All Nearly 2-Regular Leaves of Partial 6-Cycle Systems

Liqun PU ${ }^{1, *}$, Hengzhou XU ${ }^{1}$, Hao SHEN ${ }^{2}$
1. School of Mathematics and Statistics, Zhengzhou University, Henan 450001, P. R. China;
2. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Abstract

Let K_{n} be a complete graph on n vertices. In this paper, we find the necessary conditions for the existence of a 6-cycle system of $K_{n}-L$ for every nearly 2 -regular leave L of K_{n}. This condition is also sufficient when the number of vertices of L is $n-4$.

Keywords complete graph; 6-cycle; nearly 2-regular.
MR(2010) Subject Classification 05C38

1. Introduction

Let $V(G)$ be the vertex set of the graph G and $E(G)$ be the edge set of the graph G. An m-cycle system of a graph G is an ordered pair $(V(G), B)$, where B is a set of edge-disjoint cycles of length m, such that each edge of G is contained in exactly one cycle in B. For convenience, we call B an m-cycle system of a graph G instead of an ordered pair $(V(G), B)$.

There have been many results found on m-cycle systems of G for various graphs G, see surveys $[1,2]$. The existence of an m-cycle system of $K_{n}-I$, where I is a 1-factor (called leave) was solved in $[3,4]$. Recently, an m-cycle system of $K_{n}-L$, where L is a subgraph of K_{n} (called leave) is considered in several papers. This can alternatively be viewed as a partial m-cycle system of K_{n} with leave L. A solution of partial 4-cycle system of K_{n} and a partial 6-cycle system of K_{n} with a 2-regular leave can be found in [5, 6], respectively. And the existence of a partial 6-cycle system of K_{n} with a forest leave can be found in [7].

In this paper, we shall consider the existence of a partial 6 -cycle system of K_{n} with a nearly 2-regular leave L. It is an extension of [5-7]. Not only is this result of interest in its own right in the context of history of cycle systems, but, it also arose as a useful tool in studying the cycle systems of the line graphs of complete multipartite graphs $[8,9]$.
L is said to be nearly 2 -regular of K_{n} if all vertices in L have degree 2 except for one (named ∞) whose degree is greater than 2 , and L need not be a spanning subgraph of K_{n}. The necessity of the existence of a partial 6 -cycle system of K_{n} with a nearly 2 -regular leave L can be found in Lemma 1.1.

Lemma 1.1 Let L be a nearly 2-regular subgraph of a complete graph K_{n} on n vertices. $K_{n}-L$

[^0]denotes K_{n} with a subgraph L removed. The necessary conditions for the existence of a partial 6 -cycle systems of K_{n} with leave L are: (i) n is odd, (ii) 6 divides $\left|E\left(K_{n}-L\right)\right|$, and (iii) $n \geq 7$.

Proof The necessity of condition (i) follows from the fact that in a 6 -cycle system, each vertex clearly has even degree. The necessity of condition (ii) follows since each 6 -cycle has six edges. The necessity of condition (iii) is obvious.

In this paper, our main result is Theorem 4.1 which shows that Lemma 1.1 is also sufficient when the number of vertices of L is $n-4$.

The following two theorems are useful in order to prove Theorem 4.1.
Theorem 1.2 ([10]) There exists a 6 -cycle system of $K_{m, n}$ if and only if:
(i) m and n are even;
(ii) 6 divides m or n; and
(iii) $\min \{m, n\} \geq 4$.

Theorem 1.3 ([6]) Let L be 2-regular subgraph in the complete graph K_{n}. There exists a 6 -cycle system of $G=K_{n}-L$ if and only if:
(i) $\left|E\left(K_{n}-L\right)\right|$ is divisible by 6 ;
(ii) n is odd; and
(iii) $n \geq 7$.

We will use some symbols in this paper. Let $E(G)$ be the set of edges of the graph G and $V(G)$ be the set of vertices of G. Let (u, v) or (v, u) be the edge with endpoints $\{u, v\}$. For convenience, we can use $u v$ or $v u$ instead of (u, v) or (v, u). If vertex v is an end point of edge $u v$ (or $v u$), then v and $u v$ are incident. For $v \in G$, the degree of vertex v (in a loopless graph), denoted by $d_{G}(v)$, is the number of incident edges. The graph union $H=G+F$ between two simple graphs G and F is the graph H defined by $V(H)=V(G) \bigcup V(F)$ and $E(H)=\{u v \mid u v \in$ $E(G)$ or $u v \in E(F)\}$. The graph difference $H=G-F$ between G and its subgraph F is the graph H defined by $V(H)=V(G) \backslash\left\{v \in V(F) \mid d_{F}(v)=d_{G}(v)\right\}$ and $E(H)=E(G) \backslash E(F)$. Let $C_{s}=\left(a_{1}, a_{2}, \ldots, a_{s}\right)$ be a cycle of length s. $n C_{s}$ is a graph union of $n C_{s}$ s. Let $K_{A, B}$ or $K_{a, b}$ be the complete bipartite graph with vertex set A and B, where $|A|=a,|B|=b$ and $V\left(K_{A, B}\right)=A \bigcup B . Z_{n}$ consists of n residual classes. Let $Z_{n}=\{0,1, \ldots, n-1\}$. Then $Z_{n} \backslash Z_{m}=\{m, m+1, \ldots, n-3, n-2, n-1\}$ when $m \leq n$.

2. 6-cycle systems of $K_{n}-L$ where $7 \leq n \leq 29$

We shall give some small cases which will be used in the proof of Theorem 4.1.
Lemma 2.1 There exists a 6 -cycle system B of $G=K_{7}-[(\infty, 0,1)+(\infty, 2,3)+(\infty, 4,5)]$, where $V\left(K_{7}\right)=Z_{6} \cup\{\infty\}$.

Proof We give the proof by direct construction. Let $B=\{(2,0,3,5,1,4),(1,2,5,0,4,3)\}$. And B is a 6 -cycle system of G.

Lemma 2.2 Let $V\left(K_{9}\right)=Z_{8} \cup\{\infty\}$. There exists a 6 -cycle system B of $G=K_{9}-L$, where L is a nearly 2-regular subgraph of K_{9} and $|E(G)|$ is divisible by 6 .

Proof (i) When $L=(\infty, 0,1)+(\infty, 2,3), B=\{(2,0,6,4,3,1),(3,0,4,7,1,5),(4,2,7,6, \infty, 5)$, $(4, \infty, 7,5,6,1),(5,0,7,3,6,2)\}$.
(ii) When $L=(\infty, 0,1)+(\infty, 2,3)+(\infty, 4,5)+(\infty, 6,7), B=\{(2,0,6,4,3,1),(3,0,4,7,1,5)$, $(4,2,7,5,6,1),(5,0,7,3,6,2)\}$.

Lemma 2.3 Let $V\left(K_{11}\right)=Z_{10} \cup\{\infty\}$. There exists a 6 -cycle system B of $G=K_{11}-L$, where L is a nearly 2-regular subgraph of K_{11} and $|E(G)|$ is divisible by 6 .

Proof (i) When $L=(\infty, 0,1)+(\infty, 2,3,4)+(\infty, 5,6,7,8,9), B=\{(3, \infty, 8,2,5,0),(6, \infty, 7,1,5$, $3),(2,0,9,4,8,1),(6,0,8,3,9,1),(4,0,7,5,9,2),(3,1,4,6,2,7),(5,4,7,9,6,8)\}$.
(ii) When $L=(\infty, 0,1)+(\infty, 2,3)+(\infty, 4,5,6,7,8,9), B=\{(6, \infty, 7,1,5,3),(3,1,4,6,2,7)$, $(5, \infty, 8,2,9,0),(0,2,5,7,4,3),(1,2,4,8,5,9),(6,1,8,0,4,9),(8,3,9,7,0,6)\}$.
(iii) When $L=(\infty, 0,1)+(\infty, 2,3,4,5)+(\infty, 6,7,8,9), B=\{(8,3,9,7,0,6),(6,1,8,0,4,9)$, $(3, \infty, 7,2,1,5),(4, \infty, 8,2,9,1),(0,9,5,6,4,2),(3,0,5,8,4,7),(3,1,7,5,2,6)\}$.
(iv) When $L=(\infty, 0,1,2)+(\infty, 3,4,5)+(\infty, 6,7,8,9), B=\{(1, \infty, 7,3,0,8),(4, \infty, 8,2,5,0)$, $(2,0,7,9,1,6),(6,0,9,4,1,3),(5,1,7,2,9,3),(5,9,6,8,4,7),(3,2,4,6,5,8)\}$.
(v) When $L=(\infty, 0,1)+(\infty, 2,3)+(\infty, 4,5)+(6,7,8,9), B=\{(6, \infty, 9,4,3,0),(7, \infty, 8,1,2$, $0),(4,0,9,1,5,8),(5,0,8,6,4,7),(1,4,2,6,5,3),(6,1,7,2,9,3),(5,9,7,3,8,2)\}$.
(vi) When $L=(\infty, 0,1)+(\infty, 2,3)+(7,8,9)+(\infty, 4,5,6), B=\{(5, \infty, 9,1,3,0),(7, \infty, 8,1,2$, $0),(4,0,9,2,7,1),(6,0,8,3,5,2),(5,1,6,4,3,7),(4,7,6,9,5,8),(3,9,4,2,8,6)\}$.
(vii) When $L=(\infty, 0,1)+(\infty, 2,3)+(\infty, 4,5)+(\infty, 6,7,8), B=\{(9, \infty, 7,0,3,4)$, $(0,6,9,8,1,2),(4,0,9,1,5,8),(5,0,8,6,4,7),(1,4,2,6,5,3),(6,1,7,2,9,3),(5,9,7,3,8,2)\}$.

