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Abstract This paper is mainly concerned with stability analysis of neutral differential equa-
tions with multiple delays. Some criteria on instability, stability, asymptotic stability and
exponential stability are obtained. The criterion on asymptotic stability is necessary and suf-
ficient. Two examples are provided to illustrate the applications of our results. Some previous
results are extended.
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1. Introduction

The class of equations involving derivatives as well as the function itself are called neutral
differential equations or neutral differential difference equations. In the past several decades,
neutral differential equations have become important in modeling some real phenomenon such
as oscillatory systems with some interconnections between them, coupled systems, the theory of
automatic control or population dynamics [1,2], distributed networks containing lossless trans-
mission [3], etc. Neutral differential equations have been investigated since last 1960’s, see [1-24]
and the references therein. Stability analysis for neutral differential equations has been the fo-
cus of researcher’s attention [4-18]. It is necessary to mention the excellent work of Park et
al., which are on stability analysis of neutral differential equations. Readers can refer to, for
example, Ref. [4-8].

In this paper, we mainly discuss the stability, the asymptotical stability, the exponential

stability and the instability for neutral differential equation

$(t) :Al’(t)+iBi$<t—Ti)+iCi.’iﬁ(t—Ti), t>0 (1.1)
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with initial condition

z(t) = ¢(t), —mm <t <0, (1.2)

where z(t) € R™ is the vector, A, B; and C; are n X n constant matrices (¢ = 1,2,...,m), 7; is
time-delay satisfying 0 < 71 < 15 < «-+ < T, det Cy, # 0, ¢(t) € R™ is the given initial function
vector which is continuous or has finite discontinuous points on interval [—7,,, 0].

Denote by {A;} the set of characteristic roots of equation (1.1), Re(\) the real parts of A
and A = sup{Re);}. In R! space, Hale et al [19] obtained the following theorem.

Theorem 1.1 ([19]) If A <0, then the zero solution of Eq. (1.1) is exponentially stable.
For the case Re); < 0 and A = 0, the asymptotical stability of the zero solution of Eq. (1.1)
is complex, which was put forward in [19] and [20]. The problem remains unsolved until Ren [18]

partly solved the problem in 1999. Ren’s results [18] hold only in R! space. They are as follows.

Theorem 1.2 ([18]) IfRe\; < 0 and A = 0, then the zero solution of Eq. (1.1) is asymptotically
stable.

Furthermore, Ren [18] obtained a necessary and sufficient criterion.

Theorem 1.3([18]) The zero solution of Eq. (1.1) is asymptotically stable iff the real parts of
all the characteristic roots are negative.

Recently, Eq. (1.1) has been investigated for numerical approximation in R™ space [8, 15—
17,21,22]. By methods such as linear the multistep methods, the Lyapunov method, matrix
inequality, the Runge-kutta method and the BDFs methods, etc, many results on stability of
Eq. (1.1) were derived. In 1998, Zhang and Zhou [15] presented a sufficient condition of asymp-
totical stability through the spectral radius of modulus matrices. Later in 2004, He and Cao [16]
gave some simple delay-independent stability criteria for the asymptotic stability in terms of the
spectral radius of modulus matrices. In 2005, Park and Kwon [8] provided a novel stability cri-
terion based on the Lyapunov method. Very recently, Kuang et al. [17] obtained a new sufficient
condition of asymptotic stability. The key theoretical bases in these papers are:

e If the zero solution of Eq. (1.1) is asymptotically stable, then the real parts of all charac-
teristic roots of Eq. (1.1) are negative. Namely, fRe); < 0, where A; is the characteristic roots of
Eq. (1.1);

e If there exists a positive number v > 0 such that the real parts of all characteristic roots
of Eq. (1.1) satisfy: A = sup{Pe);} < —~, then the zero solution of Eq. (1.1) is asymptotically
stable.

With regard to the case that Re); < 0 and A = 0 in R™ (n > 2) space, we have not
retrieved any results on stability analysis of Eq. (1.1). Motivated by the fact, in this paper we
mainly investigate the stability, the asymptotical stability, the instability and the exponential
stability of Eq. (1.1). We solve the problem put forward in [19] and [20].

Before presenting our results, we first recall some preliminaries which will be used later.

Definition 1.1 ([19]) We say the function z(¢)(t) is a solution of Eq.(1.1) and Eq.(1.2) if
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x(¢)(t) is defined on [—7p,, 00|, the difference

IF

z(t) =y Cix(t —7)

K2

1
is almost everywhere differentiable and x(¢)(t) satisfies Egs. (1.1) and (1.2).

Definition 1.2 ([19]) The zero solution of Eq. (1.1) is said to be

(a) Stable iff for any € > 0, there exists a positive real number 6(¢) > 0 such that for
Vo € C = C([—Tm,0],R™), when |¢| < 9, the solution |x(¢)(t)| of Egs. (1.1) and (1.2) satisfies:
|z(4)(t)| < e fort > 0;

(b) Asymptotically stable iff the zero solution x(¢)(t) of Eq. (1.1) is stable and lim;_, 4 |2(¢)
(1)) = 0;

(c) Exponentially stable iff there exist constants a,b > 0 such that the solution z(¢)(t) of
Egs. (1.1) and (1.2) satisfies: |x(¢)(t)| < a|p|le™ for t > 0,

where | - | denotes vector norm. Particularly, for ¢ € C, define |¢| = sup_,<g<q |#(0)].
Lemma 1.1 Let x = (z1,22,...,7,)7, A= (@ij)nxn- Then the following holds true
|Az| < [A] - [z],
where [x| = (37, [#i]*)!/? and |A| = (372, Y7, laig|*)'/2.
Lemma 1.2 ([25]) Suppose that V € C™*™ and p(V) < 1. Then (I — V)~! exists, and
I-V) ' '=I+V+V24V3itp...,
where the notation p(V') denotes the spectral norm of the matrix V.

