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Abstract Let K, be a complete graph on n vertices. In this paper, we find the necessary
conditions for the existence of a 6-cycle system of K, — L for every nearly 2-regular leave L
of K,. This condition is also sufficient when the number of vertices of L is n — 4.
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1. Introduction

Let V(G) be the vertex set of the graph G and E(G) be the edge set of the graph G. An
m-cycle system of a graph G is an ordered pair (V(G), B), where B is a set of edge-disjoint cycles
of length m, such that each edge of GG is contained in exactly one cycle in B. For convenience,
we call B an m-cycle system of a graph G instead of an ordered pair (V(G), B).

There have been many results found on m-cycle systems of G for various graphs G, see
surveys [1,2]. The existence of an m-cycle system of K, — I, where I is a 1-factor (called leave)
was solved in [3,4]. Recently, an m-cycle system of K,, — L, where L is a subgraph of K, (called
leave) is considered in several papers. This can alternatively be viewed as a partial m-cycle
system of K, with leave L. A solution of partial 4-cycle system of K, and a partial 6-cycle
system of K, with a 2-regular leave can be found in [5, 6], respectively. And the existence of a
partial 6-cycle system of K, with a forest leave can be found in [7].

In this paper, we shall consider the existence of a partial 6-cycle system of K,, with a nearly
2-regular leave L. It is an extension of [5-7]. Not only is this result of interest in its own right
in the context of history of cycle systems, but, it also arose as a useful tool in studying the cycle
systems of the line graphs of complete multipartite graphs [8,9].

L is said to be nearly 2-regular of K, if all vertices in L have degree 2 except for one (named
o0) whose degree is greater than 2, and L need not be a spanning subgraph of K,,. The necessity
of the existence of a partial 6-cycle system of K, with a nearly 2-regular leave L can be found

in Lemma 1.1.

Lemma 1.1 Let L be a nearly 2-regular subgraph of a complete graph K,, on n vertices. K, —L
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denotes K, with a subgraph L removed. The necessary conditions for the existence of a partial
6-cycle systems of K,, with leave L are: (i) n is odd, (ii) 6 divides |E(K,, — L)|, and (iii) n > 7.

Proof The necessity of condition (i) follows from the fact that in a 6-cycle system, each vertex
clearly has even degree. The necessity of condition (ii) follows since each 6-cycle has six edges.
The necessity of condition (iii) is obvious. O

In this paper, our main result is Theorem 4.1 which shows that Lemma 1.1 is also sufficient
when the number of vertices of L is n — 4.

The following two theorems are useful in order to prove Theorem 4.1.

Theorem 1.2 ([10]) There exists a 6-cycle system of K,, ,, if and only if:
(i) m and n are even;
(ii) 6 divides m or n; and

(iii) min{m,n} > 4.

Theorem 1.3 ([6]) Let L be 2-regular subgraph in the complete graph K,. There exists a
6-cycle system of G = K,, — L if and only if:

(i) |E(K, — L)| is divisible by 6;

(ii) n is odd; and

(iii) n > 7.

We will use some symbols in this paper. Let E(G) be the set of edges of the graph G and
V(G) be the set of vertices of G. Let (u,v) or (v,u) be the edge with endpoints {u,v}. For
convenience, we can use uv or vu instead of (u,v) or (v,u). If vertex v is an end point of edge
wv (or vu), then v and uv are incident. For v € G, the degree of vertex v (in a loopless graph),
denoted by dg(v), is the number of incident edges. The graph union H = G + F' between two
simple graphs G and F is the graph H defined by V(H) = V(G)JV(F) and E(H) = {uv|uv €
E(G) or uwv € E(F)}. The graph difference H = G — F between G and its subgraph F' is
the graph H defined by V(H) = V(G)\{v € V(F)|dr(v) = dg(v)} and E(H) = E(G)\E(F).
Let Cs = (a1,as,...,as) be a cycle of length s. nCs is a graph union of n Css. Let K p
or K, be the complete bipartite graph with vertex set A and B, where |4| = «a,|B| = b
and V(K4 p) = AUB. Z, consists of n residual classes. Let Z,, = {0,1,...,n — 1}. Then
Zo\Zm={mm+1,...,n—=3,n—2n—1} when m <n.

2. 6-cycle systems of K,, — L where 7 <n <29
We shall give some small cases which will be used in the proof of Theorem 4.1.

Lemma 2.1 There exists a 6-cycle system B of G = K7 — [(00,0,1) + (00,2,3) + (00,4, 5)],
where V(K7) = Zg U {o0}.

Proof We give the proof by direct construction. Let B = {(2,0,3,5,1,4),(1,2,5,0,4,3)}. And
B is a 6-cycle system of G. [J
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Lemma 2.2 Let V(Kg)=Zg U {oco}. There exists a 6-cycle system B of G = K9 — L, where L
is a nearly 2-regular subgraph of Ky and |E(QG)| is divisible by 6.

Proof (i) When L=(c0,0,1) + (00,2,3), B = {(2,0,6,4,3,1), (3,0,4,7,1,5), (4,2,7,6,00,5),
(4,00,7,5,6,1), (5,0,7,3,6,2)}.

(ii) When L = (00,0, 1)+(00,2,3)+(00,4,5)+(c0,6,7), B = {(2,0,6,4,3,1), (3,0,4,7,1,5),
(4,2,7,5,6,1), (5,0,7,3,6,2)}. O

Lemma 2.3 Let V(K11)=Z10 U {oo}. There exists a 6-cycle system B of G = K1, — L, where
L is a nearly 2-regular subgraph of K11 and |E(G)| is divisible by 6.

Proof (i) When L = (00,0, 1)+(00, 2, 3,4)+ (00, 5,6,7,8,9), B = {(3,00,8,2,5,0), (6,00,7, 1,5,
3), (2,0,9,4,8,1), (6,0,8,3,9,1), (4,0,7,5.9,2), (3,1,4,6,2,7), (5.4,7,9,6,8)}.

(i) When L = (00,0, 1)+ (00,2, 3)+(c0,4,5,6,7,8,9), B = {(6,00,7,1,5,3), (3,1,4,6,2,7),
(5,00,8,2,9,0), (0,2,5,7,4,3), (1,2,4,8,5,9), (6,1,8,0,4,9), (8,3,9,7,0,6)}.

(iif) When L = (00,0, 1)+ (00, 2,3, 4, 5)+(00,6,7,8,9), B = {(8,3,9,7,0,6), (6,1,8,0,4,9),
(3,00,7,2,1,5), (4,00,8,2,9,1), (0,9,5,6,4,2), (3,0,5,8,4,7), (3,1,7,5,2,6)}.

(iv) When L = (00,0, 1,2)+(00,3,4,5)+(00,6,7,8,9), B = {(1,00,7,3,0,8), (4, 00,8,2,5,0),
(2,0,7,9,1,6), (6,0,9,4,1,3), (5,1,7,2,9,3), (5,9,6,8,4,7), (3,2,4,6,5,8)}.

