn det(I −
m∑

i=1

e−λτiCi)h(λ)
H∗(λ)

∣∣∣dλ.

By Lemma 4.1, it follows that det(I −∑m
i=1 e−λτiCi) 6= 0 for λ ∈ S. For every element of

λn−1Rn−1 + · · ·+ λR1 + R0

λn det(I −
m∑

i=1

e−λτiCi)h(λ)
H∗(λ),

the power of denominator in λ is at least 2 greater than the power of numerator. Thus, for
∣∣∣λ

n−1Rn−1 + · · ·+ λR1 + R0

λn det(I −
m∑

i=1

e−λτiCi)h(λ)
H∗(λ)

∣∣∣,

the power of the denominator in λ is at least 2 greater than the power of numerator. Thus, the
integral ∫

(α)

∣∣∣λ
n−1Rn−1 + · · ·+ λR1 + R0

λn det(I −
m∑

i=1

e−λτiCi)h(λ)
H∗(λ)

∣∣∣dλ

is convergent. Therefore, there exists a constant k1 > 0 such that
∫

(α)

∣∣∣λ
n−1Rn−1 + · · ·+ λR1 + R0

λn det(I −
m∑

i=1

e−λτiCi)h(λ)
H∗(λ)

∣∣∣dλ ≤ k1.

It follows ∣∣∣
∫

(α)

λn−1Rn−1 + · · ·+ λR1 + R0

λn det(I −
m∑

i=1

e−λτiCi)h(λ)
H∗(λ)eλtdλ

∣∣∣ ≤ k1e
αt.

Thirdly, we will prove that there exists a constant k2 > 0 such that
∣∣∣
∫

(α)

1

λn det(I −
m∑

i=1

e−λτiCi)
H∗(λ)eλtdλ

∣∣∣ ≤ k2e
αt.

It suffices to prove that there exists a constant k′ > 0 satisfying
∫

(α)

1

λ det(I −
m∑

i=1

e−λτiCi)
eλtdλ ≤ k′eαt.

By Lemma 4.1, we know that [det(I−∑m
i=1 Cie

−λτi)]−1is analytic in S and is a periodic function.
Assume that the period of [det(I −∑m

i=1 Cie
−λτi)]−1 is T1. Denote T0 = 2π

T1
= ω. The function



Stability analysis of n-dimensional neutral differential equations with multiple delays 649

[det(I −∑m
i=1 Cie

−λτi)]−1 possesses an absolutely convergent Fourier series

[
det

(
I −

m∑

i=1

e−λτiCi

)]−1

=
∞∑

j=−∞
Dje

jT0λ,

where λ ∈ S, Dj = 1
T1

∫ T1
2

−T1
2

[det(I −∑m
i=1 e−λτiCi)]−1ejT0λdλ. If λ = β + iω, α ≤ β ≤ d, then

we get
∣∣∣

∞∑

j=−∞
Dje

jT0λ
∣∣∣ < ∞.

Therefore, if t > 0, T0j + t ≥ 0, then it holds that
∫

(α)

1

λ det(I −
m∑

i=1

Cie−λτi)
eλtdλ =

∞∑

j=−∞
Dj

∫

(α)

eλT0jeλtλ−1dλ

=
∞∑

j=−∞
Dj

∫

(α)

eλ(T0j+t)λ−1dλ.

By Lemma 4.2, it holds
∫

(α)

eλ(T0j+t)λ−1dλ = 1, α(T0j + t) > 0.

Furthermore, it holds that

0 <

∫

(α)

eλ(T0j+t)λ−1dλ < 1, α(T0j + t) ≤ 0.

Thus, we get
∣∣∣

∞∑

j=−∞
Dj

∫

(α)

eλ(T0j+t)λ−1dλ
∣∣∣ ≤ 2

∑

α(T0j+t)>0

|Dj |.

It is obvious that
∑

α(T0j+t)>0

2|Dj | ≤ eαt
∑

α(T0j+t)>0

2|Dj |eαT0j ≤ eαt2
∞∑

j=−∞
|Dj |eαT0j .

Set k′ = 2
∑∞

j=−∞ |Dj |eαT0j . Then we get
∣∣∣
∫

(α)

1

λ det(I −
n∑

i=1

e−λτiCi)
eλtdλ

∣∣∣ ≤ k′eαt.

So it holds ∫

(α)

1

λ det(I −
n∑

i=1

e−λτiCi)
eλtdλ ≤ k′eαt.

Thus, there exists a constant k2 > 0 such that
∣∣∣
∫

(α)

1

λn det(I −
n∑

i=1

e−λτiCi)
H∗(λ)eλtdλ

∣∣∣ ≤ k2e
αt.
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Denote k3 = k1 + k2, it holds

|X(t)| ≤ k3e
αt.