Lemma 2.4 Let $V\left(K_{13}\right)=Z_{12} \cup\{\infty\}$. There exists a 6 -cycle system B of $G=K_{13}-L$, where L is a nearly 2-regular subgraph of K_{13} and $|E(G)|$ is divisible by 6 .

Proof (i) When $L=(\infty, 0,1)+(\infty, 2,3,4,5,6,7,8,9), B=\{(\infty, 10,1,11,5,3),(\infty, 8,11,2,0,4)$, $(\infty, 7,3,11,0,5),(\infty, 11,4,9,0,6),(3,0,8,10,2,1),(7,0,10,6,4,1),(5,1,9,3,8,2),(6,1,8,5,10$, $3),(6,2,7,5,9,11),(4,2,9,10,11,7),(4,8,6,9,7,10)\}$.
(ii) When $L=(\infty, 0,1)+(\infty, 2,3)+(4,5,6,7,8,9), B=\{(\infty, 8,11,2,0,4),(\infty, 7,3,11,0,5)$, $(\infty, 11,10,5,9,6),(3,0,8,10,2,1),(7,0,10,6,4,1),(5,1,9,3,8,2),(\infty, 10,3,6,0,9),(4,3,5,11,9$, $7),(8,1,10,7,2,4),(7,5,8,6,1,11),(6,2,9,10,4,11)\}$.
(iii) When $L=(\infty, 0,1)+(7,8,9)+(\infty, 2,3,4,5,6), B=\{(\infty, 8,11,2,0,4),(\infty, 7,3,11,0,5)$, $(\infty, 10,3,6,0,9),(3,0,8,10,2,1),(7,0,10,6,4,1),(5,1,9,3,8,2),(3, \infty, 11,4,7,5),(6,1,11,7,10$, $9),(8,1,10,5,9,4),(2,4,10,11,6,7),(6,2,9,11,5,8)\}$.
(iv) When $L=(\infty, 0,1)+(\infty, 7,8)+(\infty, 2,3,4,5,6), B=\{(\infty, 5,9,2,0,4),(5,0,11,8,1,10)$, $(3,7,9,8,5,11),(8,4,9,11,2,6),(\infty, 10,3,6,0,9),(3,0,8,10,2,1),(7,0,10,6,4,1),(5,1,9,3,8,2)$, $(3, \infty, 11,4,7,5),(6,1,11,7,10,9),(2,4,10,11,6,7)\}$.
(v) When $L=(\infty, 0,1)+(\infty, 2,3,4)+(5,6,7,8,9), B=\{(3, \infty, 11,4,7,5),(6,1,11,7,10,9)$,
$(2,0,4,5, \infty, 7),(6, \infty, 8,10,4,2),(0,7,3,9,11,5),(1,7,9,2,5,10),(1,9,4,8,11,2),(8,2,10,11,0$, $3),(1,5,8,6,11,3)$, $(0,10,6,4,1,8),(\infty, 10,3,6,0,9)\}$.
(vi) When $L=(\infty, 0,1)+(7,8,9,10)+(\infty, 2,3,4,5), B=\{(3, \infty, 11,4,7,5),(6, \infty, 8,10,4$, $2),(\infty, 10,3,6,0,9),(0,7,3,9,11,5),(1,7,9,2,5,10),(1,9,4,8,11,2),(4, \infty, 7,6,8,0),(2,7,11,3$, $0,10),(5,9,6,10,11,1),(2,0,11,6,1,8),(5,6,4,1,3,8)\}$.
(vii) When $L=(6,7,8)+(\infty, 0,1,9)+(\infty, 2,3,4,5), B=\{(3, \infty, 11,4,7,5),(6, \infty, 8,10,4,2)$, $(6,1,11,7,10,9),(0,7,3,9,11,5),(1,7,9,2,5,10),(8,2,10,11,0,3),(0,10,6,4,1,8),(2,7, \infty, 1,3$, $11),(4, \infty, 10,3,6,0),(0,9,8,5,1,2),(8,4,9,5,6,11)\}$.
(viii) When $L=(\infty, 0,1)+(\infty, 2,3,4)+(\infty, 5,6,7,8), B=\{(3, \infty, 11,4,7,5),(6,1,11,7,10$, $9),(0,7,3,9,11,5),(1,7,9,2,5,10),(1,9,4,8,11,2),(0,10,6,4,1,8),(\infty, 10,3,6,0,9),(7, \infty, 6,11$, $0,2),(5,1,3,11,10,8),(4,5,9,8,6,2),(10,2,8,3,0,4)\}$.
(ix) When $L=(\infty, 0,1)+(\infty, 2,3)+(4,5,6)+(7,8,9), B=\{(\infty, 8,11,2,0,4),(\infty, 7,3,11,0$, $5),(\infty, 11,10,5,9,6),(3,0,8,10,2,1),(5,1,9,3,8,2),(\infty, 10,3,6,0,9),(8,1,10,7,2,4),(5,8,6,11$, $4,3),(7,0,10,4,1,11),(6,2,9,4,7,1),(7,5,11,9,10,6)\}$.
(x) When $L=(\infty, 0,1)+(\infty, 2,3)+(\infty, 4,5)+(7,8,9)$, or $L=(\infty, 0,1)+(\infty, 2,3)+$ $(\infty, 4,5)+(\infty, 7,8), B=B_{1} \bigcup B_{2} \bigcup B_{3}$. By Lemma 2.1, B_{1} is a 6 -cycle system of $K_{7}-3 C_{3}$, where $3 C_{3}=(\infty, 0,1)+(\infty, 2,3)+(\infty, 4,5)$. B_{2} is a 6 -cycle system of $K_{6,6}$ by Theorem 1 where $V\left(K_{6,6}\right)=Z_{6} \bigcup\left(Z_{12} \backslash Z_{6}\right) . B_{3}$ is a 6 -cycle system of $K_{7}-C_{3}$ by Theorem 2, where $C_{3}=(\infty, 7,8)$, or $(7,8,9)$ and $V\left(K_{7}\right)=\left(Z_{12} \backslash Z_{6}\right) \cup\{\infty\}$.
(xi) When $L=(\infty, 0,1,2)+(\infty, 4,5,6,7,8,9,10), B=\{(\infty, 11,10,5,9,6),(5,1,9,3,8,2)$, $(7,0,10,4,1,11),(6,2,9,4,7,1),(2,7,10,1,8,4),(5,8,6,11,2,0),(\infty, 1,3,11,0,8),(10,2,3,4,0$, $6),(3,0,9, \infty, 5,7),(3, \infty, 7,9,11,5),(4,11,8,10,3,6)\}$.
(xii) When $L=(\infty, 0,1,2,3)+(\infty, 4,5,6,7,8,9), B=\{(\infty, 11,10,5,9,6),(\infty, 1,3,11,0,8)$, $(\infty, 2,10,9,11,5),(3,5,7, \infty, 10,6),(5,1,9,3,8,2),(7,0,10,4,1,11),(6,2,9,4,7,1),(2,7,10,1$, $8,4),(5,8,6,11,2,0),(0,6,4,3,7,9),(3,10,8,11,4,0)\}$.
(xiii) When $L=(\infty, 0,1,2)+(\infty, 3,4,5)+(6,7,8,9), B=\{(2,3,1,4,8,0),(7,5,8,6,11,2)$, $(3,8,11,9,0,6),(9,2,6,1,7,3),(1, \infty, 7,11,0,10),(4,0,7,9,1,11),(11, \infty, 10,2,5,3),(5,10,6$, $\infty, 8,1),(4, \infty, 9,10,8,2),(3,0,5,9,4,10),(5,6,4,7,10,11)\})$.
(xiv) When $L=(\infty, 0,1,2) \cup(\infty, 3,4,5) \cup(\infty, 6,7,8), B=\{(2,3,1,4,8,0),(7,5,8,6,11,2)$, $(3,8,11,9,0,6),(9,8,1,5,10,4),(1, \infty, 7,11,0,10),(9,2,6,1,7,3),(11, \infty, 10,2,5,3),(0,5,9,6$, $10,3),(4, \infty, 9,10,8,2),(5,6,4,7,10,11),(4,0,7,9,1,11)\}$.
(xv) When $L=(\infty, 0,1)+(\infty, 2,3)+(\infty, 4,5)+(\infty, 6,7)+(\infty, 8,9)+(\infty, 10,11), B=$ $B_{1} \bigcup B_{2} \cup B_{3}$. By Lemma 2.1, B_{1} is a 6 -cycle system of $K_{7}-3 C_{3}$, where $3 C_{3}=(\infty, 0,1)+$ $(\infty, 2,3)+(\infty, 4,5)$ and $V\left(K_{7}\right)=Z_{6} \cup\{\infty\}$. By Lemma 2.1, B_{2} is a 6-cycle system of $K_{7}-3 C_{3}$, where $3 C_{3}=(\infty, 6,7)+(\infty, 8,9)+(\infty, 10,11)$ and $V\left(K_{7}\right)=\left(Z_{12} \backslash Z_{6}\right) \cup\{\infty\}$. By Theorem 1, B_{3} is a 6 -cycle system of $K_{6,6}$ where $V\left(K_{6,6}\right)=Z_{6} \bigcup\left(Z_{12} \backslash Z_{6}\right)$.
(xvi) When $L=(\infty, 0,1,2,3,9) \cup(\infty, 4,5,6,7,8), B=\{(\infty, 11,10,5,9,6),(7,0,10,4,1,11)$, $(2,7,10,1,8,4),(5,8,6,11,2,0),(\infty, 2,10,9,11,5),(3,5,7, \infty, 10,6),(3,10,8,11,4,0),(1, \infty, 3,8$, $2,9),(0,11,3,4,9,8),(0,9,7,3,1,6),(5,1,7,4,6,2)\}$.