Throughout this paper, notation R™ denotes the n-dimensional Fuclidean space, I denotes
the unit matrix of appropriate order, |- | denotes either the Euclidean vector norm or the induced
matrix 2- norm, e\ denotes the real part of \, and (-)7 denotes the transpose of either the
matrix (-) or the vector(-).

2. Existence and exponential growth

Theorem 2.1 For Egs. (1.1) and (1.2), there always exists a solution x(¢)(t) defined on [0, cc].

Proof Eq.(1.1) can be written as

[e‘Atx(t) —e M i Cix(t — Ti):|/ = A i Bix(t — 1;) + Ae= 4! i Cix(t — ;). (2.1)

i=1 i=1

Integrating Eq. (2.1) from 0 to t yields

$(t) :eAt {x((}) — Zcigb(—ﬂ)} =+ ZCix(t — Ti)-‘r

et {i /75 e M Bx(t —7;)dt + zm: /t Ae=MCia(t — Ti)dt:| ,
i=170 =10
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For 0 < t < 11, the following holds true

2(t) = [6(0) = Y Ciop(—mi)| + Y Cuolt — m)+

et [i /Ot e A Big(t — mi)dt + i /ot Ae™MCig(t - Ti)at].

Repeating the above process respectively on the intervals [r,271],...,[n7, (n + D)7], ..., we
can obtain the solution x(¢)(t) of Egs. (1.1) and (1.2) on [0, +00). This completes the proof. O
Using similar method in [19] or [20], we can easily obtain the following theorem, which is

the basis of applying the Laplace transform on the solution of Egs. (1.1) and (1.2).

Theorem 2.2 The solution x(¢)(t) of Egs.(1.1) and (1.2) is exponential bounded. Namely,
there exist constants o > 0 and v > 0 such that the solution z(¢)(t) of Egs. (1.1) and (1.2)

satisfies

lz(¢)()| < agle.

3. Stability, asymptotic stability and instability

Definition 3.1 Ifn x n matrix X (t) satisfies
X(t)=AX(t)+> B X(t—m)+» CX(t—7), t>0 (3.1)
i=1 i=1

and det X (t) # 0 for some ¢ € [0,+00), then we say that matrix X (t) is a nonsingular solution
matrix of Eq. (1.1).
If the matrix X (t) satisfies Eq. (3.1) and
I, t=0,
X(t) =
0, t<0,
then we say that X (t) is a fundamental solution of Eq. (1.1).
Suppose that z(t) = ek is a solution of Bq.(1.1), k = (k1,ks, ..., ky)T. Substituting
z(t) = eMk into Eq. (1.1) yields

det ()\I _A- i Bie T — i ACie”\”) —0.
i=1

i=1

Definition 3.2 The matrix
H()\) = (/\I A=Y B =Y )\Cie_’\”)
i=1 i=1

is said to be the characteristic matrix of Eq. (1.1), and the equation det H(\) = h()\) = 0 is said
to be the characteristic equation of Eq. (1.1).
Applying the Laplace transform on both sides of Eq. (3.1) yields the following lemma.
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Lemma 3.1 If X(¢) is a fundamental solution of Eq. (1.1), then we have
L(X(t);s) = H™'(s), (3.2)

where H (s) is the characteristic matrix of Eq. (1.1), and L(X (t);s) is the Laplace transform of
X(t).

Theorem 3.1 If X(t) is a fundamental solution of Eq.(1.1), then the general solution of
Egs. (1.1) and (1.2) can be written as

2(6)(1) =X (1)|0(0) Zaqﬁ n}+§j L X(t- - O)Bio(0) s+

—T;

m. .0
Z/ X(t—7; —0)Cigp(0)do + Z Cip(—7; + w(—7; + 1), (3.3)
i=1Y"Ti i=1
where
R 0), 6 <0,
w(t):{ bSO ¢(9):{ o0, 6<0
0, t>0, #(0), 0>0.

Proof Applying the Laplace transform on both side of Eq. (1.1), we get by Lemma 3.1 that

7(s) =L(X [ Z Cid(—75) + Z B [ g(6)e*0do+

s Z Ce=sT (G)e’sedﬁ],

where X (t) is a fundamental solution of Eq. (1.1), and the Laplace transform of x(t) is Z(s), i.e.,
L(x(t);s) = &(s), L(X(t); s) = X(s). By the definitions of $(#) and w(h), we get

iBie_S” (0 “"‘gd@—ZB/ ¢(0 — m)e*0dg

-7
m

—1)w(0 —1;)e e 50 —1)w(0 — T e 50
2 / (6 a9 + Z/ w(®— ) de]
ZB’/ OO(;B(G—Q)Q}(G—Q e%%40 = (ZB@ - Ti)w —Ti);5>

=1

<.

and

Z Cie T P(0)e*0do = (Z —1)w(0 —7); 3)

—Ti —

By the formula L(X(t);s) = sX(s) — X(0) = (

Thus, it follows

#(s) =L(X () ) [6(0) = D Coof(—7)| + LX (1)) L( D B0 — mu)eo(6 — )z )+
i=1

i=1
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[L(X(t); ) + XOIL( D Cial0 = (6 — 73); ).
i=1
Applying the inverse Laplace transform and Convolution Theorem yields

(600 =XO[p0) =3 Cuol-r] + [ X-0)3 B0 - )0 ~ a0

/Xt— i 0 — 1w 9—Tﬂd@—&—i@c{)@—n)w()ﬁ—n).

i=1
Set @ — 7, = u. Then, it follows

2()(t) = [ Zcm n}+z L Xt - 0)Bio(0)a+

—T;

Z Xt—TZ—G) Cig(6 d9+Zc,¢ —7i + Dw(—T7; + ).
=1

—r
This completes the proof. O

Lemma 3.2 Suppose that A is an m-multiple characteristic root of Eq. (1.1). Then there exists
a vector d = (ky, ko, ..., k,)T such that atke* (k=0,1,...,m—1) are the solutions of Eq. (1.1).

