
Journal of Mathematical Research with Applications

Nov., 2013, Vol. 33, No. 6, pp. 653–665

DOI:10.3770/j.issn:2095-2651.2013.06.002

Http://jmre.dlut.edu.cn

All Nearly 2-Regular Leaves of Partial 6-Cycle Systems

Liqun PU1,∗, Hengzhou XU1, Hao SHEN2

1. School of Mathematics and Statistics, Zhengzhou University, Henan 450001, P. R. China;

2. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Abstract Let Kn be a complete graph on n vertices. In this paper, we find the necessary

conditions for the existence of a 6-cycle system of Kn − L for every nearly 2-regular leave L

of Kn. This condition is also sufficient when the number of vertices of L is n− 4.
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1. Introduction

Let V (G) be the vertex set of the graph G and E(G) be the edge set of the graph G. An
m-cycle system of a graph G is an ordered pair (V (G), B), where B is a set of edge-disjoint cycles
of length m, such that each edge of G is contained in exactly one cycle in B. For convenience,
we call B an m-cycle system of a graph G instead of an ordered pair (V (G), B).

There have been many results found on m-cycle systems of G for various graphs G, see
surveys [1, 2]. The existence of an m-cycle system of Kn − I, where I is a 1-factor (called leave)
was solved in [3, 4]. Recently, an m-cycle system of Kn−L, where L is a subgraph of Kn (called
leave) is considered in several papers. This can alternatively be viewed as a partial m-cycle
system of Kn with leave L. A solution of partial 4-cycle system of Kn and a partial 6-cycle
system of Kn with a 2-regular leave can be found in [5, 6], respectively. And the existence of a
partial 6-cycle system of Kn with a forest leave can be found in [7].

In this paper, we shall consider the existence of a partial 6-cycle system of Kn with a nearly
2-regular leave L. It is an extension of [5–7]. Not only is this result of interest in its own right
in the context of history of cycle systems, but, it also arose as a useful tool in studying the cycle
systems of the line graphs of complete multipartite graphs [8, 9].

L is said to be nearly 2-regular of Kn if all vertices in L have degree 2 except for one (named
∞) whose degree is greater than 2, and L need not be a spanning subgraph of Kn. The necessity
of the existence of a partial 6-cycle system of Kn with a nearly 2-regular leave L can be found
in Lemma 1.1.

Lemma 1.1 Let L be a nearly 2-regular subgraph of a complete graph Kn on n vertices. Kn−L
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denotes Kn with a subgraph L removed. The necessary conditions for the existence of a partial

6-cycle systems of Kn with leave L are: (i) n is odd, (ii) 6 divides |E(Kn − L)|, and (iii) n ≥ 7.

Proof The necessity of condition (i) follows from the fact that in a 6-cycle system, each vertex
clearly has even degree. The necessity of condition (ii) follows since each 6-cycle has six edges.
The necessity of condition (iii) is obvious. ¤

In this paper, our main result is Theorem 4.1 which shows that Lemma 1.1 is also sufficient
when the number of vertices of L is n− 4.

The following two theorems are useful in order to prove Theorem 4.1.

Theorem 1.2 ([10]) There exists a 6-cycle system of Km,n if and only if:

(i) m and n are even;

(ii) 6 divides m or n; and

(iii) min{m,n} ≥ 4.

Theorem 1.3 ([6]) Let L be 2-regular subgraph in the complete graph Kn. There exists a

6-cycle system of G = Kn − L if and only if:

(i) |E(Kn − L)| is divisible by 6;

(ii) n is odd; and

(iii) n ≥ 7.

We will use some symbols in this paper. Let E(G) be the set of edges of the graph G and
V (G) be the set of vertices of G. Let (u, v) or (v, u) be the edge with endpoints {u, v}. For
convenience, we can use uv or vu instead of (u, v) or (v, u). If vertex v is an end point of edge
uv (or vu), then v and uv are incident. For v ∈ G, the degree of vertex v (in a loopless graph),
denoted by dG(v), is the number of incident edges. The graph union H = G + F between two
simple graphs G and F is the graph H defined by V (H) = V (G)

⋃
V (F ) and E(H) = {uv|uv ∈

E(G) or uv ∈ E(F )}. The graph difference H = G − F between G and its subgraph F is
the graph H defined by V (H) = V (G)\{v ∈ V (F )|dF (v) = dG(v)} and E(H) = E(G)\E(F ).
Let Cs = (a1, a2, . . . , as) be a cycle of length s. nCs is a graph union of n Css. Let KA,B

or Ka,b be the complete bipartite graph with vertex set A and B, where |A| = a, |B| = b

and V (KA,B) = A
⋃

B. Zn consists of n residual classes. Let Zn = {0, 1, . . . , n − 1}. Then
Zn \ Zm = {m,m + 1, . . . , n− 3, n− 2, n− 1} when m ≤ n.

2. 6-cycle systems of Kn − L where 7 ≤ n ≤ 29

We shall give some small cases which will be used in the proof of Theorem 4.1.

Lemma 2.1 There exists a 6-cycle system B of G = K7 − [(∞, 0, 1) + (∞, 2, 3) + (∞, 4, 5)],
where V (K7) = Z6 ∪ {∞}.

Proof We give the proof by direct construction. Let B = {(2, 0, 3, 5, 1, 4), (1, 2, 5, 0, 4, 3)}. And
B is a 6-cycle system of G. ¤
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Lemma 2.2 Let V (K9)=Z8 ∪ {∞}. There exists a 6-cycle system B of G = K9 − L, where L

is a nearly 2-regular subgraph of K9 and |E(G)| is divisible by 6.

Proof (i) When L=(∞, 0, 1) + (∞, 2, 3), B = {(2, 0, 6, 4, 3, 1), (3, 0, 4, 7, 1, 5), (4, 2, 7, 6,∞, 5),
(4,∞, 7, 5, 6, 1), (5, 0, 7, 3, 6, 2)}.