(v) When L = (00,0, 1)+(00, 2,3)+(0,4,5)+(6,7,8,9), B ={(6,,9,4,3,0), (7,00,8,1,2,
0), (4,0,9,1,5,8), (5,0,8,6,4,7), (1,4,2,6,5,3), (6,1,7,2,9,3), (5,9,7,3,8,2)}.

(vi) When L = (00,0, 1)+(00,2,3)+(7, 8, 9)+ (00, 4,5,6), B = {(5,00,9,1,3,0), (7,00,8,1,2,
0), (4,0,9,2,7,1), (6,0,8,3,5,2), (5,1,6,4,3,7), (4,7,6,9,5,8), (3,9,4,2,8,6)}.

(vii) When L = (00,0,1) + (00,2,3) + (00,4,5) + (00,6,7,8), B = {(9,00,7,0,3,4),
(0,6,9,8,1,2), (4,0,9,1,5,8), (5,0,8,6,4,7), (1,4,2,6,5,3), (6,1,7,2,9,3), (5,9,7.3,8,2)}. O

Lemma 2.4 Let V(K13) = Z12 U {oo}. There exists a 6-cycle system B of G = K13 — L, where
L is a nearly 2-regular subgraph of K3 and |E(G)| is divisible by 6.

Proof (i) When L = (00,0,1)+(00,2,3,4,5,6,7,8,9), B = {(00,10,1,11,5,3), (00,8,11,2,0,4),
(00,7,3,11,0,5), (00, 11,4,9,0,6), (3,0,8,10,2,1), (7,0,10,6,4,1), (5,1,9,3,8,2), (6,1,8,5, 10,
3), (6,2,7,5,9,11), (4,2,9,10,11,7), (4,8,6,9,7,10)}.

(i) When L = (00,0, 1)+ (00, 2,3)+(4,5,6,7,8,9), B = {(c0,8,11,2,0,4), (c0,7,3,11,0,5),
(c0,11,10,5,9,6), (3,0,8,10,2,1), (7,0,10,6,4,1), (5,1,9,3,8,2), (00, 10,3,6,0,9), (4,3,5,11,9,
7), (8,1,10,7,2,4), (7,5,8,6,1,11), (6,2,9,10,4,11)}.

(iii) When L = (00,0, 1)+(7,8,9)+(0, 2,3,4,5,6), B = {(00,8,11,2,0,4), (c0,7,3,11,0,5),
(o, 10,3,6,0,9), (3,0,8,10,2,1), (7,0,10,6,4, 1), (5,1,9,3,8,2), (3,00,11,4,7,5), (6,1,11,7, 10,
9), (8,1,10,5,9,4), (2,4,10,11,6,7), (6,2,9,11,5,8)}.

(iv) When L = (00,0, 1)+ (00,7, 8)+(c0, 2,3,4,5,6), B = {(c0,5,9,2,0,4), (5,0,11,8, 1, 10),
(3,7,9,8,5,11), (8,4,9,11,2,6), (o0, 10,3,6,0,9), (3,0,8,10,2,1), (7,0,10,6,4,1), (5,1,9,3,8,2),
(3,00,11,4,7,5), (6,1,11,7,10,9), (2,4,10,11,6,7)}.

(v) When L = (00,0, 1)+ (00, 2,3,4)+(5,6,7,8,9), B = {(3,00,11,4,7,5), (6,1,11,7, 10,9),
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(2,0,4,5,00,7), (6,00,8,10,4,2), (0,7,3,9,11,5), (1,7,9,2,5,10), (1,9,4,8,11,2), (8, 2,10, 11,0,
3), (1,5,8,6,11,3), (0,10,6,4,1,8), (o0, 10,3,6,0,9)}.

(vi) When L = (00,0,1)+(7,8,9,10) + (00,2, 3,4,5), B = {(3,00,11,4,7,5), (6,00, 8, 10, 4,
2), (c0,10,3,6,0,9), (0,7,3,9,11,5), (1,7,9,2,5,10), (1,9,4,8,11,2), (4,00,7,6,8,0), (2,7, 11,3,
0,10), (5,9,6,10,11,1), (2,0,11,6,1,8), (5,6,4,1,3,8)}.

(vil) When L = (6,7,8)+(c0,0,1,9)+(c0,2,3,4,5), B = {(3,00,11,4,7,5), (6, 00, 8, 10, 4, 2),
(6,1,11,7,10,9), (0,7,3,9,11,5), (1,7,9,2,5,10), (8,2, 10, 11,0,3), (0, 10,6,4, 1,8), (2,7, 00, 1,3,
11), (4,00, 10,3,6,0), (0,9,8,5,1,2), (8,4,9,5,6,11)}.

(vii) When L = (00,0, 1)+ (00, 2,3,4)+(c0,5,6,7,8), B = {(3,00,11,4,7,5), (6,1,11,7, 10,
9), (0,7,3,9,11,5), (1,7,9,2,5,10), (1,9,4,8,11,2), (0,10, 6,4, 1,8), (00, 10,3,6,0,9), (7, 00, 6, 11,
0,2), (5,1,3,11,10,8), (4,5,9,8,6,2), (10,2,8,3,0,4)}.

(ix) When L = (00,0, 1)+(00, 2, 3)+(4,5,6)+(7,8,9), B = {(00,8,11,2,0,4), (c0,7,3,11,0,
5), (00,11,10,5,9,6), (3,0,8,10,2,1), (5,1,9,3,8,2), (00, 10,3,6,0,9), (8,1,10,7,2,4), (5,8,6, 11,
4,3), (7,0,10,4,1,11), (6,2,9,4,7,1), (7,5,11,9,10,6)}.

(x) When L = (00,0,1) + (00,2,3) + (c0,4,5) + (7,8,9), or L = (00,0,1) + (00,2,3) +
(00,4,5) + (00,7,8), B = B;1|UB2JB;s. By Lemma 2.1, B; is a 6-cycle system of K; — 3C3,
where 3C3 = (00,0,1) 4+ (00,2, 3) + (00,4,5). By is a 6-cycle system of Kg ¢ by Theorem 1 where
V(Ke6) = Zs|U(Z12\Zs). Bs is a 6-cycle system of K7 —C35 by Theorem 2, where C5 = (00,7, 8),
or (7,8,9) and V(K7) = (Z12\Zs) U {o0}.

(xi) When L = (00,0,1,2) + (c0,4,5,6,7,8,9,10), B = {(c0,11,10,5,9,6), (5,1,9,3,8,2),
(7,0,10,4,1,11), (6,2,9,4,7,1), (2,7,10,1,8,4), (5,8,6,11,2,0), (00, 1,3,11,0,8), (10,2,3,4,0,
6), (3,0,9,00,5,7), (3,00,7,9,11,5), (4,11,8,10,3,6)}.

(xii) When L = (00,0,1,2,3)+(c0,4,5,6,7,8,9), B = {(c0,11,10,5,9,6), (c0,1,3,11,0,8),
(0,2,10,9,11,5), (3,5,7,00,10,6), (5,1,9,3,8,2), (7,0,10,4,1,11), (6,2,9,4,7,1), (2,7,10, 1,
8,4), (5,8,6,11,2,0), (0,6,4,3,7,9), (3,10,8,11,4,0)}.