Let $A=\{(3,8,11,9,0,6),(9,2,6,1,7,3),(4,0,7,9,1,11),(3,0,5,9,4,10),(0,11,7,13,1,12)$,
$(2,4,7,10,8,0),(5,11,13,12,2, \infty),(1, \infty, 12,6,13,10),(4,6,9,13,2,8),(7,8,13,0,10,12)\} . A$ will be used in Lemma 2.5.

Lemma 2.5 Let $V\left(K_{15}\right)=Z_{14} \cup\{\infty\}$. There exists a 6 -cycle system B of $G=K_{15}-L$, where L is a nearly 2-regular subgraph of K_{15} and $|E(G)|$ is divisible by 6 .

Proof (i) When $L=(\infty, 0,1,2,3)+(\infty, 4,5,6,7)+(9,10,11,12,13), B=A \cup B_{1}$ where $B_{1}=\{(7,5,8,6,11,2),(11, \infty, 10,2,5,3),(5,10,6, \infty, 8,1),(12,5,13,4,1,3),(4,3,13, \infty, 9,12)\}$.
(ii) When $L=(\infty, 0,1,2,3)+(\infty, 4,5,6,7)+(\infty, 8,9,10,11), B=A \cup B_{2}$ where $B_{2}=$ $\{(10,6, \infty, 9,12,5),(5,2,10, \infty, 13,3),(3,11,12,8,1,4),(1,3,12,4,13,5),(5,8,6,11,2,7)\}$.
(iii) When $L=(\infty, 0,1,2,3)+(\infty, 4,5,6), B=A \cup B_{3}$ where $B_{3}=\{(7,5,8,6,11,2)$, $(11, \infty, 10,2,5,3),(10,6,7, \infty, 13,5),(9,10,11,12,3,13),(1,8, \infty, 9,12,4),(3,4,13,12,5,1)\}$.

Lemma 2.6 Let $V\left(K_{17}\right)=Z_{16} \cup\{\infty\}$. There exists a 6 -cycle system B of $G=K_{17}-L$, where L is a nearly 2-regular subgraph of K_{17} and $|E(G)|$ is divisible by 6 .

Proof (i) When $L=(\infty, 0,1,2,3)+(\infty, 4,5,6,7), B=\{(9,2,6,1,7,3),(11, \infty, 10,2,5,3)$, $(4,0,7,9,1,11),(1, \infty, 8,2,13,3),(7,5,8,6,11,2),(3,8,11,9,0,6),(6, \infty, 9,12,7,13),(12,5,10,7$, $4,2),(5,0,14,12,1,15),(8,0,13,14,9,15),(4,8,1,10,15,6),(5,1,13,15,7,14),(11,14,6,10,9,13)$, $(10,6,14,11,13,9),(13,4,14,15,11,5),(4,1,14, \infty, 5,9),(11,7,8,9,6,12),(10,8,13,12,3,4),(0$, $3,14,2, \infty, 15),(0,11,10,13, \infty, 12),(2,0,10,12,4,15)\}$.
(ii) When $L=4 C_{4}, B=B_{1} \bigcup B_{2} \bigcup B_{3}$. Let $K_{17}-4 C_{4}=\left(K_{13}-3 C_{4}\right)+K_{4,6}+\left(K_{4,6}+K_{5}-\right.$ C_{4}), where $V\left(K_{13}\right)=\left(Z_{16} \backslash Z_{4}\right) \cup\{\infty\}, V\left(K_{4,6}\right)=Z_{4} \bigcup\left(Z_{16} \backslash Z_{10}\right)$, and $V\left(K_{4,6}+K_{5}-C_{4}\right)=$ $Z_{10} \cup\{\infty\} . \quad B_{1}$ is a 6 -cycle system of $K_{13}-3 C_{4}$ by Lemma 2.4 (xiii) and (xiv). B_{2} is a 6 -cycle system of $K_{4,6}$ by Theorem 1. $B_{3}=\{(0, \infty, 2,9,1,8),(0,9,3,8,2,5),(1,5,3,6,2,4)$, $(1, \infty, 3,7,0,6),(2,0,4,3,1,7)\}$ is a 6 -cycle system of $K_{5}+K_{4,6}-C_{4}$ where $C_{4}=(0,1,2,3)$, $V\left(K_{5}\right)=Z_{4} \cup\{\infty\}$ and $V\left(K_{4,6}\right)=Z_{4} \bigcup\left(Z_{10} \backslash Z_{4}\right)$. (When $C_{4}=(\infty, 1,2,3)$, the method can also be used).

The method in Lemma 2.6 will be used in Lemma 2.7.
Lemma 2.7 Let $V\left(K_{19}\right)=Z_{18} \cup\{\infty\}$. There exists a 6 -cycle system B of $G=K_{19}-L$, where L is a nearly 2-regular subgraph of K_{19} and $|E(G)|$ is divisible by 6 .

Proof (i) When $L=C_{5} \bigcup C_{5} \bigcup C_{5}, B=B_{1} \bigcup B_{2} \bigcup B_{3} . B_{1}$ is a 6 -cycle system of $K_{15}-3 C_{5}$ by (i) and (ii) of Lemma 2.5. B_{2} is a 6 -cycle system of $K_{4,12}$ by Theorem 1. $B_{3}=\{(0,4,1, \infty, 3,2)$, $(2,4,3,5,0,1),(3,0, \infty, 2,5,1)\}$ is a 6 -cycle system of $K_{5}+K_{4,2}$, where $V\left(K_{5}\right)=Z_{4} \bigcup\{\infty\}$ and $V\left(K_{4,2}\right)=Z_{4} \bigcup\{4,5\}$.
(ii) When $L=(\infty, 0,1,2,3)+(\infty, 4,5,6), B=B_{1} \bigcup B_{2} \bigcup B_{3}$. B_{1} is a 6 -cycle system of $K_{15}-L$ by Lemma 2.5(iii). B_{2} is a 6 -cycle system of $K_{4,12}$ by Theorem 1. $B_{3}=\{(0,4,1, \infty, 3,2)$, $(2,4,3,5,0,1),(3,0, \infty, 2,5,1)\}$ is a 6 -cycle system of $K_{5}+K_{4,2}$ where $V\left(K_{5}\right)=Z_{4} \bigcup\{\infty\}$ and $V\left(K_{4,2}\right)=Z_{4} \bigcup\{4,5\}$.

Lemma 2.8 Let $V\left(K_{21}\right)=Z_{20} \bigcup\{\infty\}$. There exists a 6-cycle system B of $G=K_{21}-L$, where
L is a nearly 2-regular subgraph of K_{21} and $|E(G)|$ is divisible by 6 .
Proof (i) When $L=2 C_{5}+2 C_{4}, B=B_{1} \bigcup B_{2} . B_{1}$ is a 6 -cycle system of $K_{10,6}$ by Theorem 1 . $B_{2}=\{(1, \infty, 2,11,3,10),(\infty, 5,11,6,10,4),(7, \infty, 8,11,9,10),(6, \infty, 9,3,4,0),(0,10,5,8,1,11)$, $(2,10,8,3,7,0),(4,11,7,5,3,1),(0,3,6,1,9,5),(1,5,2,8,9,7),(2,7,8,4,9,6),(0,9,2,4,6,8)\}$ is a 6 -cycle system of $K_{11}+K_{10,2}-\left(C_{5}+C_{4}\right)$, where $C_{5}+C_{4}=(\infty, 0,1,2,3)+(4,5,6,7), V\left(K_{11}\right)=$ $Z_{10} \bigcup\{\infty\}$ and $V\left(K_{10,2}\right)=Z_{10} \bigcup\{10,11\}$ (The construction can also be used for other form of $C_{5} \bigcup C_{4}$. When $V\left(K_{11}\right)=\left(Z_{20} \backslash Z_{10}\right) \bigcup\{\infty\}, V\left(K_{10,2}\right)=Z_{10} \bigcup\{18,19\}$, there also exists a 6 -system B_{2} of $K_{11}+K_{10,2}-\left(C_{5}+C_{4}\right)$, where $\left.V\left(C_{5}+C_{4}\right)=\left(Z_{20} \backslash Z_{10}\right) \bigcup\{\infty\}\right)$.
(ii) When $L=4 C_{5}+C_{4}, B=B_{1} \bigcup B_{2} \bigcup B_{3}^{i}, i=1,2,3$. B_{1} is a 6 -cycle system of $K_{15}-3 C_{5}$ by Lemma $2.5(\mathrm{i}) . B_{2}$ is a 6 -cycle system of $K_{6,12}$ by Theorem 1 where $V\left(K_{6,12}\right)=K\left(Z_{6} \bigcup\{i \mid 8 \leq\right.$ $i \leq 19\}$. Let $B_{3}^{1}=\{(1, \infty, 5,0,4,3),(2, \infty, 4,5,3,6),(0,6,1,4,2,7),(1,5,2,0,3,7)\}, B_{3}^{2}=$ $\{(1, \infty, 5,0,7,2),(1,7,4,0,2,3),(3,7,5,1,4,6),(2,4,3,0,6,5)\}$, and $B_{3}^{3}=\{(0,6,5,1, \infty, 2),(0, \infty$, $4,3,2,7),(1,7,4,5,3,6),(0,5,2,4,1,3)\}$. When $C_{5}+C_{4}=(\infty, 0,1,2,3)+(4,6,5,7), B_{3}^{1}$ is a 6-cycle system of $K_{7}+K_{6,2}-\left(C_{5}+C_{4}\right)$, where $V\left(K_{7}\right)=Z_{6} \bigcup\{\infty\}$ and $V\left(K_{6,2}\right)=Z_{6} \bigcup\{6,7\}$. When $C_{5}+C_{4}=(\infty, 0,1,6,2)+(\infty, 4,5,3), B_{3}^{2}$ is a 6 -cycle system of $K_{7}+K_{6,2}-\left(C_{5}+C_{4}\right)$, where $V\left(K_{7}\right)=Z_{6} \bigcup\{\infty\}, V\left(K_{6,2}\right)=Z_{6} \bigcup\{6,7\}$. When $C_{5}+C_{4}=(0,1,2,6,4)+(\infty, 5,7,3), B_{3}^{3}$ is a 6 -cycle system of $K_{7}+K_{6,2}-\left(C_{5}+C_{4}\right)$, where $V\left(K_{7}\right)=Z_{6} \bigcup\{\infty\}, V\left(K_{6,2}\right)=Z_{6} \bigcup\{6,7\}$.