(ii) When L = (∞, 0, 1)+(∞, 2, 3)+(∞, 4, 5)+(∞, 6, 7), B = {(2, 0, 6, 4, 3, 1), (3, 0, 4, 7, 1, 5),
(4, 2, 7, 5, 6, 1), (5, 0, 7, 3, 6, 2)}. ¤

Lemma 2.3 Let V (K11)=Z10 ∪ {∞}. There exists a 6-cycle system B of G = K11 − L, where

L is a nearly 2-regular subgraph of K11 and |E(G)| is divisible by 6.

Proof (i) When L = (∞, 0, 1)+(∞, 2, 3, 4)+(∞, 5, 6, 7, 8, 9), B = {(3,∞, 8, 2, 5, 0), (6,∞, 7, 1, 5,

3), (2, 0, 9, 4, 8, 1), (6, 0, 8, 3, 9, 1), (4, 0, 7, 5, 9, 2), (3, 1, 4, 6, 2, 7), (5, 4, 7, 9, 6, 8)}.
(ii) When L = (∞, 0, 1)+(∞, 2, 3)+(∞, 4, 5, 6, 7, 8, 9), B = {(6,∞, 7, 1, 5, 3), (3, 1, 4, 6, 2, 7),

(5,∞, 8, 2, 9, 0), (0, 2, 5, 7, 4, 3), (1, 2, 4, 8, 5, 9), (6, 1, 8, 0, 4, 9), (8, 3, 9, 7, 0, 6)}.
(iii) When L = (∞, 0, 1)+(∞, 2, 3, 4, 5)+(∞, 6, 7, 8, 9), B = {(8, 3, 9, 7, 0, 6), (6, 1, 8, 0, 4, 9),

(3,∞, 7, 2, 1, 5), (4,∞, 8, 2, 9, 1), (0, 9, 5, 6, 4, 2), (3, 0, 5, 8, 4, 7), (3, 1, 7, 5, 2, 6)}.
(iv) When L = (∞, 0, 1, 2)+(∞, 3, 4, 5)+(∞, 6, 7, 8, 9), B = {(1,∞, 7, 3, 0, 8), (4,∞, 8, 2, 5, 0),

(2, 0, 7, 9, 1, 6), (6, 0, 9, 4, 1, 3), (5, 1, 7, 2, 9, 3), (5, 9, 6, 8, 4, 7), (3, 2, 4, 6, 5, 8)}.
(v) When L = (∞, 0, 1)+(∞, 2, 3)+(∞, 4, 5)+(6, 7, 8, 9), B = {(6,∞, 9, 4, 3, 0), (7,∞, 8, 1, 2,

0), (4, 0, 9, 1, 5, 8), (5, 0, 8, 6, 4, 7), (1, 4, 2, 6, 5, 3), (6, 1, 7, 2, 9, 3), (5, 9, 7, 3, 8, 2)}.
(vi) When L = (∞, 0, 1)+(∞, 2, 3)+(7, 8, 9)+(∞, 4, 5, 6), B = {(5,∞, 9, 1, 3, 0), (7,∞, 8, 1, 2,

0), (4, 0, 9, 2, 7, 1), (6, 0, 8, 3, 5, 2), (5, 1, 6, 4, 3, 7), (4, 7, 6, 9, 5, 8), (3, 9, 4, 2, 8, 6)}.
(vii) When L = (∞, 0, 1) + (∞, 2, 3) + (∞, 4, 5) + (∞, 6, 7, 8), B = {(9,∞, 7, 0, 3, 4),

(0, 6, 9, 8, 1, 2), (4, 0, 9, 1, 5, 8), (5, 0, 8, 6, 4, 7), (1, 4, 2, 6, 5, 3), (6, 1, 7, 2, 9, 3), (5, 9, 7, 3, 8, 2)}. ¤

Lemma 2.4 Let V (K13) = Z12 ∪ {∞}. There exists a 6-cycle system B of G = K13−L, where

L is a nearly 2-regular subgraph of K13 and |E(G)| is divisible by 6.

Proof (i) When L = (∞, 0, 1)+(∞, 2, 3, 4, 5, 6, 7, 8, 9), B = {(∞, 10, 1, 11, 5, 3), (∞, 8, 11, 2, 0, 4),
(∞, 7, 3, 11, 0, 5), (∞, 11, 4, 9, 0, 6), (3, 0, 8, 10, 2, 1), (7, 0, 10, 6, 4, 1), (5, 1, 9, 3, 8, 2), (6, 1, 8, 5, 10,

3), (6, 2, 7, 5, 9, 11), (4, 2, 9, 10, 11, 7), (4, 8, 6, 9, 7, 10)}.
(ii) When L = (∞, 0, 1)+(∞, 2, 3)+(4, 5, 6, 7, 8, 9), B = {(∞, 8, 11, 2, 0, 4), (∞, 7, 3, 11, 0, 5),

(∞, 11, 10, 5, 9, 6), (3, 0, 8, 10, 2, 1), (7, 0, 10, 6, 4, 1), (5, 1, 9, 3, 8, 2), (∞, 10, 3, 6, 0, 9), (4, 3, 5, 11, 9,

7), (8, 1, 10, 7, 2, 4), (7, 5, 8, 6, 1, 11), (6, 2, 9, 10, 4, 11)}.
(iii) When L = (∞, 0, 1)+(7, 8, 9)+(∞, 2, 3, 4, 5, 6), B = {(∞, 8, 11, 2, 0, 4), (∞, 7, 3, 11, 0, 5),

(∞, 10, 3, 6, 0, 9), (3, 0, 8, 10, 2, 1), (7, 0, 10, 6, 4, 1), (5, 1, 9, 3, 8, 2), (3,∞, 11, 4, 7, 5), (6, 1, 11, 7, 10,

9), (8, 1, 10, 5, 9, 4), (2, 4, 10, 11, 6, 7), (6, 2, 9, 11, 5, 8)}.
(iv) When L = (∞, 0, 1)+(∞, 7, 8)+(∞, 2, 3, 4, 5, 6), B = {(∞, 5, 9, 2, 0, 4), (5, 0, 11, 8, 1, 10),

(3, 7, 9, 8, 5, 11), (8, 4, 9, 11, 2, 6), (∞, 10, 3, 6, 0, 9), (3, 0, 8, 10, 2, 1), (7, 0, 10, 6, 4, 1), (5, 1, 9, 3, 8, 2),
(3,∞, 11, 4, 7, 5), (6, 1, 11, 7, 10, 9), (2, 4, 10, 11, 6, 7)}.