Finally, we will prove that

| ˙X(t)| ≤ keαt, t ≥ 0

on [t− r, t]. Let ˙X(t) = Y (t). Then Eq. (3.1)

Ẋ(t) = AX(t) +
m∑

i=1

BiX(t− τi) +
m∑

i=1

CiẊ(t− τi)

can be reduced to

Y (t)−
m∑

i=1

CiY (t− τi) = P (t), (4.2)

where P (t) = AX(t) +
∑m

i=1 BiX(t− τi). Since |X(t)| ≤ k3e
αt, it follows that

|P (t)| ≤
(
|A|+

m∑

i=1

Bi

)
k3e

αt.

Let Y (t) = Z(t)eαt. Then Eq. (4.2) can be written as

Z(t)−
n∑

i=1

Cie
−ατiZ(t− τi) = P (t)e−αt. (4.3)

Since |P (t)e−αt| is bounded, the solutions of Eq. (4.3) are bounded for t ≥ 0. There exists a
constant k4 > 0 satisfying Z(t) ≤ k4. Therefore,

|Ẋ(t)| = |Y (t)| = |Z(t)| · eαt ≤ k4e
αt.

Choose k = max{k3, k4}, then it follows that |Ẋ(t)| ≤ keαt and |X(t)| ≤ keαt. This completes
the proof. 2

By Theorem 3.1 and Lemma 4.3, we can easily get the following theorem.

Theorem 4.1 Let h(λ) = 0 be the characteristic equation of Eq. (1.1). If α0 = sup{Reλ :
h(λ) = 0}, then, for any α > α0, there exists a constant k = k(α) such that the solution x(ϕ)(t)
of Eqs. (1.1) and (1.2) satisfies

|x(ϕ)(t)| ≤ keαt|ϕ|.

If α0 < 0, then the zero solution of Eq. (1.1) is exponentially stable.

Corollary 4.2 If all roots of the characteristic equation h(λ) = 0 for Eq. (1.1) satisfies

(1) The real parts of all roots are negative;

(2) ρ(
∑m

i=1 Cie
−iyτi) < 1, ∀y ∈ R.

Then the zero solution of Eq. (1.1) is exponentially stable.

Proof By condition (1), α0 ≤ 0 holds. By condition (2) and Lemma 1.2, the matrix
(
I −

m∑

i=1

Cie
−iyτi

)−1
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exists. So for any y ∈ R, we have

det
(
I −

m∑

i=1

Cie
−iyτi

)
6= 0.

Thus, the equation

det
(
I −

m∑

i=1

Cie
−λτi

)
= 0

has no root on imaginary axis. By Lemma 4.1, we get α0 < 0. By Theorem 4.1, it follows that
the zero solution of Eq. (1.1) is exponentially stable.

5. Numerical examples

In this section, we give two examples to illustrate the applications of our results.

Example 5.1 Consider the following equation

ẋ(t) =

(
− 1

6 ln 2− 1
6πi 0

0 − ln 3
2

)
x(t− 1) +

(
1
3 0

0 1
3

)
ẋ(t− 2). (5.1)

The characteristic equation of Eq. (5.1) is
(
λ− (−1

6
ln 2− 1

6
πi)e−λ − 1

3
λe−2λ

)(
λ− (− ln

3
2
)e−λ − 1

3
λe−2λ

)
= 0. (5.2)

Eq. (5.2) possesses two roots in all: λ1 = − ln 3
2 and λ2 = − ln 2 − πi. Obviously, Reλ1 < 0,

Reλ2 < 0. By the conclusion (1) in Theorem 3.2, the zero solution of Eq. (5.1) is asymptotically
stable. By the Theorem 4.1, the zero solution of Eq. (5.1) is exponentially stable.

Example 5.2 Consider the neutral differential equation

ẍ(t)− ẍ(t− 1) + 2x(t− 1) + x(t− 2) = 0 (5.3)

or

ẋ(t) =

(
0 1

0 0

)
x +

(
0 0

−2 0

)
x(t− 1) +

(
0 0

−1 0

)
x(t− 2) +

(
0 0

0 1

)
ẋ(t− 1).

(5.4)
The characteristic equation of Eqs. (5.3) or (5.4) is

λ2(1− e−λ) + e−2λ + 2e−λ = 0. (5.5)

We can check that λ = 0.7820 ± 0.8629i are the roots of Eq. (5.5). Re(λ) > 0 holds. By the
conclusion (3) in Theorem 3.2, the zero solution of Eqs. (5.3) or (5.4) is unstable.
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