Lemma 2.9 Let $V\left(K_{23}\right)=Z_{22} \bigcup\{\infty\}$. There exists a 6 -cycle system B of $G=K_{23}-L$, where L is a nearly 2-regular subgraph of K_{23} and $|E(G)|$ is divisible by 6 .

Proof (i) When $L=3 C_{5}+C_{4}, B_{1}$ is a 6-cycle system of $K_{19}-3 C_{5}$ by Lemma 2.7(i). B_{2} is a 6 -cycle system of $K_{4,12}$ by Theorem 1. $B_{3}=\{(0, \infty, 2,9,1,8),(0,9,3,8,2,5),(1,5,3,6,2,4)$, $(1, \infty, 3,7,0,6),(2,0,4,3,1,7)\}$ is a 6 -cycle system of $K_{5}+K_{4,6}-C_{4}$, where $C_{4}=(0,1,2,3)$ (The construction can also be used when $C_{4}=(\infty, 1,2,3)$).
(ii) When $L=5 C_{5}$, let $B=B_{1} \bigcup B_{2} \bigcup B_{3}$ where B_{1} is a 6 -cycle system of $K_{15}-3 C_{5}$ by Lemma $2.5(\mathrm{i})$ and $V\left(K_{15}\right)=\left(Z_{22} \backslash Z_{8}\right) \bigcup\{\infty\}, B_{2}$ is a 6 -cycle system of $K_{8,12}$ by Theorem 1 and $B_{3}=\{(1, \infty, 2,9,3,8),(6,2,7,1,9,0),(5, \infty, 6,9,7,8),(4,9,5,7,0,3),(0,8,4,1,5,2)$, $(4,0,5,3,1,6),(2,8,6,3,7,4)\}$ is a 6 -cycle system of $K_{9}+K_{8,2}-2 C_{5}$, where $2 C_{5}=(\infty, 0,1,2,3)+$ $(\infty, 4,5,6,7), V\left(K_{9}\right)=Z_{8} \bigcup\{\infty\}$, and $V\left(K_{8,2}\right)=Z_{8} \bigcup\{8,9\}$.

Lemma 2.10 Let $V\left(K_{25}\right)=Z_{24} \bigcup\{\infty\}$. There exists a 6 -cycle system of $G=K_{25}-L$, where L is a nearly 2-regular subgraph of K_{25} and $|E(G)|$ is divisible by 6 .

Proof (i) When $L=2 C_{5}+2 C_{4}, B=B_{1} \bigcup B_{2} \bigcup B_{3} . B_{1}$ is a 6 -cycle system of $K_{21}-\left(2 C_{5}+2 C_{4}\right)$ by Lemma 2.8(i). B_{2} is a 6 -cycle system of $K_{4,3}+K_{4}$, where $V\left(K_{4}\right)=\{20,21,22,23\}$ and $V\left(K_{4,3}\right)=\{20,21,22,23\} \bigcup\{\infty, 18,19\} . B_{3}=\{(20, \infty, 23,18,22,21),(21, \infty, 22,20,23,19),(20$, $19,22,23,21,18)\}$ is a 6 -cycle system of $K_{4,18}$ by Theorem 1 .
(ii) When $L=4 C_{5} \bigcup C_{4}, B=B_{1} \bigcup B_{2} \bigcup B_{3}$. B_{1} is a 6 -cycle system of $K_{15}-3 C_{5}$ by Lemma 2.5(i) where $V\left(K_{15}\right)=\left(Z_{24} \backslash Z_{10}\right) \bigcup\{\infty\} . B_{2}$ is a 6 -cycle system of $K_{10,12}$ by Theorem

1 where $V\left(K_{10,12}\right)=Z_{10} \bigcup\left(Z_{24} \backslash Z_{12}\right) . B_{3}=\{(1, \infty, 5,0,11,3),(4, \infty, 7,3,2,0),(8, \infty, 9,7,0,6)$, $(3,0,9,4,2,10),(8,0,10,5,1,4),(5,3,9,6,4,11),(6,3,8,7,1,10),(7,4,10,8,5,2),(7,5,9,11,1,6)$, $(8,1,9,2,6,11),(8,2,11,7,10,9)\}$ is a 6 -cycle system of $K_{10,3}+K_{10}-\left(C_{4}+C_{5}\right)$, where $V\left(K_{10,3}\right)=$ $Z_{10} \bigcup(\{\infty, 10,11\}), V\left(K_{10}\right)=Z_{10}$, and $C_{4}+C_{5}=(\infty, 0,1,2)+(\infty, 3,4,5,6)$ (The construction can also be used for other form of $\left.C_{4}+C_{5}\right)$.

Lemma 2.11 Let $V\left(K_{29}\right)=Z_{28} \bigcup\{\infty\}$. There exists a 6 -cycle system B of $G=K_{29}-\left(4 C_{5}+\right.$ $2 C_{4}$), where L is a nearly 2-regular subgraph of K_{29} and $|E(G)|$ is divisible by 6 .

Proof Let $B=B_{1} \bigcup B_{2} \bigcup B_{3} . B_{1}$ is a 6 -cycle system of $K_{25}-\left(4 C_{5}+C_{4}\right)$ by Lemma 2.10(ii) where $V\left(K_{25}\right)=\left(Z_{28} \backslash Z_{4}\right) \bigcup\{\infty\}$. B_{2} is a 6 -cycle system of $K_{4,8}$ by Theorem 1 where $V\left(K_{4,8}\right)=$ $Z_{4} \bigcup\left(Z_{28} \backslash Z_{10}\right) . B_{2}=\{(0, \infty, 2,9,1,8),(0,9,3,8,2,5),(1,5,3,6,2,4),(1, \infty, 3,7,0,6),(2,0,4,3$, $1,7)\}$ is a 6 -cycle system of $K_{5}+K_{4,6}-C_{4}$, where $C_{4}=(0,1,2,3), V\left(K_{5}\right)=Z_{4} \bigcup\{\infty\}$, and $V\left(K_{4,6}\right)=Z_{4} \bigcup\left(Z_{10} \backslash Z_{4}\right)$ (The construction can also be used when $C_{4}=(\infty, 1,2,3)$).

3. Some special cases

In this section, we provide some special 6-cycle systems which will be used in the proof of Theorem 4.1.

Lemma 3.1 (i) There exists a 6-cycle system B_{1} of $G=K_{7}+K_{6,2}+(\infty, a)+(\infty, b)-[(0, a)+$ $(0, b)]-(\infty, 1,2)$, where $V\left(K_{6,2}\right)=\{c, 1,2,3,4,5\} \bigcup\{a, b\}$ and $V\left(K_{7}\right)=\{1,2,3,4,5, c, \infty\}$.
(ii) There exists a 6-cycle system B_{2} of $G=K_{7}+K_{6,2}+(\infty, n-2)+(\infty, n-3)-[(0, n-$ $2)+(0, n-3)]-(1,2,3)$, where $V\left(K_{7}\right)=Z_{6} \bigcup\{\infty\}$ and $V\left(K_{6,2}\right)=Z_{6} \bigcup\{n-2, n-3\}$.