(v) When L = (∞, 0, 1)+(∞, 2, 3, 4)+(5, 6, 7, 8, 9), B = {(3,∞, 11, 4, 7, 5), (6, 1, 11, 7, 10, 9),
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(2, 0, 4, 5,∞, 7), (6,∞, 8, 10, 4, 2), (0, 7, 3, 9, 11, 5), (1, 7, 9, 2, 5, 10), (1, 9, 4, 8, 11, 2), (8, 2, 10, 11, 0,

3), (1, 5, 8, 6, 11, 3), (0, 10, 6, 4, 1, 8), (∞, 10, 3, 6, 0, 9)}.
(vi) When L = (∞, 0, 1)+(7, 8, 9, 10)+(∞, 2, 3, 4, 5), B = {(3,∞, 11, 4, 7, 5), (6,∞, 8, 10, 4,

2), (∞, 10, 3, 6, 0, 9), (0, 7, 3, 9, 11, 5), (1, 7, 9, 2, 5, 10), (1, 9, 4, 8, 11, 2), (4,∞, 7, 6, 8, 0), (2, 7, 11, 3,

0, 10), (5, 9, 6, 10, 11, 1), (2, 0, 11, 6, 1, 8), (5, 6, 4, 1, 3, 8)}.
(vii) When L = (6, 7, 8)+(∞, 0, 1, 9)+(∞, 2, 3, 4, 5), B = {(3,∞, 11, 4, 7, 5), (6,∞, 8, 10, 4, 2),

(6, 1, 11, 7, 10, 9), (0, 7, 3, 9, 11, 5), (1, 7, 9, 2, 5, 10), (8, 2, 10, 11, 0, 3), (0, 10, 6, 4, 1, 8), (2, 7,∞, 1, 3,

11), (4,∞, 10, 3, 6, 0), (0, 9, 8, 5, 1, 2), (8, 4, 9, 5, 6, 11)}.
(viii) When L = (∞, 0, 1)+(∞, 2, 3, 4)+(∞, 5, 6, 7, 8), B = {(3,∞, 11, 4, 7, 5), (6, 1, 11, 7, 10,

9), (0, 7, 3, 9, 11, 5), (1, 7, 9, 2, 5, 10), (1, 9, 4, 8, 11, 2), (0, 10, 6, 4, 1, 8), (∞, 10, 3, 6, 0, 9), (7,∞, 6, 11,

0, 2), (5, 1, 3, 11, 10, 8), (4, 5, 9, 8, 6, 2), (10, 2, 8, 3, 0, 4)}.
(ix) When L = (∞, 0, 1)+(∞, 2, 3)+(4, 5, 6)+(7, 8, 9), B = {(∞, 8, 11, 2, 0, 4), (∞, 7, 3, 11, 0,

5), (∞, 11, 10, 5, 9, 6), (3, 0, 8, 10, 2, 1), (5, 1, 9, 3, 8, 2), (∞, 10, 3, 6, 0, 9), (8, 1, 10, 7, 2, 4), (5, 8, 6, 11,
4, 3), (7, 0, 10, 4, 1, 11), (6, 2, 9, 4, 7, 1), (7, 5, 11, 9, 10, 6)}.

(x) When L = (∞, 0, 1) + (∞, 2, 3) + (∞, 4, 5) + (7, 8, 9), or L = (∞, 0, 1) + (∞, 2, 3) +
(∞, 4, 5) + (∞, 7, 8), B = B1

⋃
B2

⋃
B3. By Lemma 2.1, B1 is a 6-cycle system of K7 − 3C3,

where 3C3 = (∞, 0, 1)+ (∞, 2, 3)+ (∞, 4, 5). B2 is a 6-cycle system of K6,6 by Theorem 1 where
V (K6,6) = Z6

⋃
(Z12\Z6). B3 is a 6-cycle system of K7−C3 by Theorem 2, where C3 = (∞, 7, 8),

or (7, 8, 9) and V (K7) = (Z12\Z6) ∪ {∞}.
(xi) When L = (∞, 0, 1, 2) + (∞, 4, 5, 6, 7, 8, 9, 10), B = {(∞, 11, 10, 5, 9, 6), (5, 1, 9, 3, 8, 2),

(7, 0, 10, 4, 1, 11), (6, 2, 9, 4, 7, 1), (2, 7, 10, 1, 8, 4), (5, 8, 6, 11, 2, 0), (∞, 1, 3, 11, 0, 8), (10, 2, 3, 4, 0,

6), (3, 0, 9,∞, 5, 7), (3,∞, 7, 9, 11, 5), (4, 11, 8, 10, 3, 6)}.
(xii) When L = (∞, 0, 1, 2, 3)+(∞, 4, 5, 6, 7, 8, 9), B = {(∞, 11, 10, 5, 9, 6), (∞, 1, 3, 11, 0, 8),

(∞, 2, 10, 9, 11, 5), (3, 5, 7,∞, 10, 6), (5, 1, 9, 3, 8, 2), (7, 0, 10, 4, 1, 11), (6, 2, 9, 4, 7, 1), (2, 7, 10, 1,
8, 4), (5, 8, 6, 11, 2, 0), (0, 6, 4, 3, 7, 9), (3, 10, 8, 11, 4, 0)}.