(xiii) When L = (00,0,1,2) + (c0,3,4,5) + (6,7,8,9), B = {(2,3,1,4,8,0), (7,5,8,6,11,2),
(3,8,11,9,0,6), (9,2,6,1,7,3), (1,00,7,11,0,10), (4,0,7,9,1,11), (11,00,10,2,5,3), (5,10,6,
00,8,1), (4,00,9,10,8,2), (3,0,5,9,4,10), (5,6,4,7,10,11)}).

(xiv) When L = (00,0,1,2)U(c0,3,4,5)U(00,6,7,8), B = {(2,3,1,4,8,0), (7,5,8,6,11,2),
(3,8,11,9,0,6), (9,8,1,5,10,4), (1,00,7,11,0,10), (9,2,6,1,7,3), (11,00,10,2,5,3), (0,5,9,6,
10,3), (4,00,9,10,8,2), (5,6,4,7,10,11), (4,0,7,9,1,11)}.

(xv) When L = (00,0,1) + (00,2,3) + (00,4,5) + (00,6,7) + (00,8,9) + (00,10,11), B =
Bi|UB2UBs. By Lemma 2.1, By is a 6-cycle system of K7 — 3C3, where 3C5 = (00,0,1) +
(00,2,3) 4 (00,4,5) and V(K7) = ZgU{oo}. By Lemma 2.1, By is a 6-cycle system of K7 — 3Cs,
where 3C5 = (00,6,7) 4 (00,8,9) + (00,10,11) and V(K7) = (Z12\Zs) U {oc}. By Theorem 1,
Bjs is a 6-cycle system of K¢ ¢ where V(K 6) = Zs J(Z12\Z6)-

(xvi) When L = (c0,0,1,2,3,9)U(c0, 4,5,6,7,8), B = {(c0,11,10,5,9,6), (7,0,10,4,1,11),
(2,7,10,1,8,4), (5,8,6,11,2,0), (00,2,10,9,11,5), (3,5,7, 00, 10,6), (3,10,8,11,4,0), (1, 00,3, 8,
2,9), (0,11,3,4,9,8), (0,9,7,3,1,6), (5,1,7,4,6,2)}. O

Let A = {(3,8,11,9,0,6), (9,2,6,1,7,3), (4,0,7,9,1,11), (3,0,5,9, 4, 10), (0,11,7,13,1,12),
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(2,4,7,10,8,0), (5,11,13,12,2,00), (1,00,12,6,13,10), (4,6,9,13,2,8), (7,8,13,0,10,12)}. A

will be used in Lemma 2.5.

Lemma 2.5 Let V(Ki5) = Z14 U {oo}. There exists a 6-cycle system B of G = K15 — L, where
L is a nearly 2-regular subgraph of K15 and |E(G)| is divisible by 6.

Proof (i) When L = (00,0,1,2,3) + (00,4,5,6,7) + (9,10,11,12,13), B = A U B; where
B; ={(7,5,8,6,11,2), (11, 00,10, 2,5, 3), (5,10,6,00,8,1), (12,5,13,4,1,3), (4,3,13,00,9,12)}.
(i) When L = (00,0,1,2,3) + (00,4,5,6,7) + (c0,8,9,10,11), B = AU B, where B, =
{(10,6,00,9,12,5), (5,2,10,00,13,3), (3,11,12,8,1,4), (1,3,12,4,13,5), (5,8,6,11,2,7)}.
(ili) When L = (00,0,1,2,3) 4+ (00,4,5,6), B = AU By where By = {(7,5,8,6,11,2),
(11, 00, 10,2,5,3), (10,6,7,00,13,5), (9,10,11,12,3,13), (1,8,00,9,12,4), (3,4,13,12,5,1)}. O

Lemma 2.6 Let V(K;7) = Z15U{oo}. There exists a 6-cycle system B of G = K17 — L, where
L is a nearly 2-regular subgraph of K17 and |E(G)| is divisible by 6.

Proof (i) When L = (00,0,1,2,3) + (00,4,5,6,7), B = {(9,2,6,1,7,3), (11,00,10,2,5,3),
(4,0,7,9,1,11), (1,00,8,2,13,3), (7,5,8,6,11,2), (3,8,11,9,0,6), (6,00,9,12,7,13), (12,5,10,7,
4,2), (5,0,14,12,1,15), (8,0,13,14,9,15), (4,8, 1,10, 15,6), (5, 1,13, 15,7, 14), (11, 14,6, 10,9, 13),
(10,6, 14,11,13,9), (13,4, 14,15,11,5), (4,1, 14,00,5,9), (11,7,8,9,6, 12), (10,8, 13,12,3,4), (0,
3,14,2, 00,15), (0,11,10,13, 00,12), (2,0,10,12,4,15)}.

(i) When L = 4Cy, B = B1 U Ba U Bs. Let K17 —4C, = (K13 —3C1) + Kag+ (Kug+ K5 —
Cy), where V(Ki3) = (Z16\Zs) U {00}, V(Ku6) = Z4|U(Z16\Z10), and V(Ky6 + K5 — Cy) =
Z10 U {oo}. By is a 6-cycle system of Kj3 — 3Cy by Lemma 2.4 (xiii) and (xiv). Bs is a
6-cycle system of K46 by Theorem 1. Bs = {(0,00,2,9,1,8), (0,9,3,8,2,5), (1,5,3,6,2,4),
(1,00,3,7,0,6), (2,0,4,3,1,7)} is a 6-cycle system of K5 + K46 — Cy where Cy = (0,1,2,3),
V(K5) = ZyU{oo} and V(K4 6) = Z4 | U(Z10\Z4). (When Cy = (00, 1,2,3), the method can also
be used). O

The method in Lemma 2.6 will be used in Lemma 2.7.

Lemma 2.7 Let V(Ki9) = Z15U{oo}. There exists a 6-cycle system B of G = K19 — L, where
L is a nearly 2-regular subgraph of K19 and |E(G)| is divisible by 6.

Proof (i) When L = C5|JC5JCs, B = By |J B2 Bs. B is a 6-cycle system of K15 —3C5 by
(i) and (ii) of Lemma 2.5. By is a 6-cycle system of K4 12 by Theorem 1. Bs = {(0,4,1, 0, 3,2),
(2,4,3,5,0,1), (3,0,00,2,5,1)} is a 6-cycle system of K5 + K4 2, where V(K5) = Z4 |J{oo} and
V(K42) = Z4|J{4,5}.

(i) When L = (00,0,1,2,3) + (00,4,5,6), B = By|JB2JBs. Bj is a 6-cycle system of
K15—L by Lemma 2.5(iii). Bs is a 6-cycle system of K4 12 by Theorem 1. Bz = {(0,4,1, 00,3, 2),
(2,4,3,5,0,1), (3,0,00,2,5,1)} is a 6-cycle system of K5 + K42 where V(K5) = Z4 | J{oo} and
V(Kap2) = Z4U{4,5}. O

Lemma 2.8 Let V(K1) = Zoo |J{oo}. There exists a 6-cycle system B of G = Koy — L, where
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L is a nearly 2-regular subgraph of Ks; and |E(G)| is divisible by 6.