Proof Since A is an m-multiple characteristic root of Eq. (1.1), so there exists a vector & =
(k1,ka,. .., kn)T such that
H(\)deM =0, (3.4)

where H () is the characteristic matrix of Eq. (1.1). Taking the kth-order (k =0,1,2,...,m—1)
derivative of A on both sides of Eq. (3.4) yields

Z PiH MtteMa =0, (3.5)
here P,g = ﬁlj), Now we prove that z(t) = atke* (k= 0,1,...,m — 1) are the solutions of
Eq. (1.1). Substituting z(t) = atke* into the left of Eq. (1.1) yields

@(t) — Ax(t) — Z Bix(t —1;) — Z Cix(t — i)
i=1 i=1

= [At’“e”[ + ktFleMT — AtkeM — Z Bi(t — 7;)FeMt=mi) —
=1
m

m
Z Ci(t — Ti)ke)\(tfﬂz) _ Z Cik(t — Ti)kfle)\(t—n)} &
=1 i=1
= |:)\tkl—|— ktk—l[ _ Atk _ ZBz(t _ Ti)ke—kn_

i=1
m

> Ciat —m)Fe =N " Cik(t - Ti)’f-le—*ﬂ] eMal. (3.6)

i=1 i=1
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Inserting

(t—7)" = Pt* + P (—7) + PR 2 (—7)? + - - + PE(—m)" (3.7)
and
(t—m)" = Pt T+ PP () + P ()P P ()M (3.8)

into the right side of Eq. (3.6) yields
l‘(t) - Al‘(t) - Zle‘(t - Ti) - Z Cﬂ'}(t - Ti)
=1 i=1

= [tkH(A) + PHETYH () + PRRT2HT (N 4 -4 PETUHHED () + HB (V) |@eM.

By the equality (3.5) we have

m m

#(t) — Ax(t) = Y Bia(t—7;) = _ Cii(t — i) = 0.

i=1 =1

Thus z(t) = atFe (k=0,1,...,m — 1) are solutions of Eq. (1.1).

Theorem 3.2 Suppose that h(\) = 0 is the characteristic equation of Eq. (1.1).

(1) If the real parts of all roots of h(\) = 0 are negative, then the zero solution of Eq. (1.1)
is asymptotically stable;

(2) If the real parts of all roots of h(\) = 0 are non-positive and there exist finite single
roots with zero real parts, then the zero solution of Eq. (1.1) is stable, but is not asymptotically
stable;

(3) If the real parts of all roots of h(\) = 0 are non-negative and there exist multiple roots
with zero real parts, or there exists a root with positive real parts, then the zero solution of
Eq. (1.1) is unstable.

Proof (1) First, it is easy to check that if M (¢) is a nonsingular solution matrix of Eq. (1.1).
Then for any nonsingular constant matrix G, M (¢)G is a nonsingular solution matrix of Eq. (1.1).
Secondly, the conditions that 0 < 74 < 70 < -+ < 7, and det Cy,, # 0 ensure that Eq. (1.1)

possesses at least n characteristic roots.

Case (i) Let A\; (1 =1,2,...,n) be different roots of h(\) = 0 with Re)\; < 0. Then there exist
nonzero characteristic vectors: @; = (a1, 4o, . . -, am)T such that z;(t) = erit@; are solutions of
Eq.(1.1),i=1,2,...,n. Thus

M) = (2t wt) () )
is a solution matrix of Eq. (1.1). There exists a nonsingular constant matrix

kll k12 e kln

K: 21 22 2

knl an e knn
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such that M (t)K|;=o = I. Extend the matrix M (t)K to M(t)K such that

M@®)K, t>0,

M(t)K:{
0, t <0,

where O denotes the n-order zero matrix. Thus, the matrix X (¢) = M(¢)K is a fundamental

solution of Eq. (1.1), where

S

n

n
it it
> agikire E arikigeMt 0 3 agikiett
i=1 i=1 i=1
L Mt o L it
_ Z ogikiret Z aikine At Z aikine’
Mt)K=| i= i=1 i=1 , t>0.
At o it S it
Z anikiie™t Y7 apikige™ Y apikine
i=1 i=1 i=1
By computation, we get
. Nt it . it
Z Aok et Z Aiouiikine™ Z Aioikine™
i=1 i=1 i=1
n n n
. 3 NagikineNit S Nagikigeit > Mgk et
X(t)=1] i=1 i=1 i=1 , t>0.
NE it it
Z Ai iOng zle i Z )\ianiki2e * e Z Ai iOng zne ¢
1=1 =1 =1

Since Me); < 0,47 =1,2,...,7n, we have |X(t)] — 0 and | X (t)| — 0 as t — +oc. By the formula
(3.2), we know that the zero solution of Eq. (1.1) is asymptotically stable.