(xiii) When L = (∞, 0, 1, 2)+ (∞, 3, 4, 5)+ (6, 7, 8, 9), B = {(2, 3, 1, 4, 8, 0), (7, 5, 8, 6, 11, 2),
(3, 8, 11, 9, 0, 6), (9, 2, 6, 1, 7, 3), (1,∞, 7, 11, 0, 10), (4, 0, 7, 9, 1, 11), (11,∞, 10, 2, 5, 3), (5, 10, 6,
∞, 8, 1), (4,∞, 9, 10, 8, 2), (3, 0, 5, 9, 4, 10), (5, 6, 4, 7, 10, 11)}).

(xiv) When L = (∞, 0, 1, 2)∪(∞, 3, 4, 5)∪(∞, 6, 7, 8), B = {(2, 3, 1, 4, 8, 0), (7, 5, 8, 6, 11, 2),
(3, 8, 11, 9, 0, 6), (9, 8, 1, 5, 10, 4), (1,∞, 7, 11, 0, 10), (9, 2, 6, 1, 7, 3), (11,∞, 10, 2, 5, 3), (0, 5, 9, 6,
10, 3), (4,∞, 9, 10, 8, 2), (5, 6, 4, 7, 10, 11), (4, 0, 7, 9, 1, 11)}.

(xv) When L = (∞, 0, 1) + (∞, 2, 3) + (∞, 4, 5) + (∞, 6, 7) + (∞, 8, 9) + (∞, 10, 11), B =
B1

⋃
B2

⋃
B3. By Lemma 2.1, B1 is a 6-cycle system of K7 − 3C3, where 3C3 = (∞, 0, 1) +

(∞, 2, 3)+ (∞, 4, 5) and V (K7) = Z6 ∪{∞}. By Lemma 2.1, B2 is a 6-cycle system of K7− 3C3,
where 3C3 = (∞, 6, 7) + (∞, 8, 9) + (∞, 10, 11) and V (K7) = (Z12\Z6) ∪ {∞}. By Theorem 1,
B3 is a 6-cycle system of K6,6 where V (K6,6) = Z6

⋃
(Z12\Z6).

(xvi) When L = (∞, 0, 1, 2, 3, 9)∪(∞, 4, 5, 6, 7, 8), B = {(∞, 11, 10, 5, 9, 6), (7, 0, 10, 4, 1, 11),
(2, 7, 10, 1, 8, 4), (5, 8, 6, 11, 2, 0), (∞, 2, 10, 9, 11, 5), (3, 5, 7,∞, 10, 6), (3, 10, 8, 11, 4, 0), (1,∞, 3, 8,
2, 9), (0, 11, 3, 4, 9, 8), (0, 9, 7, 3, 1, 6), (5, 1, 7, 4, 6, 2)}. ¤

Let A = {(3, 8, 11, 9, 0, 6), (9, 2, 6, 1, 7, 3), (4, 0, 7, 9, 1, 11), (3, 0, 5, 9, 4, 10), (0, 11, 7, 13, 1, 12),
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(2, 4, 7, 10, 8, 0), (5, 11, 13, 12, 2,∞), (1,∞, 12, 6, 13, 10), (4, 6, 9, 13, 2, 8), (7, 8, 13, 0, 10, 12)}. A

will be used in Lemma 2.5.

Lemma 2.5 Let V (K15) = Z14 ∪ {∞}. There exists a 6-cycle system B of G = K15−L, where

L is a nearly 2-regular subgraph of K15 and |E(G)| is divisible by 6.

Proof (i) When L = (∞, 0, 1, 2, 3) + (∞, 4, 5, 6, 7) + (9, 10, 11, 12, 13), B = A ∪ B1 where
B1 = {(7, 5, 8, 6, 11, 2), (11,∞, 10, 2, 5, 3), (5, 10, 6,∞, 8, 1), (12, 5, 13, 4, 1, 3), (4, 3, 13,∞, 9, 12)}.

(ii) When L = (∞, 0, 1, 2, 3) + (∞, 4, 5, 6, 7) + (∞, 8, 9, 10, 11), B = A ∪ B2 where B2 =
{(10, 6,∞, 9, 12, 5), (5, 2, 10,∞, 13, 3), (3, 11, 12, 8, 1, 4), (1, 3, 12, 4, 13, 5), (5, 8, 6, 11, 2, 7)}.

(iii) When L = (∞, 0, 1, 2, 3) + (∞, 4, 5, 6), B = A ∪ B3 where B3 = {(7, 5, 8, 6, 11, 2),
(11,∞, 10, 2, 5, 3), (10, 6, 7,∞, 13, 5), (9, 10, 11, 12, 3, 13), (1, 8,∞, 9, 12, 4), (3, 4, 13, 12, 5, 1)}. ¤

Lemma 2.6 Let V (K17) = Z16 ∪ {∞}. There exists a 6-cycle system B of G = K17−L, where

L is a nearly 2-regular subgraph of K17 and |E(G)| is divisible by 6.

Proof (i) When L = (∞, 0, 1, 2, 3) + (∞, 4, 5, 6, 7), B = {(9, 2, 6, 1, 7, 3), (11,∞, 10, 2, 5, 3),
(4, 0, 7, 9, 1, 11), (1,∞, 8, 2, 13, 3), (7, 5, 8, 6, 11, 2), (3, 8, 11, 9, 0, 6), (6,∞, 9, 12, 7, 13), (12, 5, 10, 7,
4, 2), (5, 0, 14, 12, 1, 15), (8, 0, 13, 14, 9, 15), (4, 8, 1, 10, 15, 6), (5, 1, 13, 15, 7, 14), (11, 14, 6, 10, 9, 13),
(10, 6, 14, 11, 13, 9), (13, 4, 14, 15, 11, 5), (4, 1, 14,∞, 5, 9), (11, 7, 8, 9, 6, 12), (10, 8, 13, 12, 3, 4), (0,

3, 14, 2,∞, 15), (0, 11, 10, 13,∞, 12), (2, 0, 10, 12, 4, 15)}.
(ii) When L = 4C4, B = B1