Proof We give the proof by direct construction of $B_{i}, i=1,2$, in the following two cases.
(i) Let $B_{1}=\{(c, \infty, 3,5, a, 4),(4, \infty, 5, c, 1, b),(3, c, 2,5,4,1),(a, \infty, b, 2,4,3),(1, a, 2,3, b, 5)\}$.
(ii) Let $B_{2}=\{(3, n-3,5, n-2,4,0),(1, n-3, \infty, 4,2, n-2),(3, n-2, \infty, 0,1,5),(2,0,5,4,1, \infty)$, $(3,4, n-3,2,5, \infty)\}$.

Lemma 3.2 (i) There exists a 6 -cycle system B_{1} of $G=K_{7}+K_{6,4}+(\infty, n-2)+(\infty, n-$ $3)+(\infty, n-4)+(\infty, n-5)-[(5, n-2)+(5, n-3)+(4, n-4)+(4, n-5)]-(\infty, 1,2)$, where $V\left(K_{7}\right)=Z_{6} \bigcup\{\infty\}$ and $V\left(K_{6,4}\right)=Z_{6} \bigcup\{n-2, n-3, n-4, n-5\}$.
(ii) There exists a 6 -cycle system B_{2} of $G=K_{7}+K_{6,4}+(\infty, n-2)+(\infty, n-3)+(\infty, n-$ $4)+(\infty, n-5)-[(5, n-2)+(5, n-3)+(4, n-4)+(4, n-5)]-(1,2,3)$, where $V\left(K_{7}\right)=Z_{6} \bigcup\{\infty\}$ and $V\left(K_{6,4}\right)=Z_{6} \bigcup\{n-2, n-3, n-4, n-5\}$.
(iii) There exists a 6 -cycle system B_{3} of $G=K_{7}+K_{6,4}-[(1,2)+(2,3)+(3,4)+(0,1)]+(0,4)$, where $V\left(K_{7}\right)=\{1,2,3, n-2, n-3, n-4, \infty\}$ and $V\left(K_{6,4}\right)=\{1,2,3, n-2, n-3, n-4\} \bigcup\{0,4,5,6\}$.

Proof We give the proof by direct construction of $B_{i}, 1 \leq i \leq 3$ by three cases as follows.
(i) Let $B_{1}=\{(0, n-2, \infty, n-3,4,3)$, $(n-2,4,1,5,3,2)$, $(n-2,3, n-4,0, n-3,1)$, $(5, n-4, \infty, 0,2, n-5),(n-3,3, n-5,0,4,2),(1,0,5,4, \infty, n-5),(\infty, 5,2, n-4,1,3)\}$.
(ii) Let $B_{2}=\{(0, n-2, \infty, n-3,4,3),(1, n-4,2,5,3, \infty),(n-2,3, n-4,0, n-3,1)$,
$(5, n-4, \infty, 0,2, n-5),(n-3,3, n-5,0,4,2),(1,0,5,4$,
$\infty, n-5),(2, n-2,4,1,5, \infty)\}$.
(iii) Let $B_{3}=\{(3,1, n-2,2, n-3, n-4),(n-3,1, n-4,2, \infty, n-2),(4, n-2, n-4, \infty, n-3,0)$, $(n-2,3, n-3,5, n-4,0),(6, n-4,4,1, \infty, 3),(5,1,6,2,0,3),(4,2,5, n-2,6, n-3)\}$.

Lemma 3.3 (i) There exists a 6 -cycle system B_{1} of $G=K_{7}+K_{6,6}+(\infty, n-2)+(\infty, n-$ $3)+(\infty, n-4)+(\infty, n-5)+(\infty, n-6)+(\infty, n-7)-[(3, n-2)+(3, n-3)+(4, n-$ $4)+(4, n-5)+(5, n-6)+(5, n-7)]-(\infty, 1,2)$, where $V\left(K_{7}\right)=Z_{6} \bigcup\{\infty\}$ and $V\left(K_{6,6}\right)=$ $Z_{6} \bigcup\{n-2, n-3, n-4, n-5, n-6, n-7\}$.
(ii) There exists a 6 -cycle system B_{2} of $G=K_{7}+K_{6,6}+[(\infty, n-2)+(\infty, n-3)+(\infty, n-4)+$ $(\infty, n-5)+(\infty, n-6)+(\infty, n-7)]-[(3, n-2)+(3, n-3)+(4, n-4)+(4, n-5)+(5, n-6)+(5, n-$ $7)]-(1,2,3)$, where $V\left(K_{7}\right)=Z_{6} \bigcup\{\infty\}$ and $V\left(K_{6,6}\right)=Z_{6} \bigcup\{n-2, n-3, n-4, n-5, n-6, n-7\}$.
(iii) There exists a 6 -cycle system B_{3} of $G=K_{7}+K_{6,6}+(\infty, n-2)+(\infty, n-3)+(\infty, n-4)+$ $(\infty, n-5)]-[(3, n-2)+(3, n-3)+(4, n-4)+(4, n-5)+(6, \infty)]-[(\infty, 0)+(0,1)+(1,2)+(2,6)$, where $V\left(K_{7}\right)=Z_{6} \bigcup\{\infty\}$ and $\left.V\left(K_{6,6}\right)=Z_{6} \bigcup\{n-2, n-3, n-4, n-5,6,7\}\right)$.
(iv) There exists a 6 -cycle system B_{4} of $G=K_{7}+K_{6,8}+[(\infty, n-2)+(\infty, n-3)+(\infty, n-$ $4)+(\infty, n-5)+(\infty, n-6)+(\infty, n-7)+(\infty, n-8)+(\infty, n-9)]-[(3, n-2)+(3, n-3)+(4, n-$ $4)+(4, n-5)+(5, n-6)+(5, n-7)+(2, n-8)+\{2, n-9\}]-(\infty, 1,2)$, where $V\left(K_{7}\right)=Z_{6} \bigcup\{\infty\}$ and $V\left(K_{6,8}\right)=Z_{6} \bigcup\{n-2, n-3, n-4, n-5, n-6, n-7, n-8, n-9\}$.
(v) There exists a 6 -cycle system B_{5} of $G=K_{7}+K_{6,8}+[(\infty, n-2)+(\infty, n-3)+(\infty, n-$ $4)+(\infty, n-5)+(\infty, n-6)+(\infty, n-7)-[(3, n-2)+(3, n-3)+(4, n-4)+(4, n-5)+$ $(5, n-6)+(5, n-7)]-[(\infty, 0)+(1,2)+(0,1)+(2,6)+(6, \infty)]$, where $V\left(K_{7}\right)=Z_{6} \bigcup\{\infty\}$ and $V\left(K_{6,8}\right)=Z_{6} \bigcup\{6,7, n-2, n-3, n-4, n-5, n-6, n-7\}$.
(vi) There exists a 6 -cycle system B_{6} of $G=K_{7}+K_{6,4}+[(\infty, 8)+(\infty, 9)]-[(5,8)+(5,9)]-$ $[(1,7)+(1,2)+(2,3)+(3,6)]+(6,7)$, where $V\left(K_{7}\right)=Z_{6} \bigcup\{\infty\}$ and $V\left(K_{6,4}\right)=Z_{6} \bigcup\{6,7,8,9\}$.

Proof We give the proof by direct construction of $B_{i}, 1 \leq i \leq 6$ by six cases as follows.
(i) Let $B_{1}=\{(0, n-2, \infty, n-3,1,3)$, $(5, n-4, \infty, 0, n-7,4)$, $(2, n-5,5, n-2,4, n-6)$, $(1, n-4,3,4,0, n-6),(3, n-6, \infty, 5,0, n-5),(1, n-5, \infty, 3,2, n-2),(n-7,3,5, n-3,0,2)$, $(1,0, n-4,2, n-3,4),(5,1, n-7, \infty, 4,2)\}$.
(ii) Let $B_{2}=\{(2, n-6,4, n-2,1, \infty),(5, n-4, \infty, 0, n-7,4),(n-3,1, n-5,2, n-2, \infty)$, $(1, n-4,3,4,0, n-6),(3, n-6, \infty, 5,0, n-5),(3, \infty, n-5,5, n-2,0),(n-7,3,5, n-3,0,2)$, $(1,0, n-4,2, n-3,4),(5,1, n-7, \infty, 4,2)\}$.
(iii) Let $B_{3}=\{(0,7,5,3,1, n-2),(1,7,3, n-4,2, n-3),(2,7,4,3, n-5,5),(0,6, \infty, 4,5, n-$ $3),(4, n-3, \infty, n-4,5, n-2),(0, n-4,1, \infty, n-5,2),(2, n-2, \infty, 3,0,4),(2,3,6,1,5, \infty)$, $(4,6,5,0, n-5,1)\}$.
(iv) Let $B_{4}=\{(0, n-2, \infty, 4, n-8,2),(5, n-4, \infty, 0, n-7,4),(2, n-5,5, n-2,4, n-6)$, $(1, n-4,3,4,0, n-6),(3, \infty, 5,0, n-5),(1, n-5, \infty, 3,2, n-2),(n-7, \infty, n-3,5, n-9,1)$, $(1,0, n-4,2, n-3,4),(0, n-3,1,3,5, n-8),(1, n-8,3, n-9,2,5),(0, n-9,4,2, n-7,3)$.
(v) Let $B_{5}=\{(0,7,5,3,1, n-2),(1,7,3, n-4,2, n-3),(2,7,4,3, n-5,5),(0,6, \infty, 4,5, n-3)$, $(4, n-3, \infty, n-4,5, n-2),(0, n-4,1, \infty, n-5,2),(2, n-2, \infty, 3,0,4),(0, n-5,1, n-6, \infty, 5)$,
$(2, \infty, n-7,0, n-6,3),(2, n-6,4,6,1, n-7),(4,1,5,6,3, n-7)\}$.
(vi) Let $B_{6}=\{(2,6,5,4,1,0),(4,6,7,2,5,0),(1,5,7,3,4,8),(0,7,4,9, \infty, 3),(8,3,9,2,4, \infty)$, $(1, \infty, 2,8,0,9)\}$.