Case (ii) Without loss of generality, let A1 be a k-multiple (2 < k < n) root of the characteristic
equation h(\) = 0 with 2Re\; < 0. Suppose further that the other (n — k) roots of h(\) = 0 are
Ak+1s Met2, - -+ and A, which are different from each other with negative real parts. By Lemma
3.2, there exist vector functions @;(t) = (a1;(t), a;i(t), ..., ani(t))T such that z1(t) = eMtay(t),
To(t) = eMt@y(t),. .., xx(t) = eMidg_1(t) are solutions of Eq. (1.1), where aj;(¢) are polynomials
in t with degree i, 7 =0,2,...,k—1, j =1,2,...,n. There exist vectors di1,...,d, such that

Thy1(t) = eMNHtag g, .. 2, (1) = eMtd, are solutions of Eq. (1.1). Thus,

M) = (o) wa(t) o alt) )

is a nonsingular solution matrix of Eq.(1.1). The remainder of the proof is similar to that of
Case (i).

(2) First, without loss of generality, we suppose that \; = (i is a characteristic root
of Eq.(1.1) with 2 = —1, where 3 € R and 8 # 0. Suppose that other n — 1 charac-
teristic roots of Eq.(1.1) are A1, Ao, ..., Aj—1, Ajqi1,..., Ap, with el <0 (I = 1,2,...,5 —

1,5 +1,...,n). Then there exist nonzero characteristic vectors: & = (ci1,¢o1,...,¢n1)?,
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- T - T .
Gy = (c12,€22, -y Cn2)" 5o ooy Cn = (Cins Cany - -+ Cnn)” such that the matrix
At N1t ti Nt Ant
e 1 C11 - et 1 Cl,j—l 6'8 lclj e j+1 Cl,j-‘rl e e Cin
€A1t021 e ekjflthjil eﬁtZCQj e>‘j+1tcz’j+1 e e/\nt62n
M(¥)
e>‘1tcn1 . eAj—ltcn,j_l eﬁ“cnj e>‘j+1tcn7j+1 - e)‘ntcnn

639

is a nonsingular solution matrix of Eq. (3.1), where the vector ¢ is the characteristic vector with

regard to the characteristic root A; (I =1,2,...,n). There exists a nonsingular constant matrix
K satisfying
ki ki o0 Eig
K — ko1 kaa o+ kon
knl an e knn

such that M (t)K|;—o = I. Extend the matrix M (t)K to M(¢)K such that

M@®K, t>0,

M(BK = { 0, t<0.

Thus, the matrix X (¢) = M (¢)K is a fundamental solution of Eq. (1.1), where

n n n
Z Clmkmlekmt Z Clmkmﬂ;}mt cee ClmkmneAmt
mrTl mn:1 mn:1
_ Comkm1e ™ Comkmae ™ Comkmne ™t
M(t)K = mZZI e 7n2::1 e mzzjl e , t>0.
n n n
Z Cn7nkmle>\mt Z Cnmkae/\mt Z C7zmkmn6>\mt
m=1 m=1 m=1
Since Rel,,, <0, m=1,2,...,5—1,7+1,...,n, it holds that
n n n
| Z Clmkmle)\mt| | E Clmkm2€)\mt| e ‘ Z clmkmnekmq
m=1 m=1 m=1
— | Zn: C2mkm16)\mt | zn: C2mkm2e)\mt tee ‘ zn: Ckamne/\mt
X0 = MK = || = = =
n n n
| Z Cnmkmle)\mt| | Z CnmkaeAmtl o ‘ Z Cnmkmnekmq
m=1 m=1 m=1
tends to
lerjkjieit| Jerjhyoet| o Jerjhjne?|
|cajhjie?| feajhjae®t] o eaikjnet]
lenjkjiet| enjkjaet| oo fenjkine?|
ikl leiikjal - lerjkinl
_ || el lezikizl e eaihinl

lenjkinl  lenjkiel oo lengkjnl

(3.9)
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as t — 4o00. In fact, there exists at least a nonzero element c,;k;, in the matrix

cijkjn cijkiz oo cajkin

cajkji coikjp oo cojkin 7 (3.10)

cnjkji  cnjkjz o cnjkin
where p,v € {1,2,...,n}. Otherwise, if all elements in the first column of the matrix (3.10) are
equal to zero, then by the vector ¢; = (c15, c25, - - - ,cnj)T # 0, we have kj; = 0. If all elements in
the second column of the matrix (3.10) are equal to zero, then by vector & = (c15, caj, . .., nj)T #
0, we have kjo = 0. Continuing this process, we can obtain k;3 = 0,k;4 =0,...,k;, = 0. Thus,

all elements of j row of the matrix K are zero. This contradicts the fact that the matrix K
is nonsingular. Therefore, | X (¢)] — a nonzero finite number as ¢ — +oco. By using similar
arguments, we can prove that | X (t)] — a nonzero finite number as ¢t — +oc. By the formula
(3.2), the zero solution of Eq. (1.1) is stable, but not asymptotically stable.

Secondly, without loss of generality, suppose that Eq. (1.1) possesses several different char-
acteristic roots with zero real parts. Using the similar arguments used above, we can prove that
the zero solution of Eq. (1.1) is stable, but not asymptotically stable.