⋃
B2

⋃
B3. Let K17−4C4 = (K13−3C4)+K4,6 +(K4,6 +K5−

C4), where V (K13) = (Z16\Z4) ∪ {∞}, V (K4,6) = Z4

⋃
(Z16\Z10), and V (K4,6 + K5 − C4) =

Z10 ∪ {∞}. B1 is a 6-cycle system of K13 − 3C4 by Lemma 2.4 (xiii) and (xiv). B2 is a
6-cycle system of K4,6 by Theorem 1. B3 = {(0,∞, 2, 9, 1, 8), (0, 9, 3, 8, 2, 5), (1, 5, 3, 6, 2, 4),
(1,∞, 3, 7, 0, 6), (2, 0, 4, 3, 1, 7)} is a 6-cycle system of K5 + K4,6 − C4 where C4 = (0, 1, 2, 3),
V (K5) = Z4∪{∞} and V (K4,6) = Z4

⋃
(Z10\Z4). (When C4 = (∞, 1, 2, 3), the method can also

be used). ¤
The method in Lemma 2.6 will be used in Lemma 2.7.

Lemma 2.7 Let V (K19) = Z18 ∪ {∞}. There exists a 6-cycle system B of G = K19−L, where

L is a nearly 2-regular subgraph of K19 and |E(G)| is divisible by 6.

Proof (i) When L = C5

⋃
C5

⋃
C5, B = B1

⋃
B2

⋃
B3. B1 is a 6-cycle system of K15−3C5 by

(i) and (ii) of Lemma 2.5. B2 is a 6-cycle system of K4,12 by Theorem 1. B3 = {(0, 4, 1,∞, 3, 2),
(2, 4, 3, 5, 0, 1), (3, 0,∞, 2, 5, 1)} is a 6-cycle system of K5 + K4,2, where V (K5) = Z4

⋃{∞} and
V (K4,2) = Z4

⋃{4, 5}.
(ii) When L = (∞, 0, 1, 2, 3) + (∞, 4, 5, 6), B = B1

⋃
B2

⋃
B3. B1 is a 6-cycle system of

K15−L by Lemma 2.5(iii). B2 is a 6-cycle system of K4,12 by Theorem 1. B3 = {(0, 4, 1,∞, 3, 2),
(2, 4, 3, 5, 0, 1), (3, 0,∞, 2, 5, 1)} is a 6-cycle system of K5 + K4,2 where V (K5) = Z4

⋃{∞} and
V (K4,2) = Z4

⋃{4, 5}. ¤

Lemma 2.8 Let V (K21) = Z20

⋃{∞}. There exists a 6-cycle system B of G = K21−L, where
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L is a nearly 2-regular subgraph of K21 and |E(G)| is divisible by 6.

Proof (i) When L = 2C5 + 2C4, B = B1

⋃
B2. B1 is a 6-cycle system of K10,6 by Theorem 1.

B2 = {(1,∞, 2, 11, 3, 10), (∞, 5, 11, 6, 10, 4), (7,∞, 8, 11, 9, 10), (6,∞, 9, 3, 4, 0), (0, 10, 5, 8, 1, 11),
(2, 10, 8, 3, 7, 0), (4, 11, 7, 5, 3, 1), (0, 3, 6, 1, 9, 5), (1, 5, 2, 8, 9, 7), (2, 7, 8, 4, 9, 6), (0, 9, 2, 4, 6, 8)} is a
6-cycle system of K11 +K10,2− (C5 +C4), where C5 +C4 = (∞, 0, 1, 2, 3)+(4, 5, 6, 7), V (K11) =
Z10

⋃{∞} and V (K10,2) = Z10

⋃{10, 11} (The construction can also be used for other form
of C5

⋃
C4. When V (K11) = (Z20\Z10)

⋃{∞}, V (K10,2) = Z10

⋃{18, 19}, there also exists a
6-system B2 of K11 + K10,2 − (C5 + C4), where V (C5 + C4) = (Z20\Z10)

⋃{∞}).
(ii) When L = 4C5 +C4, B = B1

⋃
B2

⋃
Bi

3, i = 1, 2, 3. B1 is a 6-cycle system of K15−3C5

by Lemma 2.5(i). B2 is a 6-cycle system of K6,12 by Theorem 1 where V (K6,12) = K(Z6

⋃{i|8 ≤
i ≤ 19}. Let B1

3 = {(1,∞, 5, 0, 4, 3), (2,∞, 4, 5, 3, 6), (0, 6, 1, 4, 2, 7), (1, 5, 2, 0, 3, 7)}, B2
3 =

{(1,∞, 5, 0, 7, 2), (1, 7, 4, 0, 2, 3), (3, 7, 5, 1, 4, 6), (2, 4, 3, 0, 6, 5)}, and B3
3 = {(0, 6, 5, 1,∞, 2), (0,∞,

4, 3, 2, 7), (1, 7, 4, 5, 3, 6), (0, 5, 2, 4, 1, 3)}. When C5 + C4 = (∞, 0, 1, 2, 3) + (4, 6, 5, 7), B1
3 is a

6-cycle system of K7 + K6,2 − (C5 + C4), where V (K7) = Z6

⋃{∞} and V (K6,2) = Z6

⋃{6, 7}.
When C5 + C4 = (∞, 0, 1, 6, 2) + (∞, 4, 5, 3), B2

3 is a 6-cycle system of K7 + K6,2 − (C5 + C4),
where V (K7) = Z6

⋃{∞}, V (K6,2) = Z6

⋃{6, 7}. When C5 +C4 = (0, 1, 2, 6, 4)+(∞, 5, 7, 3), B3
3

is a 6-cycle system of K7 + K6,2 − (C5 + C4), where V (K7) = Z6

⋃{∞}, V (K6,2) = Z6

⋃{6, 7}.
¤

Lemma 2.9 Let V (K23) = Z22

⋃{∞}. There exists a 6-cycle system B of G = K23−L, where

L is a nearly 2-regular subgraph of K23 and |E(G)| is divisible by 6.