Set $A=\{(2,3,1,4,8,0),(7,5,8,6,11,2),(3,8,11,9,0,6),(9,8,1,5,10,4),(1, \infty, 7,11,0,10)$, $(9,2,6,1,7,3),(11, \infty, 10,2,5,3),(0,5,9,6,10,3),(4, \infty, 9,10,8,2),(5,6,4,7,10,11),(4,0,7,9,1$, $11)\}$. A will be used in Lemmas 3.4(ii) and 3.4(iii).

Lemma 3.4 (i) There exists a 6 -cycle system B_{1} of $G=K_{13}+K_{12,2}+[(\infty, 12)+(\infty, 13)]-$ $[(1,12)+(1,13)]-3 C_{4}$, where $V\left(K_{13}\right)=Z_{12} \bigcup\{\infty\}$ and $V\left(K_{12,2}\right)=\left(Z_{12},\{12,13\}\right)$.
(ii) There exists a 6-cycle system B_{2} of $G=K_{13}+K_{12,4}+[(\infty, 12)+(\infty, 13)+(\infty, 14)+$ $(\infty, 15)]-[(6,12)+(6,13)+(0,14)+(0,15)]-3 C_{4}$, where $V\left(K_{13}\right)=Z_{12} \bigcup\{\infty\}$ and $V\left(K_{12,4}\right)=$ $Z_{12} \bigcup\{12,13,14,15\}$.
(iii) There exists a 6 -cycle system B_{3} of $G=K_{13}+K_{12,6}+[(\infty, 12)+(\infty, 13)+(\infty, 14)+$ $(\infty, 15)+(\infty, 16)+(\infty, 17)]-[(0,12)+(0,13)+(5,14)+(5,15)+(8,16)+(8,17)]-3 C_{4}$, where $V\left(K_{13}\right)=Z_{12} \bigcup\{\infty\}$ and $V\left(K_{12,6}\right)=Z_{12} \bigcup\{12,13,14,15,16,17\}$.

Proof We give the proof by direct construction of $B_{i}, 1 \leq i \leq 3$ by three cases as follows.
(i) $B_{1}=\{(2,3,1,4,8,0),(7,5,8,6,11,2),(3,8,11,9,0,6),(9,8,1,5,10,4),(1, \infty, 7,11,0$, 10), $(11, \infty, 10,2,5,3),(4, \infty, 9,10,8,2),(12,8,13,5,0,7),(12,0,13,4,7,9),(4,0,3,13,10,12)$, $(11,4,6,5,9,1),(11,5,12,6,9,13),(2,9,3,10,7,13),(1,7,3,12,2,6),(10,6,13,1,12,11)\}$.
(ii) $B_{2}=A \bigcup\{(12,0,13,2,14,1),(14,0,15,2,12,3),(13,1,15,5,12,4),(13,3,15,4,14,5)$, $(12,6,13,8,14,7),(14,6,15,8,12,9),(13,7,15,11,12,10),(13,9,15,10,14,11)\}$.
(iii) $\quad B_{3}=A \bigcup\{(12,0,13,1,15,4),(14,0,15,2,16,4),(16,0,17,2,12,3),(13,2,14,5,15,3)$, $(14,3,17,9,12,6),(12,1,16,7,13,5),(13,4,17,7,15,6),(16,8,17,11,12,10),(7,12,8,15,10,14)$, $(13,8,14,11,15,9),(10,13,11,16,5,17),(6,16,9,14,1,17)\}$.

Set $D=\{(2,5,11,4,14, \infty),(0,3,4,7,1,5),(13,6,16,12,17, \infty),(9, n-3,13,14,11,3)$, $(10,12,9,14,16, \infty),(11,13,16,2,15, \infty),(1,4,9,16,8, \infty),(0,2,6,12,1,9),(1,3,7,13,2,10),(3$, $5,9,15,4,12),(4,6,10,16,5,13),(5,7,11,17,6,14),(6,8,12,0,7,15),(0,4,10,3,8,11),(0,17,1,6$, $9,8),(2,4, n-3,3, n-2,7)\}$. D will be used in Lemmas 3.5(i)-3.5(iii).

Lemma 3.5 (i) There exists a 6-cycle system B_{1} of $G=K_{19}+K_{18,2}+[(\infty, n-2)+(\infty, n-$ $3)]-3 C_{5}-[(17, n-2)+(17, n-3)]$, where $3 C_{5}=(\infty, 0,1,2,3)+(4,5,6,7,8)+(9,10,11,12,13)$, $V\left(K_{19}\right)=Z_{18} \bigcup\{\infty\}$ and $V\left(K_{18,2}\right)=\left(Z_{18},\{n-2, n-3\}\right)$.
(ii) There exists a 6-cycle system B_{2} of $G=K_{19}+K_{18,4}+[(\infty, n-2)+(\infty, n-3)+$ $(\infty, n-4)+(\infty, n-5)]-[(17, n-2)+(17, n-3)+(8, n-4)+(8, n-5)]-3 C_{5}$, where $3 C_{5}=(\infty, 0,1,2,3)+(\infty, 4,5,6,7)+(9,10,11,12,13), V\left(K_{19}\right)=Z_{18} \bigcup\{\infty\}$ and $V\left(K_{18,4}\right)=$ ($\left.Z_{18},\{n-2, n-3, n-4, n-5\}\right)$.
(iii) There exists a 6-cycle system B_{3} of $G=K_{19}+K_{18,6}+[(\infty, n-2)+(\infty, n-3)+$ $(\infty, n-4)+(\infty, n-5)+(\infty, n-6)+(\infty, n-7)]-[(17, n-2)+(17, n-3)+(8, n-4)+(8, n-$ $5)+(13, n-6)+(13, n-7)]-3 C_{5}$, where $V\left(K_{18,6}\right)=Z_{18} \bigcup\{n-2, n-3, n-4, n-5, n-6, n-7\}$, $V\left(K_{19}\right)=Z_{18} \bigcup\{\infty\}$ and $3 C_{5}=(\infty, 0,1,2,3)+(\infty, 4,5,6,7)+(\infty, 9,10,11,12)$.

Proof We give the proof by direct construction of $B_{i}, 1 \leq i \leq 3$ by three cases as follows.
(i) $B_{1}=D \bigcup\{(12,14,17,3,6, \infty),(4, \infty, n-3,2,11, n-2),(7, \infty, n-2,0,10, n-3)$, $(16,4,17,2,8, n-3),(9,2,14,0,15, n-2),(12,2, n-2,6, n-3,5),(8,5,17,13,1,15),(10,5, n-$ $2,14,8,17),(8,10,14,15,12, n-2),(13,10, n-2,1,11,15),(13, n-2,16,7,14,3),(1,8,13,0, n-$ $3,14),(6,0,16,1, n-3,11),(12,7,17,16,15, n-3),(3,16,11,9,17,15),(9,7,10,15,5, \infty)\}$.
(ii) $\quad B_{2}=D \bigcup\{(9,7,10,15,5, \infty),(n-3, \infty, n-4,1,13,0),(n-2, \infty, n-5,1,14,0)$, $(6,0, n-5,2,9,11),(10,0,16, n-5,4, n-2),(15,0, n-4,2, n-3,14),(11,1, n-3,7,12, n-2)$, $(8,1, n-2,5, n-4,4),(15,1,16,7, n-4,11),(2,11, n-5,10,13, n-2),(n-3,6, n-4,17,10,5)$, $(14,3, n-4,15,17,2),(n-5,13, n-4,16,17,9),(16,11, n-3,15,13,3),(12,2,8,7,17,5),(8,5, n-$ $5,7,14,10),(15,3, n-5,6, n-2,8),(16,4,17,13,8, n-3),(8,17, n-5,15, n-2,14),(9, n-$ $2,16,15,12, n-4),(n-3,12, n-5,14, n-4,10)\}$.
(iii) $\quad B_{3}=D \bigcup\{(n-3, \infty, n-4,1,13,0),(n-2, \infty, n-5,1,14,0),(6,0, n-5,2,9,11)$, $(10,0,16, n-5,4, n-2),(15,0, n-4,2, n-3,14),(11,1, n-3,7,12, n-2),(5, \infty, n-7,0, n-6,10)$, $(6, \infty, n-6,14,3, n-4),(8,1, n-6,12,14,7),(15,1, n-7,3, n-5,13),(16,1, n-2,8,13, n-4)$, $(17,13, n-2,15,10,14),(8,2, n-6,3,17,10),(8,4, n-7,5,15,17),(14,2,17, n-6,15, n-7)$, $(8, n-7,12,5, n-5,14),(13,3,16,17, n-5,9),(17,4, n-6,16,11, n-7),(n-3,8, n-6,11,15,10)$, $(6, n-7,10, n-4,7, n-5),(n-3,6, n-6,7,17,5),(6,3,15,8,5, n-2),(11,2, n-7,7,9, n-4)$, $(n-3,11, n-5,10,7,16),(n-4,5, n-6,9, n-2,14),(15, n-3,10,13,12, n-5),(9,17, n-$ $4,15,16, n-7),(2, n-2,16,4, n-4,12)\}$.