Proof (i) When L =2C5 +2C4, B = By |J By. By is a 6-cycle system of K96 by Theorem 1.
By = {(1,00,2,11,3,10), (c0,5,11,6,10,4), (7,00,8,11,9,10), (6,00,9,3,4,0), (0,10,5,8,1,11),
(2,10,8,3,7,0), (4,11,7,5,3,1), (0,3,6,1,9,5), (1,5,2,8,9,7), (2,7,8,4,9,6), (0,9,2,4,6,8)} is a
6-cycle system of K11+ K102 — (Cs 4+ Cy), where Cs +Cy = (0,0,1,2,3)+(4,5,6,7), V(K11) =
Z1oU{oo} and V(Ki02) = Z10J{10,11} (The construction can also be used for other form
of C5JCs. When V(K11) = (Z20\Z10) U{0}, V(Ki0,2) = Z10U{18,19}, there also exists a
6-system Bs of K11 + K192 — (Cs + C4), where V(C5 + Cy) = (Z20\Z10) U{0}).

(i) When L = 4C5+Cy, B= B1|JB2UB%, i =1,2,3. By is a 6-cycle system of K15 —3C5
by Lemma 2.5(i). Bs is a 6-cycle system of K 12 by Theorem 1 where V(K¢ 12) = K(Zs U{¢|8 <
i < 19}). Let B} = {(1,00,5,0,4,3), (2,00,4,5,3,6), (0,6,1,4,2,7), (1,5,2,0,3,7)}, B2 =
{(1,00,5,0,7,2), (1,7,4,0,2,3), (3,7,5,1,4,6), (2,4,3,0,6,5)}, and B3 = {(0,6,5,1, 00, 2), (0, 00,
4,3,2,7), (1,7,4,5,3,6), (0,5,2,4,1,3)}. When C5 + Cy = (00,0,1,2,3) + (4,6,5,7), B is a
6-cycle system of K7 + K¢ 2 — (Cs 4+ C4), where V(K7) = Zg | J{oo} and V(K 2) = Z6 | J{6, 7}
When C5 + Cy = (00,0,1,6,2) + (00,4,5,3), B3 is a 6-cycle system of K7 + Kg2 — (C5 + Cy),
where V(K7) = ZgJ{oo}, V(Ke2) = Zs {6, 7}. When Cs+Cy = (0,1,2,6,4)+ (00, 5,7,3), B
is a 6-cycle system of K7 + Kg o — (Cs + C4), where V(K7) = Zg | J{oo}, V(Ks,2) = Z6|U{6, 7}
U

Lemma 2.9 Let V(Ka3) = Zao | J{oo}. There exists a 6-cycle system B of G = Koz — L, where
L is a nearly 2-regular subgraph of K»3 and |E(G)| is divisible by 6.

Proof (i) When L = 3C5 + Cy4, B; is a 6-cycle system of K19 — 3C5 by Lemma 2.7(i). Bs is
a 6-cycle system of Ky 12 by Theorem 1. Bs = {(0,0,2,9,1,8), (0,9,3,8,2,5), (1,5,3,6,2,4),
(1,00,3,7,0,6), (2,0,4,3,1,7)} is a 6-cycle system of K5 + K46 — C4, where Cy = (0,1,2,3)
(The construction can also be used when Cy = (00, 1,2, 3)).

(ii) When L = 5C5, let B = By |J Ba|J B3 where By is a 6-cycle system of Ky5 — 3C5
by Lemma 2.5(1) and V(Ki5) = (Z22\Zs) | J{oo}, B2 is a 6-cycle system of Kgi2 by Theo-
rem 1 and Bs = {(1,00,2,9,3,8), (6,2,7,1,9,0), (5,00,6,9,7,8), (4,9,5,7,0,3), (0,8,4,1,5,2),
(4,0,5,3,1,6), (2,8,6,3,7,4)} is a 6-cycle system of Ko+ Kg 2—2C5, where 2C5 = (00,0, 1,2, 3)+
(00,4,5,6,7), V(Ky) = Zg|J{oo}, and V(K5 2) = Zs|J{8,9}. O

Lemma 2.10 Let V(Ky5) = Zog|J{oo}. There exists a 6-cycle system of G = Ka5 — L, where
L is a nearly 2-regular subgraph of K5 and |E(G)| is divisible by 6.

Proof (i) When L = 2C5+2Cy, B = By |J B2 Bs. Bj is a 6-cycle system of Ka1 — (2C5+2CYy)
by Lemma 2.8(i). Bs is a 6-cycle system of K43 + K4, where V(K,) = {20,21,22,23} and
V(Kys) = {20,21,22,23} {0, 18,19}. By = {(20, 00,23, 18,22,21), (21, 00, 22, 20,23, 19), (20,
19,22,23,21,18)} is a 6-cycle system of K4 15 by Theorem 1.

(ii) When L = 4C5JCy, B = B1|UB2|JBs. Bj is a 6-cycle system of K5 — 3C5 by
Lemma 2.5(1) where V(K15) = (Z24\Z10) U{oco}. Ba is a 6-cycle system of Kig 12 by Theorem
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1 where V(K1012) = Z10\U(Z24\Z12). Bs = {(1,00,5,0,11,3), (4,00,7,3,2,0), (8,00,9,7,0,6),
(3,0,9,4,2,10), (8,0,10,5,1,4), (5,3,9,6,4, 11), (6,3,8,7,1,10), (7,4,10,8,5,2), (7,5,9,11, 1, 6),
(8,1,9,2,6,11), (8,2,11,7,10,9)} is a 6-cycle system of K0 3+K19—(Cs+C5), where V(K10 3) =
Z10U({00,10,11}), V(K19) = Z1o, and Cy + Cs = (00,0,1,2) + (00, 3,4,5,6) (The construction
can also be used for other form of Cy + C5). O

Lemma 2.11 Let V(Kag) = Zag|J{oo}. There exists a 6-cycle system B of G = Kqg — (4C5 +
2Cy), where L is a nearly 2-regular subgraph of Kog and |E(Q)| is divisible by 6.

Proof Let B = By|JBs|JBs. Bj is a 6-cycle system of Ko5 — (4C5 + Cy4) by Lemma 2.10(ii)
where V(K2s5) = (Z2s\Z4) U{o0}. By is a 6-cycle system of K4 g by Theorem 1 where V(Ky5) =
Za\U(Zas\Z10). B = {(0,00,2,9,1,8), (0,9,3,8,2,5), (1,5,3,6,2,4), (1,00,3,7,0,6), (2,0,4,3,
1,7)} is a 6-cycle system of K5 + K46 — C4, where Cy = (0,1,2,3), V(K5) = Zy|J{oo}, and
V(Ka6) = Z4\U(Z10\Z4) (The construction can also be used when Cy = (00, 1,2,3)). O

3. Some special cases

In this section, we provide some special 6-cycle systems which will be used in the proof of
Theorem 4.1.

Lemma 3.1 (i) There exists a 6-cycle system By of G = K7+ K¢ 2+ (00,a) + (00,b) — [(0,a) +
(0,0)] — (00,1,2), where V(Kg2) = {c,1,2,3,4,5} U{a, b} and V(K7) = {1,2,3,4,5,¢,00}.