Proof (i) When L = 3C5 + C4, B1 is a 6-cycle system of K19 − 3C5 by Lemma 2.7(i). B2 is
a 6-cycle system of K4,12 by Theorem 1. B3 = {(0,∞, 2, 9, 1, 8), (0, 9, 3, 8, 2, 5), (1, 5, 3, 6, 2, 4),
(1,∞, 3, 7, 0, 6), (2, 0, 4, 3, 1, 7)} is a 6-cycle system of K5 + K4,6 − C4, where C4 = (0, 1, 2, 3)
(The construction can also be used when C4 = (∞, 1, 2, 3)).

(ii) When L = 5C5, let B = B1

⋃
B2

⋃
B3 where B1 is a 6-cycle system of K15 − 3C5

by Lemma 2.5(i) and V (K15) = (Z22\Z8)
⋃{∞}, B2 is a 6-cycle system of K8,12 by Theo-

rem 1 and B3 = {(1,∞, 2, 9, 3, 8), (6, 2, 7, 1, 9, 0), (5,∞, 6, 9, 7, 8), (4, 9, 5, 7, 0, 3), (0, 8, 4, 1, 5, 2),
(4, 0, 5, 3, 1, 6), (2, 8, 6, 3, 7, 4)} is a 6-cycle system of K9+K8,2−2C5, where 2C5 = (∞, 0, 1, 2, 3)+
(∞, 4, 5, 6, 7), V (K9) = Z8

⋃{∞}, and V (K8,2) = Z8

⋃{8, 9}. ¤

Lemma 2.10 Let V (K25) = Z24

⋃{∞}. There exists a 6-cycle system of G = K25 − L, where

L is a nearly 2-regular subgraph of K25 and |E(G)| is divisible by 6.

Proof (i) When L = 2C5 +2C4, B = B1

⋃
B2

⋃
B3. B1 is a 6-cycle system of K21−(2C5 +2C4)

by Lemma 2.8(i). B2 is a 6-cycle system of K4,3 + K4, where V (K4) = {20, 21, 22, 23} and
V (K4,3) = {20, 21, 22, 23}⋃{∞, 18, 19}. B3 = {(20,∞, 23, 18, 22, 21), (21,∞, 22, 20, 23, 19), (20,

19, 22, 23, 21, 18)} is a 6-cycle system of K4,18 by Theorem 1.

(ii) When L = 4C5

⋃
C4, B = B1

⋃
B2

⋃
B3. B1 is a 6-cycle system of K15 − 3C5 by

Lemma 2.5(i) where V (K15) = (Z24\Z10)
⋃{∞}. B2 is a 6-cycle system of K10,12 by Theorem
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1 where V (K10,12) = Z10

⋃
(Z24\Z12). B3 = {(1,∞, 5, 0, 11, 3), (4,∞, 7, 3, 2, 0), (8,∞, 9, 7, 0, 6),

(3, 0, 9, 4, 2, 10), (8, 0, 10, 5, 1, 4), (5, 3, 9, 6, 4, 11), (6, 3, 8, 7, 1, 10), (7, 4, 10, 8, 5, 2), (7, 5, 9, 11, 1, 6),
(8, 1, 9, 2, 6, 11), (8, 2, 11, 7, 10, 9)} is a 6-cycle system of K10,3+K10−(C4+C5), where V (K10,3) =
Z10

⋃
({∞, 10, 11}), V (K10) = Z10, and C4 + C5 = (∞, 0, 1, 2) + (∞, 3, 4, 5, 6) (The construction

can also be used for other form of C4 + C5). ¤

Lemma 2.11 Let V (K29) = Z28

⋃{∞}. There exists a 6-cycle system B of G = K29 − (4C5 +
2C4), where L is a nearly 2-regular subgraph of K29 and |E(G)| is divisible by 6.

Proof Let B = B1

⋃
B2

⋃
B3. B1 is a 6-cycle system of K25 − (4C5 + C4) by Lemma 2.10(ii)

where V (K25) = (Z28\Z4)
⋃{∞}. B2 is a 6-cycle system of K4,8 by Theorem 1 where V (K4,8) =

Z4

⋃
(Z28\Z10). B2 = {(0,∞, 2, 9, 1, 8), (0, 9, 3, 8, 2, 5), (1, 5, 3, 6, 2, 4), (1,∞, 3, 7, 0, 6), (2, 0, 4, 3,

1, 7)} is a 6-cycle system of K5 + K4,6 − C4, where C4 = (0, 1, 2, 3), V (K5) = Z4

⋃{∞}, and
V (K4,6) = Z4

⋃
(Z10\Z4) (The construction can also be used when C4 = (∞, 1, 2, 3)). ¤

3. Some special cases

In this section, we provide some special 6-cycle systems which will be used in the proof of
Theorem 4.1.

Lemma 3.1 (i) There exists a 6-cycle system B1 of G = K7 + K6,2 + (∞, a) + (∞, b)− [(0, a) +
(0, b)]− (∞, 1, 2), where V (K6,2) = {c, 1, 2, 3, 4, 5}⋃{a, b} and V (K7) = {1, 2, 3, 4, 5, c,∞}.

(ii) There exists a 6-cycle system B2 of G = K7 + K6,2 + (∞, n− 2) + (∞, n− 3)− [(0, n−
2) + (0, n− 3)]− (1, 2, 3), where V (K7) = Z6

⋃{∞} and V (K6,2) = Z6

⋃{n− 2, n− 3}.

Proof We give the proof by direct construction of Bi, i = 1, 2, in the following two cases.