4. The main result

Now we are in the position to prove Theorem 4.1.
We will assume $|V(L)| \geq n-4$. Since if $|V(L)| \leq n-5$, we can get a C_{6} such that $V\left(C_{6}\right) \cap V(L) \subseteq\{\infty\}$ and $V\left(C_{6}\right) \subseteq V\left(K_{n}\right)$. Let $L^{*}=C_{6}+L$. A 6 -cycle system of $K_{n}-L$ is equal to a 6 -cycle system of $K_{n}-L^{*}$ and C_{6}. If $\left|V\left(L^{*}\right)\right| \leq n-5$, repeat the process until $\left|V\left(L^{*}\right)\right| \geq n-4$.

Theorem 4.1 Let L be a nearly 2-regular graph in the complete graph K_{n} and $|V(L)|=n-4$. There exists a 6-cycle system of $K_{n}-L$ for positive integer n satisfying the following three conditions: (i) n is odd, (ii) 6 divides $\left|E\left(K_{n}-L\right)\right|$ and (iii) $n \geq 7$.

Proof We use induction method to prove the result. When $n \leq 13$, the proof can be seen in Lemma 2.1-2.4. Suppose that for any odd $z<n$ and any nearly 2-regular leave $L_{1} \subseteq L$ of K_{z} for which 6 divides $\left|E\left(K_{z}-L_{1}\right)\right|$, there exists a 6 -cycle system of $K_{z}-L_{1}$. In the following, we shall show there exists a 6 -cycle system of $K_{n}-L$ by five cases.

Case $1 L$ contains at least one C_{3}.
Without lose of generality, suppose $C_{3}=(1,2,3)$, or $C_{3}=(\infty, 1,2)$. Let $L=L_{1}+C_{3}$. We can get $K_{n}-L=\left(K_{n-6}-L_{1}\right)+K_{6, n-7}+\left(K_{7}-C_{3}\right)$ where $V\left(K_{n-6}\right)=\left(Z_{n-1} \backslash Z_{6}\right) \bigcup\{\infty\}$, $V\left(K_{6, n-7}\right)=Z_{6} \bigcup\left(Z_{n-1} \backslash Z_{6}\right)$ and $V\left(K_{7}\right)=Z_{6} \bigcup\{\infty\}$. Since 6 divides $\left|E\left(K_{n}-L\right)\right|,\left|E\left(K_{6, n-7}\right)\right|$ and $\left|E\left(K_{7}-C_{3}\right)\right|$, then 6 divides $\left|E\left(K_{n-6}-L_{1}\right)\right|$. By induction or Theorem $2, B_{1}$ is a 6 -cycle
system of $K_{n-6}-L_{1} . B_{2}$ is a 6 -cycle system of $K_{6, n-7}$ by Theorem 1. B_{3} is a 6 -cycle system of $K_{7}-C_{3}$ by Theorem 2, where $V\left(C_{3}\right) \subseteq V\left(K_{7}\right)$. Then $B_{1} \bigcup B_{2} \bigcup B_{3}$ is a 6 -cycle system of $K_{n}-E(L)$.

Case $2 L$ contains at least one $C_{m}, m(m \geq 6)$.
Let $C_{m}=(0,1,2,3,4, \ldots, m-2, \infty) \in L$. Then $C_{m}=C_{m-3}+[(0,1)+(1,2)+(2,3)+$ $(3,4)]-(0,4)$ where $C_{m-3}=(0,4,5,6, \ldots, m-2, \infty)$. Let $L=\left(L-C_{m}\right)+C_{m-3}+[(0,1)+(1,2)+$ $(2,3)+(3,4)]-(0,4)=L_{1}+[(0,1)+(1,2)+(2,3)+(3,4)]-(0,4)$ where $L_{1}=\left(L-C_{m}\right)+C_{m-3}$. $K_{n}-L=\left(K_{n-6}-L_{1}\right)+K_{6, n-11}+\left[K_{7}+K_{6,4}-(0,1)-(1,2)-(2,3)-(3,4)+(0,4)\right]$, where $V\left(K_{n-6}\right)=\left(Z_{n-4} \backslash Z_{4}\right) \bigcup\{0, \infty\}, V\left(K_{6, n-11}\right)=A \bigcup\left(Z_{n-4} \backslash Z_{7}\right), V\left(K_{7}\right)=A \bigcup\{\infty\}, K_{6,4}=$ $A \bigcup\{0,4,5,6\}$ and $A=\{1,2,3, n-2, n-3, n-4\}$. Since 6 divides $\left|E\left(K_{n}-L\right)\right|,\left|E\left(K_{6, n-11}\right)\right|$ and $\left|E\left[K_{7}+K_{6,4}-(0,1)-(1,2)-(2,3)-(3,4)+(0,4)\right]\right|$, then 6 divides $\left|E\left(K_{n-6}-L_{1}\right)\right|$. By induction and Theorem $2, B_{1}$ is a 6 -cycle system of $K_{n-6}-L_{1} . B_{2}$ is a 6 -cycle system of $K_{6, n-11}$ by Theorem 1. B_{3} is a 6 -cycle system of $K_{7}+K_{6,4}-(1,2)-(2,3)-(3,4)-(0,1)+(0,4)$ by Lemma 3.2(iii). Then $B_{1} \bigcup B_{2} \bigcup B_{3}$ is a 6 -cycle system of $K_{n}-L$.

Case $3 L$ contains only cycles of length 4.
When $n<21$, since 6 divides $\left|E\left(K_{n}-L\right)\right|$, there exist the following cases:
(1) $n=13, L$ contains three 4 -cycles. This case has been constructed in Lemma 2.4(iii) and 2.4(iv).
(2) $n=17, L$ contains one 4 -cycle, or four 4 -cycles. When L contains one 4 -cycle, we can obtain this 6 -cycle system by Theorem 2. When L contains four 4 -cycles, the proof can be seen in Lemma 2.6(ii). So in the following we assume $n \geq 21$. As long as L meets the condition of the induction, we can construct a 6 -cycle system. So we only consider $3 C_{4}=$ $(\infty, 0,1,2)+(\infty, 3,4,5)+(\infty, 6,7,8)$. Let $L=L_{1}+3 C_{4}$. So $K_{n}-E(L)=\left(K_{n-12}-L_{1}\right)+$ $K_{12, n-13}+\left(K_{13}-3 C_{4}\right)$, where $V\left(K_{n-12}\right)=\left(Z_{n-1} \backslash Z_{12}\right) \bigcup\{\infty\}, V\left(K_{12, n-13}\right)=Z_{12} \bigcup Z_{n-1} \backslash Z_{12}$ and $V\left(K_{13}\right)=Z_{12} \bigcup\{\infty\}$. Since 6 divides $\left|E\left(K_{n}-L\right)\right|,\left|E\left(K_{12, n-13}\right)\right|$ and $\left|E\left(K_{13}-3 C_{4}\right)\right|$, then 6 divides $\left|E\left(K_{n-12}-L_{1}\right)\right|$. By induction or Theorem $2, B_{1}$ is a 6 -cycle system of $K_{n-12}-L_{1}$. B_{2} is a 6 -cycle system of $K_{12, n-13}$ by Theorem 1. B_{3} is a 6 -cycle system of $K_{13}-3 C_{4}$ by Lemma 2.4(iii) and 2.4(iv), where $V\left(3 C_{4}\right) \subseteq V\left(K_{13}\right)$. Then $B_{1} \cup B_{2} \bigcup B_{3}$ is a 6 -cycle system of $K_{n}-E(L)$.

Case $4 L$ contains only cycles of length 5 .
When $n<25$, since 6 divides $\left|E\left(K_{n}-E(L)\right)\right|$, there exist the following cases:
(1) $n=15, L$ contains three 5 -cycles. This case has been constructed in Lemma 2.5(i);
(2) $n=17, L$ contains two 5 -cycles. This case has been constructed in Lemma 2.6(i);
(3) $n=19, L$ contains three 5 -cycles. This case has been constructed in Lemma 2.7(i);
(4) $n=23, L$ contains five 5 -cycles. This case has been constructed in Lemma 2.9(ii).

So in the following we assume $n \geq 25$. Let $L=L_{1}+3 C_{5}$. So $K_{n}-L=\left(K_{n-18}-L_{1}\right)+$ $K_{18, n-19}+\left(K_{19}-3 C_{5}\right)$, where $V\left(K_{n-18}\right)=\left(Z_{n-1} \backslash Z_{18}\right) \bigcup\{\infty\}, V\left(K_{18, n-19}\right)=Z_{18} \bigcup\left(Z_{n-1} \backslash Z_{18}\right)$ and $V\left(K_{19}\right)=Z_{18} \bigcup\{\infty\}$. Since 6 divides $\left|E\left(K_{n}-L\right)\right|,\left|E\left(K_{18, n-19}\right)\right|$ and $\left|E\left(K_{19}-5 C_{5}\right)\right|$, then

6 divides $\left|E\left(K_{n-12}-L_{1}\right)\right|$. By induction or Theorem $2, B_{1}$ is a 6 -cycle system of $K_{n-18}-L_{1}$. B_{2} is a 6 -cycle system of $K(18, n-19)$ by Theorem 1 . B_{3} is a 6 -cycle system of $K_{19}-3 C_{5}$ by Lemma 2.7(i), where $V\left(3 C_{5}\right) \subseteq V\left(K_{19}\right)$. Then $B_{1} \bigcup B_{2} \bigcup B_{3}$ is a 6-cycle system of $K_{n}-E(L)$.