(3) Without loss of generality, assume that Ay = i is a k-multiple characteristic root of
Eq. (1.1) with 42 = —1, then there exist function vectors & (t), é(t), ..., ¢ (t) such that e®*¢&; (¢),
ePlicy(t), ..., ePtE,(t) are solution vectors of Eq. (1.1), where all elements of the vector ¢;(t),
j = 1,--- k, are polynomials in ¢ with degree j — 1. Since the other characteristic roots of
Eq. (1.1) have negative real parts, we can choose n — k different roots Agi1, Ak+2,--., A\ with
Red; < 0,7 =Fk+1,k+2,...,n. Then there exist vectors ¢j41,Cr42,.-.,Cn such that matrix

M(t) = (e77e1, €76y (t), €7 e5(t), . .., €71 (t), M1, €M Gy, . €M)

is a nonsingular solution matrix of Eq. (3.1). There exists a nonsingular constant matrix K such
that M (t)K|—o = I. Extend the matrix M (t)K to M(t)K such that

M®K, t>0,

MK =
0, t <0,

where O denotes the n-order zero matrix. Thus, the matrix X(¢) = M(¢)K is a fundamental
solution of Eq. (1.1). As the proof in (2), we can prove that | X (t)| — oo and |X(t)| — +oc0 as
t — +o00. Therefore, the zero solution of Eq. (1.1) is unstable. Obviously, if a characteristic root
of Eq. (1.1) has positive real part, then the zero solution of Eq. (1.1) is unstable. This completes
the proof. O

The following corollary is necessary and sufficient, which is an extension of [18].

Corollary 3.1 Suppose that h(\) = 0 is the characteristic equation of Eq.(1.1). Then the
zero solution of Eq. (1.1) is asymptotically stable iff the real parts of all characteristic roots of

Eq. (1.1) are negative.

Proof Sufficiency. See the proof of Theorem 3.1 (1).
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Necessity. Suppose that Eq. (1.1) possesses a characteristic root with zero real part. Then
by Theorem 3.1 (2), the zero solution of Eq. (1.1) is stable but not asymptotically stable. This is
a contradiction. If Eq. (1.1) has a characteristic root with positive real parts, then by Theorem
3.1 (3), the zero solution of Eq. (1.1) is unstable. This is also a contradiction. Thus, the necessity
of the theorem holds. This completes the proof. O

Remark 3.1 Corollary 3.1 holds in n-dimensional space and is an extension of [18]. The
methods used in this paper are different from ones in [18]. Corollary 3.1 is also an answer to the
problem put forward in [19] and [20] .

Next, we will investigate the stability of the perturbed equation

i(t) = Az(t) + B(t)ax(t) + i Bix(t — 1) + i Cii(t—m), t>0, (3.11)
i=1 =1
z(t) = ¢(t), —tm <t <0, (3.12)

where z(t), A, B;, C;, 7z and ¢(t) are the same meanings as in Eq. (1.1), B(t) is an n X n matrix

depending on time ¢t. We have the following theorem.
Theorem 3.3 Suppose that h(\) = 0 is the characteristic equation of Eq. (1.1), and that B(t)
is bounded, i.e., there exists some M > 0 such that |B(t)| < M.

(1) If all roots of h(\) = 0 have negative part, then the zero solution of Eq.(3.11) is
asymptotically stable;

(2) If all roots of h(\) = 0 are not positive, there is at least a single root with zero real part
and f0+oo | B(t)|dt is bounded, then the zero solution of Eq. (3.11) is stable, but not asymptotically
stable;

(3) If all roots of h(\) = 0 are not positive, and there exists at least a multiple root with
zero real parts for h(\) = 0, or there exists at least a root with positive real part for h(\) = 0,
then the zero solution of Eq. (3.11) is unstable.

Proof Let X(t) be a fundamental solution of Eq. (1.1). Then the general solution of equation

(3.11) can be written as
2O)(0) =X()[0(0) ~ 3 Co(-m)]| + 3 [ Xt =7~ 0)Bio()as+

m 0 m
Z/ X(ﬁ—Ti —9)0@(9)&9—&—2@(&(—@—|—t)w(—7‘i -‘rt)—|—

/ "Bt — 0)X(0)2(6)a8, (3.13)
0
where
)1, t<0, and (8) — o(0), 0<0,
w(t){ 0 1>0, M W){ 6(0), 6> 0.
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Thus, we get
0

\x<¢><t>|ij<t[ Zczqs n}+z X(t -, — 0)B,¢(6)d6+

—T;

Z Xt—rl—e) Cip(0 de+2q¢ —7i + (=7 + 1) |+

A'B“‘HWXWWMQM&

Applying Gronwall inequality, we get

[2(1)] < Moexp /Ot X (6~ 0)]|BO)|d0} = Myexp { /Ot X (B -0}, (319

where

M, :‘X(t [ Za(ﬁ - } +Z X(t — 7 — 0)Bi(6)do+

—T;

m m

Z X t—7;,— 0)Cig(0)d0 + > Cig(—7; + t)w(—7; +1)|.

(1) If all roots of h(A\) = 0 have negative parts, then using similar method in Theorem 3.2, we
can easily prove that | X (t)] — 0 and | X (t)] — 0 as t — 4-oco. By inequality (3.14), we know that
Eq. (3.11) is asymptotically stable. The proof of (2) and (3) is similar to that of Theorem 3.2.
This completes the proof. O

Now we investigate the perturbed equation

z(t) = Az(t) + i Biz(t — 1) + i@jﬁ(t — 1)+ f(t,z(t), t>0, (3.15)

i=1 =1

z(t) = ¢(t), -1 <t<0, (3.16)

where f(t,z(t)) € C(R x R™",R"™), f(¢,0) =0, z(t), A, B;, C;, 7, $(t) are the same meanings as
in Egs. (1.1) and (1.2). The following theorem holds.

Theorem 3.4 Suppose that h(\) = 0 is the characteristic equation of Eq. (1.1).