(i) Let B1 = {(c,∞, 3, 5, a, 4), (4,∞, 5, c, 1, b), (3, c, 2, 5, 4, 1), (a,∞, b, 2, 4, 3), (1, a, 2, 3, b, 5)}.
(ii) Let B2 = {(3, n−3, 5, n−2, 4, 0), (1, n−3,∞, 4, 2, n−2), (3, n−2,∞, 0, 1, 5), (2, 0, 5, 4, 1,∞),

(3, 4, n− 3, 2, 5,∞)}. ¤

Lemma 3.2 (i) There exists a 6-cycle system B1 of G = K7 + K6,4 + (∞, n − 2) + (∞, n −
3) + (∞, n− 4) + (∞, n− 5)− [(5, n− 2) + (5, n− 3) + (4, n− 4) + (4, n− 5)]− (∞, 1, 2), where

V (K7) = Z6

⋃{∞} and V (K6,4) = Z6

⋃{n− 2, n− 3, n− 4, n− 5}.
(ii) There exists a 6-cycle system B2 of G = K7 + K6,4 + (∞, n− 2) + (∞, n− 3) + (∞, n−

4)+(∞, n−5)− [(5, n−2)+(5, n−3)+(4, n−4)+(4, n−5)]−(1, 2, 3), where V (K7) = Z6

⋃{∞}
and V (K6,4) = Z6

⋃{n− 2, n− 3, n− 4, n− 5}.
(iii) There exists a 6-cycle system B3 of G = K7+K6,4−[(1, 2)+(2, 3)+(3, 4)+(0, 1)]+(0, 4),

where V (K7) = {1, 2, 3, n−2, n−3, n−4,∞} and V (K6,4) = {1, 2, 3, n−2, n−3, n−4}⋃{0, 4, 5, 6}.

Proof We give the proof by direct construction of Bi, 1 ≤ i ≤ 3 by three cases as follows.

(i) Let B1 = {(0, n − 2,∞, n − 3, 4, 3), (n − 2, 4, 1, 5, 3, 2), (n − 2, 3, n − 4, 0, n − 3, 1),
(5, n− 4,∞, 0, 2, n− 5), (n− 3, 3, n− 5, 0, 4, 2), (1, 0, 5, 4,∞, n− 5), (∞, 5, 2, n− 4, 1, 3)}.

(ii) Let B2 = {(0, n − 2,∞, n − 3, 4, 3), (1, n − 4, 2, 5, 3,∞), (n − 2, 3, n − 4, 0, n − 3, 1),
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(5, n− 4,∞, 0, 2, n− 5), (n− 3, 3, n− 5, 0, 4, 2), (1, 0, 5, 4,

∞, n− 5), (2, n− 2, 4, 1, 5,∞)}.
(iii) Let B3 = {(3, 1, n−2, 2, n−3, n−4), (n−3, 1, n−4, 2,∞, n−2), (4, n−2, n−4,∞, n−3, 0),

(n− 2, 3, n− 3, 5, n− 4, 0), (6, n− 4, 4, 1,∞, 3), (5, 1, 6, 2, 0, 3), (4, 2, 5, n− 2, 6, n− 3)}. ¤

Lemma 3.3 (i) There exists a 6-cycle system B1 of G = K7 + K6,6 + (∞, n − 2) + (∞, n −
3) + (∞, n − 4) + (∞, n − 5) + (∞, n − 6) + (∞, n − 7) − [(3, n − 2) + (3, n − 3) + (4, n −
4) + (4, n − 5) + (5, n − 6) + (5, n − 7)] − (∞, 1, 2), where V (K7) = Z6

⋃{∞} and V (K6,6) =
Z6

⋃{n− 2, n− 3, n− 4, n− 5, n− 6, n− 7}.
(ii) There exists a 6-cycle system B2 of G = K7+K6,6+[(∞, n−2)+(∞, n−3)+(∞, n−4)+

(∞, n−5)+(∞, n−6)+(∞, n−7)]−[(3, n−2)+(3, n−3)+(4, n−4)+(4, n−5)+(5, n−6)+(5, n−
7)]−(1, 2, 3), where V (K7) = Z6

⋃{∞} and V (K6,6) = Z6

⋃{n−2, n−3, n−4, n−5, n−6, n−7}.
(iii) There exists a 6-cycle system B3 of G = K7+K6,6+(∞, n−2)+(∞, n−3)+(∞, n−4)+

(∞, n−5)]− [(3, n−2)+(3, n−3)+(4, n−4)+(4, n−5)+(6,∞)]− [(∞, 0)+(0, 1)+(1, 2)+(2, 6),
where V (K7) = Z6

⋃{∞} and V (K6,6) = Z6

⋃{n− 2, n− 3, n− 4, n− 5, 6, 7}).
(iv) There exists a 6-cycle system B4 of G = K7 +K6,8 +[(∞, n−2)+(∞, n−3)+(∞, n−

4)+(∞, n−5)+(∞, n−6)+(∞, n−7)+(∞, n−8)+(∞, n−9)]− [(3, n−2)+(3, n−3)+(4, n−
4)+(4, n−5)+(5, n−6)+(5, n−7)+(2, n−8)+{2, n−9}]−(∞, 1, 2), where V (K7) = Z6

⋃{∞}
and V (K6,8) = Z6

⋃{n− 2, n− 3, n− 4, n− 5, n− 6, n− 7, n− 8, n− 9}.
(v) There exists a 6-cycle system B5 of G = K7 +K6,8 + [(∞, n− 2)+ (∞, n− 3)+ (∞, n−

4) + (∞, n − 5) + (∞, n − 6) + (∞, n − 7) − [(3, n − 2) + (3, n − 3) + (4, n − 4) + (4, n − 5) +
(5, n− 6) + (5, n− 7)]− [(∞, 0) + (1, 2) + (0, 1) + (2, 6) + (6,∞)], where V (K7) = Z6

⋃{∞} and

V (K6,8) = Z6

⋃{6, 7, n− 2, n− 3, n− 4, n− 5, n− 6, n− 7}.
(vi) There exists a 6-cycle system B6 of G = K7 +K6,4 +[(∞, 8)+(∞, 9)]− [(5, 8)+(5, 9)]−

[(1, 7) + (1, 2) + (2, 3) + (3, 6)] + (6, 7), where V (K7) = Z6

⋃{∞} and V (K6,4) = Z6

⋃{6, 7, 8, 9}.