(ii) There exists a 6-cycle system By of G = K7 + Kg 2 + (c0,n —2) + (c0,n —3) — [(0,n —
2) + (0,n —3)] — (1,2,3), where V(K7) = Zg|J{oo} and V(K¢ 2) = Zg | U{n — 2,n — 3}.

Proof We give the proof by direct construction of B;, i = 1,2, in the following two cases.
(i) Let By = {(¢,0,3,5,a,4), (4,00,5,¢,1,b), (3,¢,2,5,4,1), (a,00,b,2,4,3), (1,a,2,3,b,5)}.
(i) Let By = {(3,n—3,5,n—2,4,0), (1,n—3,00,4,2,n—2), (3,n—2,00,0,1,5), (2,0,5,4, 1, 00),
(3,4,n—3,2,5,00)}. O

Lemma 3.2 (i) There exists a 6-cycle system By of G = K7 + K¢ 4 + (00,n — 2) + (c0,n —
3) + (00,m —4) + (00, —5) — [(5,n —2) + (5,n —3) + (4,n — 4) + (4,n — 5)] — (o0, 1,2), where
V(K7) = Zg | U{oo} and V(K¢ 4) = Zg|U{n —2,n —3,n —4,n — 5}.

(ii) There exists a 6-cycle system Bs of G = K7 + K¢ 4 + (00,n —2) 4 (00,n — 3) + (00, n —
4)+ (00,n—5)—[(5,n—2)+(5,n—3)+(4,n—4)+ (4,n—5)] — (1,2,3), where V(K7) = Zg|J{c}
and V(K¢ 4) = ZgU{n —2,n —3,n —4,n — 5}.

(iii) There exists a 6-cycle system Bs of G = K7+ Kg 4—[(1,2)+(2,3)+(3,4)+(0,1)]+(0,4),
where V(K7) ={1,2,3,n—2,n—3,n—4,00} and V(Ks 4) = {1, 2,3,n—2,n—3,n—4} [ J{0,4, 5, 6}.

Proof We give the proof by direct construction of B;, 1 < < 3 by three cases as follows.

(i) Let By = {(0,n — 2,00,n — 3,4,3), (n —2,4,1,5,3,2), (n —2,3,n —4,0,n — 3,1),
(5,n—4,00,0,2,n—5), (n—3,3,n—15,0,4,2), (1,0,5,4,00,n — 5), (00,5,2,n —4,1,3)}.

(ii) Let By = {(0,n — 2,00,n — 3,4,3), (1,n —4,2,5,3,00), (n —2,3,n —4,0,n — 3,1),
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(5,n —4,00,0,2,n —5), (n —3,3,n—5,0,4,2), (1,0,5,4,
oo,n—5), (2,n —2,4,1,5,00)}.

(iii) Let Bs = {(3,1,n—2,2,n—3,n—4), (n—3,1,n—4,2, 00,n—2), (4,n—2,n—4,00,n—3,0),
(n—2,3,n—3,5,n—4,0), (6,n—4,4,1,00,3), (51,6,2,0,3), (4,2,5,n —2,6,n —3)}. O

Lemma 3.3 (i) There exists a 6-cycle system By of G = K7 + Kgg + (c0,n — 2) + (00, n —
3) + (oo,n — 4) + (00,n — 5) + (c0,n — 6) + (co,n —7) — [(8,n —2) + (3,n — 3) + (4,n —
4) + (4,n —5) + (5,n — 6) + (5,n — 7)] — (00,1,2), where V(K7) = Zg|J{oo} and V(Ks6) =
ZsU{n—2,n—3,n—4n—-5n—6,n—"T}

(ii) There exists a 6-cycle system By of G = K7+ Kg 6+ [(00,n—2)+ (00, n—3)+ (00, n—4)+
(00, n—5)+(00,n—6)+(c0,n—7)]—[(3,n—2)+(3,n—3)+(4,n—4)+(4,n—5)+(5,n—6)+ (5, n—
7] —(1,2,3), where V(K7) = Zg | J{oo} and V(K¢ 6) = Zs | U{n—2,n—3,n—4,n—5,n—6,n—T}.

(iii) There exists a 6-cycle system Bs of G = K7+ Kg ¢+ (00, n—2)+ (00, n—3)+ (00, n—4)+
(co,n=5)]—[(38,n—2)+(3,n—3)+ (4,n—4)+ (4,n—5) + (6, 00)] — [(00,0) 4+ (0, 1) + (1, 2) +(2,6),
where V(K7) = Zg|J{oo} and V(Ks) = ZgU{n —2,n —3,n—4,n—5,6,7}).

(iv) There exists a 6-cycle system By of G = K7+ Kg g + [(00,n —2) + (00,1 — 3) 4 (c0,n —
4)+ (00,n—5) + (00,n—6) 4 (00,n—T7) + (c0,n—8) + (00, n—9)] = [(3,n—2)+(3,n—3) + (4, n—
4)+(4,n=5)+(5,n—6)+(5,n—T7)+(2,n—8)+{2,n—9}] — (00, 1,2), where V(K7) = Zg|J{c}
and V(Kes) = ZgU{n —2,n—3,n—4,n—5n—6,n—7,n— 8 n—9}.

(v) There exists a 6-cycle system Bs of G = K7 + Kg g + [(00,n —2) + (c0,n — 3) + (co,n —
4) 4+ (0o,n — 5) + (c0,n — 6) + (c0,n — 7) — [(B,n —2) + (3, —3) + (4,n — 4) + (4,n — 5) +
(5,n—=6)+ (5,n—T7)] — [(00,0) + (1,2) + (0,1) + (2,6) + (6, 00)], where V(K7) = Zs | J{oo} and
V(Kes)=2ZsU{6,7,n—2,n—=3,n—4,n—-5n—-6,n—"7}

(vi) There exists a 6-cycle system Bg of G = K7+ Kg 4+ [(00, 8) 4 (00,9)] —[(5,8) +(5,9)] —
[(1,7) + (1,2) + (2,3) + (3,6)] + (6,7), where V (I7) = Zs U{oo} and V(Kg.4) = Z5\{6,7,8,9}.

Proof We give the proof by direct construction of B;, 1 <i < 6 by six cases as follows.

(i) Let By ={(0,n—2,00,n—3,1,3), (5,n —4,00,0,n —7,4), (2,n—5,5,n —2,4,n — 6),
(I,n—4,3,4,0,n —6), (3,n —6,00,5,0,n —5), (1,n —5,00,3,2,n —2), (n—7,3,5,n—3,0,2),
(1,0,n —4,2,n — 3,4), (5,1,n — 7,00,4,2)}.

(ii) Let Bo ={(2,n—6,4,n—2,1,00), (5,n—4,00,0,n—7,4), (n—3,1,n—5,2,n —2,00),
(I,m—4,3,4,0,n —6), (3,n —6,00,5,0,n — 5), (3,00,n —5,5,n—2,0), (n —7,3,5,n—3,0,2),
(1,0,n —4,2,n—3,4), (5,1,n — 7,00,4,2)}.