(1) If all roots of h(\) = 0 have negative real parts, and |f(t,z(t))| < e|x(t)|, then the zero
solution of Eq. (3.15) is asymptotically stable;

(2) If all roots of h(\) = 0 are not positive, there exists at least a single root of h(\) = 0 with
zero real part, |f(t,z(t))| < |B(¢)||z(t)|, and f B(t)|dt is bounded, then the zero solution of
Eq. (3.15) is stable, but not asymptotically stab]e,

(3) If all roots of h(X) = 0 are not positive there exists at least a k-multiple root with zero
real part, |f(t,z(t))] < |B(t)||z(t)], f (t)|dt is bounded, or there exists a root with positive
real part, then the zero solution of Eq. (3.15) is unstable.

Proof The proof is similar to that of Theorem 3.3.

4. Exponential stability
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In this section and after this section, we assume that delays 7; (i = 1,2,...,m) are rational
numbers.
Lemmas 4.1 and 4.2 will be used in the proof of Lemma 4.3, which is a key lemma in the

proof of Theorem 4.1.

Lemma 4.1 Let the h(\) = 0 be the characteristic equation of Eq. (1.1). Denote ag = sup{Re :
h(A) = 0}. Then,

m
ap = max {9%/\ s det (I — Z Cie—An> = 0}7
i=1
where Re\ denotes the real parts of \.

Proof Let all roots of h(A) = 0 be {A;}. Since 0 < 74 < 1 < -+ < 7, and det C,,, # 0, there

exist constants a, 8 € R such that

OCS%Q)\j Sﬁ

For the delay 7;, there exists a positive integer M such that 7,M = T; with T; being positive

integer, ¢ = 1,2,...,m. Thus,
m
det (13" Cie>) =0
i=1

can be written as

Denote e=*M = 4. Then,
det (I -3 C’iuTi) ~0 (4.1)
i=1

is an algebraic equation in w, and Eq. (4.1) possesses only finite nonzero roots. Without loss of

generality, suppose these nonzero roots are wui,us,...,u;. Therefore,
7)‘/M—uy, vr=12...,1
That is
A=—M|n|u,| + 2kni], v=1,2,...,0; k=x1,£2,....
Thus,

. _ - AT
max{i)‘{e)\.det (I ZZZ;CZe ) O}

is well defined.

The characteristic equation h(A) = 0 can be written as
m
A" det (1 -3 Cie*“i) F AT IR, (e e T e )
i=1

- - AT, - = —ATm) —
AR (e™ " e .. eV )+ Ro(e " e 2 L e V) =0,
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where R;(Z1,Z2,...,Zm) (1 =0,1,2,...,n — 1) are polynomials in Zy, Zs, ..., Zy,. Let {/\;} be

a subsequence of characteristic roots {\;} satisfying
|} = 00, j — oo0.
Thus, it follows
m
det (I — ZC’ief)‘i”) — 0, j — oo.
i=1
Otherwise, |h(A})] > 0 as j — oo. This contradicts h(A;) = 0. Then there exists an ng €

{1,2,...,1} such that
ReX, — —M[In |uy,| + 2kmi], j — oo.

On the other hand, there exists a subsequence {7} of all roots {A;} of h(A) = 0 satisfying
[Aj| =00, j — o0
such that
Re(X)) — max {Red : det (1= Y Cre™7) =0}, j — o0
i=1
Otherwise, |R(\])] > 0 as j — oo. This is a contradiction. Thus, it follows
op = max {D‘ie/\ : det (I - Z C’ie_A”) = 0}.
i=1
This completes the proof. O
Lemma 4.2 Ifa > 0, then f(a) eI 1A\ = 1; If @ < 0, then f(a) Mt N=1d\ < 1, where

foHriT

r is a constant, t,j satisfy t + jr > 0, f(a) = limp_, ﬁ iT -

Proof Denote o =t + jr, then it holds

/ AT N1\ = i/emxldA
(a) 2777/ L ’

where L = {a +iu: —oo < u < oco}. On the line L, we get

AT N1 elotin)e _ e (a — i)
o+ iu a? 4+ u?
e*?(acosou + usin ou — iu cos ou + iasin ou)
N a? +u?
acosou +usinou ., . ,o —UCOSOU+ asinou
- o? +u? ¢ e o? 4+ u?

Denote A(u) — acos;gis;ino‘ueao7 B(U) — @0 7ucosa021f:;a25inau7 and f(>\) — e)\(t+jr)/\71' Then
it holds

/L = ( /L A(u)da - Blu)au) + (i /L A(wdu + B(u)da)
= /O:o —B(u)du + i /_O:o A(u)du.
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Since B(u) is an odd function, we have [“° B(u)du = 0. By computation, we get

/°° A(u)du:/oo acosau+usinaueagdu

2 2
oo a®+u
oo oo :
aCcosou usmaou
:/ ﬁewd“+/ 22 du
oo Ot U oo O U

and

By the fact that

oo 122
we get
/oo cosaagdui oo >0 (t+jr) > 0
T () L =T’ oa or o jr .
Therefore,

Sy 3

aCoSoU

ﬁe du = .
0o O+ U

Now we will solve [* “§noueacdy  Denote f(z) = zae "7 It is obvious that f(z) has two

012+u2 042-'1-22
primary zero points: z = +ia.
If @ > 0, then
Res f(z) = = ,
/() 2i 2
where Res f(z) denotes the residue of the function f(z). Thus, it follows
* usinou e ¢
/ %du = 2mi = mie 79,
oo Ot U

Comparing the real part and imaginary part of f(z), we get

00 .
usSmMmou _
/ ﬁdu:ﬂ'e g,
s @t U

Namely,

00 .

usSmaou

/ ﬁeo‘gdu = T.
oo Ot U

Therefore, it follows that

[ A= [~ AT e — g

2 2
—o0 NS o +u

So it holds that

/ AT N1\ = i AN = L. 2 = 1.
(@) 2 2

™ Jr, s

If @ <0, then ca < 0. It follows

* acosou oo
ﬁdu:'ﬂ'e .
0o Ot u
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That is o
QCOSTU 0t oo,
/ 7a2+u26 du = me”7“.
—0o0
By the fact
* wusinou
/ —— UQdu:we"“’7
s Ft U
we can get
. 1 1
e)\(t+Jr)/\—ld/\ — 27(7_(_62004 +7T€aa) _ 5(6200‘ + eoa-r) < 1.