Case $5 L$ contains only cycles of length 4 and 5 .
Case 5.1 L contains one 5-cycle.
Since 6 divides $\left|E\left(K_{n}-L\right)\right|$, we can get the following two cases:
(1) When $n=12 k+3$ or $12 k+7$, there are one 5 -cycle and $3 m+14$-cycles $(k \geq 1,0 \leq m \leq k$. $m, k \in N)$.

We give the proof by induction on k. When $k=1$, and $n=15$ or 19 , we give the proof in Lemma 2.5(iii) and 2.7(ii). Suppose that for $k=n_{0}$ and any nearly 2-regular leave L_{1}, there exists a 6 -cycle system of $K_{12 n_{0}+7}-L_{1}$. When $k=n_{0}+1$, let $L_{1}=L-3 C_{4}$. We can get $K_{12 k+7}-L=K_{12 n_{0}+19}-L=\left(K_{12 n_{0}+7}-L_{1}\right)+K_{12,12 n_{0}+6}+\left(K_{13}-3 C_{4}\right)$, where $V\left(L_{1}\right) \subseteq$ $V\left(K_{12 n_{0}+7}\right)=Z_{12 n_{0}+6} \bigcup\{\infty\}, V\left(K_{12,12 n_{0}+6}\right)=A \bigcup Z_{12 n_{0}+6}, V\left(3 C_{4}\right) \subseteq V\left(K_{13}\right)=A \bigcup\{\infty\}$ and $A=\left\{12 n_{0}+i \mid 7 \leq i \leq 18\right.$. $\left.i \in N\right\}$. Since 6 divides $\left|E\left(K_{n}-L\right)\right|,\left|E\left(K_{12,12 n_{0}+6}\right)\right|$ and $\left|E\left(K_{13}-3 C_{4}\right)\right|$, then 6 divides $\left|E\left(K_{12 n_{0}+19}-L_{1}\right)\right|$. By induction or Theorem $2, B_{1}$ is a 6 -cycle system of $K_{12 n_{0}+7}-L_{1}$, where $L_{1}=L-3 C_{4} . B_{1}$ is a 6 -cycle system of $K_{12,12 n_{0}+6}$ by Theorem 1. B_{2} is a 6 -cycle system of $K_{13}-3 C_{4}$ by Lemma 2.4 (xiii) and 2.4(iv). Then $B_{1} \cup B_{2} \bigcup B_{3}$ is a 6 -cycle system of $K_{12 n_{0}+19}-E(L)$.

The proof of $n=12 k+3$ is similar to that of the case $n=12 k+7$. Since $n=15$, there exists a 6 -cycle system by Lemma 2.5 (iii).
(2) When $n=12 k+11$, there are one 5 -cycle and $3 m+24$-cycles $(k \geq 0,0 \leq m \leq k$. $m, k \in N)$. The proof of this case is similar to that of the case $5.1(1)$. Since $n=11$, there exists a 6 -cycle system by Lemma 2.3(iv).

Case 5.2 L contains two 5 -cycles.
Since 6 divides $\left|E\left(K_{n}-L\right)\right|$, we can get the following two cases:
(1) When $n=12 k+5$, there are two 5 -cycles and $3 m 4$-cycles $(~ k \geq 1,0 \leq m \leq k . m, k \in N)$. The proof is similar to that of the case $5.1(1)$. Since $n=17$, there exists a 6 -cycle system by Lemma 2.6(i).
(2) When $n=12 k+1$ or $12 k+9$, there are two 5 -cycles and $3 m+24$-cycles $(k \geq 1,0 \leq m \leq k$. $m, k \in N)$. The proof is similar to that of the case $5.1(1)$. Since $n=25$ or 21 , there exists a 6 -cycle system by Lemma 2.10(i) or 2.8(i).

Case 5.3 L contains three 5 -cycles.
Since 6 divides $\left|E\left(K_{n}-L\right)\right|$, we can get the following two cases:
(1) When $n=12 k+3$ or $12 k+7$, there are three 5 -cycles and $3 m 4$-cycles $(k \geq 1,0 \leq m \leq k$. $m, k \in N)$. The proof is similar to that of the case $5.1(1)$. Since $n=15$ or 19 , there exists a 6 -cycle system by Lemma 2.5(i) or 2.7(i).
(2) When $n=12 k+11$, there are three 5 -cycle and $3 m+14$-cycles $(k \geq 1,0 \leq m \leq k$. $m, k \in N)$. The proof is similar to that of the case $5.1(1)$. Since $n=23$, there exists a 6 -cycle
system by Lemma 2.9(i).
Case 5.4 L contains at least four 5 -cycles.
When $n<31$, since 6 divides $\left|E\left(K_{n}-L\right)\right|$, we can get the following three cases:
(1) $n=21, L$ contains four 5 -cycles and one 4 -cycles. The 6 -cycle system of this case has been constructed in Lemma 2.8(ii).
(2) $n=25, L$ contains four 5 -cycles and one 4 -cycles. The 6 -cycle system of this case has been constructed in Lemma 2.10(ii).
(3) $n=29, L$ contains four 5 -cycles and two 4 -cycles. The 6 -cycle system of this case has been constructed in Lemma 2.11. So in the following we assume $n \geq 31$.

Let $L=L_{1}+4 C_{5}+C_{4}$. So $K_{n}-L=\left(K_{n-24}-L_{1}\right)+K_{24, n-25}+\left(K_{25}-4 C_{5}-C_{4}\right)$, where $V\left(L_{1}\right) \subseteq V\left(K_{n-24}\right)=\left(Z_{n-1} \backslash Z_{24}\right) \bigcup\{\infty\}, V\left(K_{24, n-25}\right)=Z_{24} \bigcup\left(Z_{n-1} \backslash Z_{24}\right)$ and $V\left(4 C_{5} \bigcup C_{4}\right) \subseteq$ $V\left(K_{25}\right)=Z_{24} \bigcup\{\infty\}$. Since 6 divides $\left|E\left(K_{n}-L\right)\right|,\left|E\left(K_{24, n-25}\right)\right|$ and $\left|E\left(K_{25}-4 C_{5}-C_{4}\right)\right|$, then 6 divides $\left|E\left(K_{n-24}-L_{1}\right)\right|$. By induction B_{1} is a 6 -cycle system of $K_{n-24}-L_{1} . B_{2}$ is a 6 -cycle system of $K_{24, n-25}$ by Theorem 1 where $V\left(K_{24, n-25}\right)=\{n-i, 2 \leq i \leq 25, i \in N.\} \bigcup Z_{n-25} . B_{3}$ is a 6 -cycle system of $K_{25}-4 C_{5}-C_{4}$ by Lemma 2.10(ii). Then $B_{1} \cup B_{2} \bigcup B_{3}$ is a 6 -cycle system of $K_{n}-E(L)$.

Our method will result in complicated classification for the cases of $n-3 \leq|V(L)| \leq n$. To solve the remaining cases, a new method different from ours is needed.

Acknowledgements We appreciate the anonymous referees for their valuable comments which help to improve the paper.

References

[1] C. C. LINDNER, C. A. RODGER. Decomposition into Cycles (II). Wiley, New York, 1992.
[2] C. A. RODGER. Cycle Systems. in: C. J. Colbourn, J. H. Dinitz (Eds.), CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 1996.
[3] B. ALSPACH, H. GAVLAS. Cycle decompositions of K_{n} and $K_{n}-I$. J. Combin. Theory Ser. B, 2001, 81(1): 77-99.
[4] M. SAJNA. Cycle decompositions (III). J. Combin. Des., 2002, 10(1): 27-78.
[5] H. L. FU. C. A. RODGER. Four-cycle systems with two-regular leaves. Graphs Combin., 2001, 17(3): 457-461.
[6] D. J. ASHE, C. A. RODGER, H. L. FU. All 2-regular leaves of partial 6-cycle systems. Ars Combin., 2005, 76: 129-150.
[7] D. J. ASHE, H. L. FU, C. A. RODGER. A solution to the forest leave problem for partial 6-cycle systems. Discrete Math., 2004, 281(1-3): 27-41.
[8] M. COLBY, C. A. RODGER. Cycle decompositions of the line graph of K_{n}. J. Combin. Theory Ser. A, 1993, 62(1): 158-161.
[9] B. A. COX, C. A. RODGER. Cycle systems of the line graph of complete graph. J. Graph Theory, 1996, 21(2): 173-182.
[10] D. SOTTEAU. Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$. J. Combin. Theory Ser. B, 1981, 30(1): 75-81.

[^0]: Received August 28, 2012; Accepted May 17, 2013
 Supported by the National Natural Science Foundation of China (Grant No.11071163).

 * Corresponding author

 E-mail address: liqunpu@zzu.edu.cn (Liqun PU)