(iii) Let By = {(0,7,5,3,1,n—2), (1,7,3,n—4,2,n—3), (2,7,4,3,n—5,5), (0,6, 00,4, 5,1 —
3), (4,n — 3,00,n —4,5,n —2), (0,n —4,1,00,n — 5,2), (2,n — 2,00,3,0,4), (2,3,6,1,5,00),
(4,6,5,0,n — 5,1)}.

(iv) Let By ={(0,n—2,00,4,n—8,2), (5,n—4,00,0,n—7,4), (2,n—5,5,n—2,4,n—6),
(I,m—4,3,4,0,n — 6), (3,00,5,0,n — 5), (1,n —5,00,3,2,n —2), (n — 7,00,n — 3,5,n —9,1),
(1,0,n —4,2,n— 3,4), (0,n —3,1,3,5,n—8), (1,n —8,3,n—9,2,5), (0,n —9,4,2,n — 7,3).

(v) Let Bs = {(0,7,5,3,1,n—~2), (1,7,3,n—4,2,n—3), (2,7,4,3,n-5,5), (0,6, 00,4,5,n—3),
(4,n—3,00,n—4,5,n—2), (0,n—4,1,00,n—5,2), (2,n —2,00,3,0,4), (0,n—5,1,n—6,00,5),
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(2,00,n—7,0,n—6,3), (2,n—6,4,6,1,n—7), (4,1,5,6,3,n —T7)}.

(vi) Let Bg = {(2,6,5,4,1,0), (4,6,7,2,5,0), (1,5,7,3,4,8), (0,7,4,9, 0, 3), (8,3,9, 2,4, ),
(1,00,2,8,0,9)}. O

Set A = {(2,3,1,4,8,0), (7,5,8,6,11,2), (3,8,11,9,0,6), (9,8, 1,5,10,4), (1, 00,7, 11,0, 10),
(9,2,6,1,7,3), (11,0, 10,2,5, 3), (0,5,9,6, 10, 3), (4,,9, 10,8, 2), (5,6,4,7,10,11), (4,0,7,9,1,
11)}. A will be used in Lemmas 3.4(ii) and 3.4(iii).

Lemma 3.4 (i) There exists a 6-cycle system By of G = K3 + K122 + [(00,12) 4 (00,13)] —
[(1,12) + (1, 13)] — 3Cy, where V(K13) = Z12|J{oo} and V(Ki22) = (Z12,{12,13}).

(ii) There exists a 6-cycle system By of G = K13 + K124 + [(00,12) + (00, 13) 4 (00, 14) +
(00,15)] —[(6,12) + (6,13) + (0, 14) + (0, 15)] — 3Cy, where V (K13) = Z12 | J{oo} and V(K124) =
Z12\J{12,13, 14, 15}.

(iii) There exists a 6-cycle system Bs of G = K13 + K126 + [(00, 12) + (00, 13) + (00, 14) +
(00, 15) + (00, 16) + (00, 17)] — [(0,12) + (0, 13) + (5, 14) + (5,15) + (8, 16) + (8, 17)] — 3C4, where
V(K13) = Z1o {00} and V (Ki2,6) = Z10 {12, 13,14, 15, 16, 17}.

Proof We give the proof by direct construction of B;, 1 < i < 3 by three cases as follows.

(i) By = {(2,3,1,4,8,0), (7,5,8,6,11,2), (3,8,11,9,0,6), (9,8,1,5,10,4), (1,00,7,11,0,
10), (11,00,10,2,5,3), (4,00,9,10,8,2), (12,8,13,5,0,7), (12,0,13,4,7,9), (4,0,3,13,10,12),
(11,4,6, 5,9,1), (11,5,12,6,9,13), (2,9,3,10,7,13), (1,7,3,12,2,6), (10,6,13,1,12,11)}.

(i) By = AU{(12,0,13,2,14,1), (14,0,15,2,12,3), (13,1,15,5,12,4), (13,3,15,4,14,5),
(12,6,13,8,14,7), (14,6,15,8,12,9), (13,7,15,11,12,10), (13,9, 15, 10,14, 11)}.

(iii) Bs = AU{(12,0,13,1,15,4), (14,0,15,2,16,4), (16,0,17,2,12,3), (13,2,14,5,15,3),
(14,3,17,9,12,6), (12,1,16,7,13,5), (13,4,17,7,15,6), (16,8,17,11,12,10), (7,12,8, 15, 10, 14),
(13,8,14,11,15,9), (10,13,11,16,5,17), (6,16,9,14,1,17)}. O

Set D = {(2,5,11,4,14,00), (0,3,4,7,1,5), (13,6,16,12,17,00), (9,n — 3,13,14,11,3),
(10,12, 9,14, 16, 00), (11,13,16,2, 15,00), (1,4,9, 16,8, 0), (0,2,6,12,1,9), (1,3,7,13,2,10), (3,
5,9,15,4,12), (4,6, 10, 16,5, 13), (5,7,11,17,6, 14), (6,8,12,0,7,15), (0,4, 10,3,8,11), (0,17, 1,6,
9,8), (2,4,m—3,3,n—2,7)}. D will be used in Lemmas 3.5(i)-3.5(iii).

Lemma 3.5 (i) There exists a 6-cycle system By of G = K19 + Kig2 + [(00,n — 2) + (00, n —
3)]—3C5—[(17,n—2)+ (17,n — 3)], where 3C5 = (c0,0,1,2,3)+(4,5,6,7,8)+(9,10,11,12,13),
V(K19) = Z1g|J{oc} and V(Kis2) = (Z18,{n — 2,n — 3}).

(ii) There exists a 6-cycle system By of G = K9 + Kis4 + [(00,n — 2) + (c0,n — 3) +
(c0,m — 4) + (00,n — 5)] — [(17,n — 2) + (17,n — 3) + (8, n — 4) + (8,n — 5)] — 3C5, where
3Cs = (00,0,1,2,3) + (00,4,5,6,7) + (9,10,11,12,13), V(K19) = Zig|J{oo} and V(Ki54) =
(Z1g,{n —2,n —3,n—4,n —5}).

(iii) There exists a 6-cycle system Bz of G = K9 + K1s6 + [(c0,n — 2) 4+ (c0,n — 3) +
(c0,n—4) 4 (00,n —5) + (00,n —6) + (co,n—=T)] = [(17,n—2)+ (17,n—3) + (8,n —4) + (8, n —
5)4(13,n—6)+(13,n—T7)] —3Cs, where V(K1s6) = Z1s|U{n—2,n—3,n—4,n—5,n—6,n—T},
V(K19) = Z1g|J{oo} and 3C5 = (0,0,1,2,3) + (00,4,5,6,7) + (00,9,10,11,12).
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Proof We give the proof by direct construction of B;, 1 <14 < 3 by three cases as follows.