() &
This completes the proof. O
The idea used in the proof of the following lemma, which plays an important role in proving

Theorem 4.1, mainly comes from [19].

Lemma 4.3 Let H()\) be the characteristic matrix of Eq. (1.1). If ag = sup{Re) : det H(\) =
0}, then for any o > «, there exists a constant k = k(«) such that the fundamental solution
X(t) of Eq. (1.1) satisfies

X ()] < ket

and
X (2)] < ke,

wheret > 0,t# N7;,1=1,2,...,m, and N is any positive integer.

Proof The characteristic equation of Eq. (1.1)

det H(A) = det (AT — i Cde™ T — A~ i Bie ™) =0

i=1 i=1

can be written as
m
det H(\) =A" det (I -3 Cz-e*ATf) FANTIR, (e A e A e AT g
i=1
)\Rl(efx\‘l'l , e*/\TQ’ e 67A7—7n,) + R0(€7A71,€7A72, ce e*ATm)
:()7

where R;(Z1,Zs,...,Zy) is polynomial in Z;,i=0,1,...,n—1, j =1,2,...,m. By Theorems

2.5 and 3.1, there exists a real number d satisfying
X(t) = / MHTT(N)dN,
(d)

1
27

First, we will prove

d+iT
Ja“ir-

where f(d) = lim7_ o

X(t) = /( ) MHL(N)dA

for any o > ag. Consider the integral of e’\tH_l()\) along the closed curve I' = Ly M7 Ly M (see
the following figure)
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iy
M,

Ly

—— N ——

Q) «

Ly

Mo

Figure 4.1 The closed curve I'
where
Li={d+iuv: -T<u<T}, Ly={a+iuv:-T<u<T},
My ={v+iT:a<v<d}, Mo={v—iT:a<v<d}.
Denote S ={A € C: a < ReA < d}. det H(A) # 0 as A € S. Thus, there exists no zero point in
the rectangle T'. So every element of H~1(\) is analytic in I'. Thus, it follows

/ MHY(N)dA
T

:/ e*fol()\)dA+/ e“H*l(A)d/w/ e”H*l(A)dA+/ MHTH )N
Ll Ml L2 ]\/12
=0.

We will prove: [y, eMH ' (A\)dX — 0 and [, eMH ' (A)d\ — 0 as T — oo. Since A € S, we
have H()\) # 0. In consequence, H*(\) exists. Let H*()\) be the adjoint matrix of H()), and
denote h(A) = det H(\). Then it follows that
1
A = = H (V).
H0) = i B
Since the most large power in A of every element of H~*()\) is less than that of h()), and e~

is bounded as A € S, we have
/ MHTY(N)dN — 0
Mo
and
/ MHTY(A)dAN — 0
M,
as T — oo. Thus, it follows

X(t) = /( )e”H*l(A)dA.

Secondly, we will prove
‘ / e”H*l(A)dA( < ke,
()
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It is obvious that

1 A”*1R71+ +AR1+RO} (V)

H' () = a
A det(I — ;e—)‘”@) A det(I — E e~ Cy)h(N)

On the line Re\ = «a, it holds
‘/ AR, 14 4+ ARy + Ry
(@) An det (1 Z e~ Cy)h(N)
i=1

H*(/\)e“d)\‘

< eat/ AN R, 1+ + AR+ Ro ‘d/\
(@)

Ardet(I — Z e~ i C;)h(N)
i=1

By Lemma 4.1, it follows that det(I — > i~ e *7C;) # 0 for A € S. For every element of
)\n_lR 14+ AR+ Ro
A det (I — E e~ Cy)h(N)

i=1

H*(N),

the power of denominator in A is at least 2 greater than the power of numerator. Thus, for
AR, i+ -+ AR+ R
P s AT )

A det(I — 32 e iC)A(N)
i=1

the power of the denominator in )\ is at least 2 greater than the power of numerator. Thus, the

integral
/ ARy oyt A AR+ Ro
_ “()]ax
(@ Andet(I — 3 e A C)h(N)
i=1
is convergent. Therefore, there exists a constant k; > 0 such that
ANIR, AR + R
1+ -+ AR+ % ‘d)\ <k

/w) A det(T — 32 e=AiCy)A(N)
=1

It follows

‘/ AT 1Rn 1+ +)\R1 +R0
(a

H*(A )e”d/\’ < ket
) A det (1 Ze AT Gy h(N)

Thirdly, we will prove that there exists a constant ko > 0 such that
1
] / _ H*(/\)e”d/\‘ < ket
(@ Xndet(I — Y e 27 Cy)
It suffices to prove that there exists a constant k' > 0 satisfying

/ 1 )\td)\ < k/eat.
(@) Xdet(I — Ze—/\ﬂ i)

By Lemma 4.1, we know that [det(I -3/, C;e~*")]~lis analytic in S and is a periodic function.
Assume that the period of [det(I — Y2;", Cie*7)]~! is Ty. Denote Ty = 3= = w. The function
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[det(I — Y7, Cye=?7)] =1 possesses an absolutely convergent Fourier series

[det (1 - ie*”ﬁ(}i)}_l - i D;e o,
1=1 j

j=—00
T
where A € §, D; = T% f_T;l [det(I — >0, e 20y 7t/ ToAdA. If A = B +iw, a < 3 < d, then
we get ’

o0
‘ Z DjeJTO)‘ < 00

j=—o00

Therefore, if t > 0, Toj +t > 0, then it holds that

/ o eMdA Z D; / eMoIeMATLdN
(@) X\ det(I - i=

_ Z Cie—kn) _
=1
D; MTOH”A—ldA.