(i) By = DU{(12,14,17,3,6,00), (4,00,n — 3,2,11,n — 2), (7,00,n — 2,0,10,n — 3),
(16,4,17,2,8,n — 3), (9,2,14,0,15,n — 2), (12,2,n— 2,6,n — 3,5), (8,5,17,13,1,15), (10,5, n —
2,14,8,17), (8,10,14,15,12,n— 2), (13,10,n—2,1,11,15), (13,n—2,16,7,14,3), (1,8,13,0,n —
3,14), (6,0,16,1,n — 3,11), (12,7,17,16,15,n — 3), (3,16,11,9,17,15), (9,7,10, 15,5, 00)}.

(i) B2 = DJ{(9,7,10,15,5,00), (n — 3,00,n — 4,1,13,0), (n — 2,00,n — 5,1,14,0),
(6,0,n—5,2,9,11), (10,0,16,n — 5,4,n — 2), (15,0,n —4,2,n — 3,14), (11,1,n—3,7,12,n — 2),
(8,1,n—2,5,n—4,4), (15,1,16,7,n —4,11), (2,11,n—5,10,13,n— 2), (n—3,6,n —4,17,10,5),
(14,3,n—4,15,17,2), (n—>5, 13, n—4, 16,17,9), (16,11,n—3,15,13,3), (12,2,8,7,17,5), (8,5, n—
5,7,14,10), (15,3,n — 5,6,n — 2,8), (16,4,17,13,8,n — 3), (8,17,n — 5,15,n — 2,14), (9,n —
2,16,15,12,n — 4), (n — 3,12,n — 5,14,n — 4,10)}.

(iii) Bs = DU{(n — 3,00,n — 4,1,13,0), (n — 2,00,n — 5,1,14,0), (6,0,n — 5,2,9,11),
(10,0,16,n—5,4,n—2), (15,0,n—4,2,n—3,14), (11,1,n—3,7,12,n—2), (5,00,n—"7,0,n—6, 10),
(6,00,n—6,14,3,n—4), (8,1,n—6,12,14,7), (15,1,n—7,3,n—5,13), (16,1,n—2,8,13,n—4),
(17,13,n — 2,15,10,14), (8,2,n — 6,3,17,10), (8,4,n — 7,5,15,17), (14,2,17,n — 6,15,n — 7),
(8,n—7,12,5,n—5,14), (13,3,16,17,n—5,9), (17,4,n—6,16,11,n—7), (n—3,8,n—6,11, 15, 10),
(6,n—7,10,n—4,7,n—5), (n—3,6,n—6,7,17,5), (6,3,15,8,5,n —2), (11,2,n—7,7,9,n —4),
n—3,11,n — 5,10,7,16), (n — 4,5,n — 6,9,n — 2,14), (15,n — 3,10,13,12,n — 5), (9,17,n —
4,15,16,n —7), (2,n — 2,16,4,n — 4,12)}. O

4. The main result

Now we are in the position to prove Theorem 4.1.

We will assume |V(L)| > n — 4. Since if |[V(L)] < n — 5, we can get a Cg such that
V(Cs) N V(L) C {oo} and V(Cs) C V(K,). Let L* = Cs + L. A 6-cycle system of K, — L
is equal to a 6-cycle system of K, — L* and Cg. If |V(L*)| < n — 5, repeat the process until
V) 204

Theorem 4.1 Let L be a nearly 2-regular graph in the complete graph K,, and |V (L)| =n— 4.
There exists a 6-cycle system of K, — L for positive integer n satisfying the following three
conditions: (i) n is odd, (ii) 6 divides |E(K,, — L)| and (iii) n > 7.

Proof We use induction method to prove the result. When n < 13, the proof can be seen in
Lemma 2.1-2.4. Suppose that for any odd z < n and any nearly 2-regular leave L; C L of K,
for which 6 divides |E(K, — L1)|, there exists a 6-cycle system of K, — L;. In the following, we

shall show there exists a 6-cycle system of K, — L by five cases.

Case 1 L contains at least one Cj.

Without lose of generality, suppose C5 = (1,2,3), or C3 = (00,1,2). Let L = L; + Cs.
We can get K, — L = (K,—¢ — L1) + K¢ n—7 + (K7 — C3) where V(K,,_¢) = (Z,—1\Zs) U{o0},
V(Ken-7) = Z|U(Zn-1\Zs) and V(K7) = Zg|J{oo}. Since 6 divides |E(K, —L)|, |E(Ksn—7)|
and |E (K7 — C3)|, then 6 divides |E(K,_¢ — L1)|. By induction or Theorem 2, B; is a 6-cycle
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system of K,,_¢ — L;. By is a 6-cycle system of K¢ ,_7 by Theorem 1. Bs is a 6-cycle system
of K7 — C3 by Theorem 2, where V(C3) C V(K7). Then By |JB2|J Bs; is a 6-cycle system of
K, — E(L).

Case 2 L contains at least one C,,, m (m > 6).

Let Cy = (0,1,2,3,4,...,m — 2,00) € L. Then Cyy = Cro_z + [(0,1) + (1,2) + (2,3) +
(3,4)]—(0,4) where Cy,—3 = (0,4,5,6,...,m—2,00). Let L = (L—C),)+Ch—3+[(0,1)+(1,2)+
(2,3)+(3,4)]—(0,4) = L1 +[(0,1) + (1,2) + (2,3) + (3,4)] — (0,4) where L1 = (L—Cy,) + Chr—3s.
K,—L=(K,¢—L1)+ Ken-11+ K7+ K¢a—(0,1) = (1,2) — (2,3) — (3,4) + (0,4)], where
V(Kn-6) = (Zn-4\Zs) U{0, 00}, V(Ken-11) = AU(Zn-4\Z7), V(K7) = AlU{oo}, Keu =
AlJ{0,4,5,6} and A = {1,2,3,n —2,n — 3,n — 4}. Since 6 divides |E(K,, — L)|, |E(Ksn—11)|
and |E[K7 + Kga — (0,1) — (1,2) — (2,3) — (3,4) + (0,4)]|, then 6 divides |E(K,_s — L1)|. By
induction and Theorem 2, B is a 6-cycle system of K,,_¢ — L. B> is a 6-cycle system of K¢ 11
by Theorem 1. Bj is a 6-cycle system of K7 + K¢ — (1,2) — (2,3) — (3,4) — (0,1) 4+ (0,4) by
Lemma 3.2(iii). Then By |J B2 |J Bs is a 6-cycle system of K,, — L.

Case 3 L contains only cycles of length 4.

When n < 21, since 6 divides |E(K,, — L)|, there exist the following cases:

(1) m =13, L contains three 4-cycles. This case has been constructed in Lemma 2.4(iii)
and 2.4(iv).

(2) n = 17, L contains one 4-cycle, or four 4-cycles. When L contains one 4-cycle, we
can obtain this 6-cycle system by Theorem 2. When L contains four 4-cycles, the proof can
be seen in Lemma 2.6(ii). So in the following we assume n > 21. As long as L meets the
condition of the induction, we can construct a 6-cycle system. So we only consider 3C; =
(0,0,1,2) + (00,3,4,5) + (00,6,7,8). Let L = Ly +3Cy. So K, — E(L) = (Kp_12 — L1) +
K2, n—13 + (K13 — 3C4), where V(K,,_12) = (Zn-1\Z12) U{o0}, V(K12,n-13) = Z12UJ Zn-1\Z12
and V(K13) = Z12|J{oo}. Since 6 divides |E(K,, — L)|, |E(K12,n—13)] and |E(K13 — 3Cy)|, then
6 divides |E(K,—12 — L1)|- By induction or Theorem 2, Bj is a 6-cycle system of K,,_12 — L.
By is a 6-cycle system of Ki3,-13 by Theorem 1. Bs is a 6-cycle system of Ki3 — 3C4 by
Lemma 2.4(iii) and 2.4(iv), where V(3C4) C V(K13). Then By |J B2 |J Bs is a 6-cycle system of
K, — E(L).

Case 4 L contains only cycles of length 5.
When n < 25, since 6 divides |E(K,, — E(L))|, there exist the following cases:
(1) m =15, L contains three 5-cycles. This case has been constructed in Lemma 2.5(i);
(2) m =17, L contains two 5-cycles. This case has been constructed in Lemma 2.6(i);
(3) m =19, L contains three 5-cycles. This case has been constructed in Lemma 2.7(i);
(4) m =23, L contains five 5-cycles. This case has been constructed in Lemma 2.9(ii).
So in the following we assume n > 25. Let L = L; +3C5. So K, — L = (K18 — L1) +
Kign—19+(K19—3C5), where V(K —15) = (Zn—1\Z18) U{oo}, VI(Kisn-19) = Z1s U(Zn-1\Z18)
and V(Kig) = Z1s|J{oo}. Since 6 divides |E(K,, — L)|, |E(K18n—19)| and |E(K19 —5C5)|, then
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6 divides |E(K,—12 — L1)|. By induction or Theorem 2, B; is a 6-cycle system of K, 15 — L1.
Bs is a 6-cycle system of K (18,n — 19) by Theorem 1. Bj is a 6-cycle system of K19 — 3C5 by
Lemma 2.7(i), where V(3C5) C V(K19). Then By |J B2 |J Bs is a 6-cycle system of K,, — E(L).

Case 5 L contains only cycles of length 4 and 5.

Case 5.1 L contains one 5-cycle.

Since 6 divides |E(K,, — L)|, we can get the following two cases:

(1) When n = 12k+3 or 12k+7 , there are one 5-cycle and 3m—+1 4-cycles (k > 1,0 < m < k.
m,k € N).

We give the proof by induction on k. When k£ = 1, and n = 15 or 19, we give the proof in
Lemma 2.5(iii) and 2.7(ii). Suppose that for k = n¢ and any nearly 2-regular leave L, there
exists a 6-cycle system of Kjon,+7 — L1. When k = ng + 1, let L1 = L — 3C;. We can get
Kiopyr — L = Kiopgy19 — L = (Kiang+7 — L1) + Ki2,12n+6 + (K13 — 3C4), where V(L) C
V(Ki2n0+7) = Zi2ng+6 U{o0}, V(K12,1200+6) = AU Z12ne+6, V(3Cs) C V(K13) = AU{oc}
and A = {12n¢ + 4|7 < i < 18. i € N}. Since 6 divides |E(K,, — L)|, |E(Ki2,12n,+6)| and
|E(K13 — 3Cy)|, then 6 divides |E(K12n,+19 — L1)|- By induction or Theorem 2, B; is a 6-cycle
system of Ki9pn47 — L1, where Ly = L — 3C4. B is a 6-cycle system of K12 125,46 by Theorem
1. By is a 6-cycle system of K3 — 3Cy by Lemma 2.4(xiii) and 2.4(iv). Then By |J B2 |J Bs is a
6-cycle system of Kjon,+19 — E(L).

The proof of n = 12k + 3 is similar to that of the case n = 12k + 7. Since n = 15, there
exists a 6-cycle system by Lemma 2.5(iii).

(2) When n = 12k + 11, there are one 5-cycle and 3m + 2 4-cycles (kK > 0,0 < m < k.
m, k € N). The proof of this case is similar to that of the case 5.1(1). Since n = 11, there exists
a 6-cycle system by Lemma 2.3(iv).

Case 5.2 L contains two 5-cycles.

Since 6 divides |E(K,, — L)|, we can get the following two cases:

(1) When n = 12k+5, there are two 5-cycles and 3m 4-cycles (k > 1,0 <m < k.m,k € N).
The proof is similar to that of the case 5.1(1). Since n = 17, there exists a 6-cycle system by
Lemma 2.6(i).

(2) When n = 12k+1 or 12k+9, there are two 5-cycles and 3m+2 4-cycles (k > 1,0 < m < k.
m,k € N). The proof is similar to that of the case 5.1(1). Since n = 25 or 21, there exists a
6-cycle system by Lemma 2.10(i) or 2.8(i).

Case 5.3 L contains three 5-cycles.

Since 6 divides |E(K,, — L)|, we can get the following two cases:

(1) When n = 12k+3 or 12k+7, there are three 5-cycles and 3m 4-cycles (k > 1,0 <m < k.
m,k € N). The proof is similar to that of the case 5.1(1). Since n = 15 or 19, there exists a
6-cycle system by Lemma 2.5(i) or 2.7(i).

(2) When n = 12k + 11, there are three 5-cycle and 3m + 1 4-cycles (k > 1,0 < m < k.
m,k € N). The proof is similar to that of the case 5.1(1). Since n = 23, there exists a 6-cycle



All nearly 2-regular leaves of partial 6-cycle systems 665

system by Lemma 2.9(i).

Case 5.4 L contains at least four 5-cycles.

When n < 31, since 6 divides |E(K,, — L)|, we can get the following three cases:

(1) n =21, L contains four 5-cycles and one 4-cycles. The 6-cycle system of this case has
been constructed in Lemma 2.8(ii).

(2) n =25, L contains four 5-cycles and one 4-cycles. The 6-cycle system of this case has
been constructed in Lemma 2.10(ii).

(3) n =29, L contains four 5-cycles and two 4-cycles. The 6-cycle system of this case has
been constructed in Lemma 2.11. So in the following we assume n > 31.

Let L=L;+4C5+Cy. So K, — L = (Ky—24 — Ln) + Koa n—25 + (K25 — 4C5 — C4), where
V(L1) CV(Kn—24) = (Zn-1\Zoa) {0}, V(K2an—25) = Zoa|J(Zn-1\Z24) and V(4C5|JCy) C
V(K25) = Zag |J{o0}. Since 6 divides |E(K,, — L)|, |E(K24,n—25)| and |E(K35 —4C5 — C4)|, then
6 divides |E(K,—24 — L1)|. By induction B is a 6-cycle system of K,,_o4 — L1. B2 is a 6-cycle
system of K4 ,,—95 by Theorem 1 where V(K24 5—25) ={n—14,2<i<25,ie€ N.}|JZ,_25. Bs
is a 6-cycle system of Ky5 —4C5 — Cy by Lemma 2.10(ii). Then By |J B2 |J B is a 6-cycle system
of K, — E(L). O

Our method will result in complicated classification for the cases of n —3 < |V(L)| < n. To

solve the remaining cases, a new method different from ours is needed.
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