J

I|I Mg

By Lemma 4.2, it holds
/ AMTIFONIAN =1, a(Tpj +1t) > 0.
(e)
Furthermore, it holds that

0 </ ATIFONTIAN < 1, a(Tpj+1t) <O0.
(@)

Thus, we get

‘ Z D/ )\(Toj+t)>\*1d)\‘§2 Z |Dj|

j=—o00 a(Toj+t)>0

It is obvious that

00
Z 2|DJ| < et Z 2‘Dj|€OzToj < et Z |D]“eaT°j.

a(Toj+t)>0 a(Toj+t)>0 j=—o0
Set k' =232 |D;le*Tod. Then we get
| / L M| < e,
(@ Xdet(I — Y e~ C;)
i=1
So it holds

—_

eMd) < ke,

3

/<a> Adet(I — Y e~ i)

1=

=

Thus, there exists a constant ks > 0 such that

’ / L H* (V) eMd)| < koeot
(@) Andet(I — 3 e~ ()
=1
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Denote k3 = k1 + ko, it holds
|X ()] < kze™.

Finally, we will prove that
IX(t)] < ke, t>0

on [t —r,t]. Let X(t) =Y (¢). Then Eq. (3.1)
X(t) :AX(t)ﬁ’iBiX(t*Ti)+iC¢X(t7T¢)

can be reduced to
m

Y(t) =Y CY(t—7)=DP(), (4.2)

i=1

where P(t) = AX(t) + > i, B;X(t — 7;). Since | X (t)| < kze®, it follows that

PO < (1414 B ke,

i=1
Let Y (t) = Z(t)e®*. Then Eq. (4.2) can be written as

Z(t) — Zn: Cie T Z(t — 1;) = P(t)e” . (4.3)

i=1
Since |P(t)e~*!| is bounded, the solutions of Eq.(4.3) are bounded for ¢ > 0. There exists a
constant k4 > 0 satisfying Z(t) < k4. Therefore,

X)) = [Y(0)] = 1Z)] - e < kae".

Choose k = max{ks, k4}, then it follows that |X ()] < ke®® and | X (t)| < ke®*. This completes
the proof. O

By Theorem 3.1 and Lemma 4.3, we can easily get the following theorem.

Theorem 4.1 Let h(\) = 0 be the characteristic equation of Eq. (1.1). If ay = sup{Rel :
h(\) = 0}, then, for any « > «y, there exists a constant k = k(«) such that the solution x(p)(t)
of Egs. (1.1) and (1.2) satisfies

|z() ()] < ke™|p].

If ag < 0, then the zero solution of Eq. (1.1) is exponentially stable.

Corollary 4.2 If all roots of the characteristic equation h(\) = 0 for Eq. (1.1) satisfies
(1) The real parts of all roots are negative;
(2) p(>it, Cie™™T) < 1,Vy € R.

Then the zero solution of Eq. (1.1) is exponentially stable.

Proof By condition (1), agp < 0 holds. By condition (2) and Lemma 1.2, the matrix

- iy !
(I—;Cie v )
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exists. So for any y € R, we have

det (I - zm: Cﬁ’“’”) £0.
i=1
Thus, the equation
det (I — Cie ™) =0
(1= ce)

has no root on imaginary axis. By Lemma 4.1, we get ay < 0. By Theorem 4.1, it follows that

the zero solution of Eq. (1.1) is exponentially stable.

5. Numerical examples
In this section, we give two examples to illustrate the applications of our results.

Example 5.1 Consider the following equation

Im2-_lm 0 . 0
O L Jee—n+ 2T )i -2). (5.1)
The characteristic equation of Eq. (5.1) is
1 1 1 1
(A= (_6 In2— ém‘)e*’\ — g)\e*”‘) (A=(=In g)e*’\ — g)\e*”‘) =0. (5.2)
Eq. (5.2) possesses two roots in all: A\ = —ln% and Ay = —In2 — wi. Obviously, Red; < 0,

PRely < 0. By the conclusion (1) in Theorem 3.2, the zero solution of Eq. (5.1) is asymptotically
stable. By the Theorem 4.1, the zero solution of Eq. (5.1) is exponentially stable.

Example 5.2 Consider the neutral differential equation

B(t) — @(t— 1)+ 22(t — 1) +a(t—2) =0 (5.3)

or

. B 0 1 - 0 0 ot — 0 0 ot — 0 0 Pt —

R S Y ) P ) P o
(5.4)

The characteristic equation of Egs. (5.3) or (5.4) is
M1—eM4+e P r272=0. (5.5)
We can check that A = 0.7820 £ 0.8629i are the roots of Eq. (5.5). fe(A) > 0 holds. By the

conclusion (3) in Theorem 3.2, the zero solution of Egs. (5.3) or (5.4) is unstable.
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