Proof We give the proof by direct construction of Bi, 1 ≤ i ≤ 6 by six cases as follows.
(i) Let B1 = {(0, n− 2,∞, n− 3, 1, 3), (5, n− 4,∞, 0, n− 7, 4), (2, n− 5, 5, n− 2, 4, n− 6),

(1, n− 4, 3, 4, 0, n− 6), (3, n− 6,∞, 5, 0, n− 5), (1, n− 5,∞, 3, 2, n− 2), (n− 7, 3, 5, n− 3, 0, 2),
(1, 0, n− 4, 2, n− 3, 4), (5, 1, n− 7,∞, 4, 2)}.

(ii) Let B2 = {(2, n− 6, 4, n− 2, 1,∞), (5, n− 4,∞, 0, n− 7, 4), (n− 3, 1, n− 5, 2, n− 2,∞),
(1, n− 4, 3, 4, 0, n− 6), (3, n− 6,∞, 5, 0, n− 5), (3,∞, n− 5, 5, n− 2, 0), (n− 7, 3, 5, n− 3, 0, 2),
(1, 0, n− 4, 2, n− 3, 4), (5, 1, n− 7,∞, 4, 2)}.

(iii) Let B3 = {(0, 7, 5, 3, 1, n−2), (1, 7, 3, n−4, 2, n−3), (2, 7, 4, 3, n−5, 5), (0, 6,∞, 4, 5, n−
3), (4, n − 3,∞, n − 4, 5, n − 2), (0, n − 4, 1,∞, n − 5, 2), (2, n − 2,∞, 3, 0, 4), (2, 3, 6, 1, 5,∞),
(4, 6, 5, 0, n− 5, 1)}.

(iv) Let B4 = {(0, n− 2,∞, 4, n− 8, 2), (5, n− 4,∞, 0, n− 7, 4), (2, n− 5, 5, n− 2, 4, n− 6),
(1, n − 4, 3, 4, 0, n − 6), (3,∞, 5, 0, n − 5), (1, n − 5,∞, 3, 2, n − 2), (n − 7,∞, n − 3, 5, n − 9, 1),
(1, 0, n− 4, 2, n− 3, 4), (0, n− 3, 1, 3, 5, n− 8), (1, n− 8, 3, n− 9, 2, 5), (0, n− 9, 4, 2, n− 7, 3).

(v) Let B5 = {(0, 7, 5, 3, 1, n−2), (1, 7, 3, n−4, 2, n−3), (2, 7, 4, 3, n−5, 5), (0, 6,∞, 4, 5, n−3),
(4, n− 3,∞, n− 4, 5, n− 2), (0, n− 4, 1,∞, n− 5, 2), (2, n− 2,∞, 3, 0, 4), (0, n− 5, 1, n− 6,∞, 5),
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(2,∞, n− 7, 0, n− 6, 3), (2, n− 6, 4, 6, 1, n− 7), (4, 1, 5, 6, 3, n− 7)}.
(vi) Let B6 = {(2, 6, 5, 4, 1, 0), (4, 6, 7, 2, 5, 0), (1, 5, 7, 3, 4, 8), (0, 7, 4, 9,∞, 3), (8, 3, 9, 2, 4,∞),

(1,∞, 2, 8, 0, 9)}. ¤
Set A = {(2, 3, 1, 4, 8, 0), (7, 5, 8, 6, 11, 2), (3, 8, 11, 9, 0, 6), (9, 8, 1, 5, 10, 4), (1,∞, 7, 11, 0, 10),

(9, 2, 6, 1, 7, 3), (11,∞, 10, 2, 5, 3), (0, 5, 9, 6, 10, 3), (4,∞, 9, 10, 8, 2), (5, 6, 4, 7, 10, 11), (4, 0, 7, 9, 1,
11)}. A will be used in Lemmas 3.4(ii) and 3.4(iii).

Lemma 3.4 (i) There exists a 6-cycle system B1 of G = K13 + K12,2 + [(∞, 12) + (∞, 13)] −
[(1, 12) + (1, 13)]− 3C4, where V (K13) = Z12

⋃{∞} and V (K12,2) = (Z12, {12, 13}).
(ii) There exists a 6-cycle system B2 of G = K13 + K12,4 + [(∞, 12) + (∞, 13) + (∞, 14) +

(∞, 15)]− [(6, 12)+ (6, 13)+ (0, 14)+ (0, 15)]− 3C4, where V (K13) = Z12

⋃{∞} and V (K12,4) =
Z12

⋃{12, 13, 14, 15}.
(iii) There exists a 6-cycle system B3 of G = K13 + K12,6 + [(∞, 12) + (∞, 13) + (∞, 14) +

(∞, 15) + (∞, 16) + (∞, 17)]− [(0, 12) + (0, 13) + (5, 14) + (5, 15) + (8, 16) + (8, 17)]− 3C4, where

V (K13) = Z12

⋃{∞} and V (K12,6) = Z12

⋃{12, 13, 14, 15, 16, 17}.

Proof We give the proof by direct construction of Bi, 1 ≤ i ≤ 3 by three cases as follows.

(i) B1 = {(2, 3, 1, 4, 8, 0), (7, 5, 8, 6, 11, 2), (3, 8, 11, 9, 0, 6), (9, 8, 1, 5, 10, 4), (1,∞, 7, 11, 0,
10), (11,∞, 10, 2, 5, 3), (4,∞, 9, 10, 8, 2), (12, 8, 13, 5, 0, 7), (12, 0, 13, 4, 7, 9), (4, 0, 3, 13, 10, 12),
(11, 4, 6, 5, 9, 1), (11, 5, 12, 6, 9, 13), (2, 9, 3, 10, 7, 13), (1, 7, 3, 12, 2, 6), (10, 6, 13, 1, 12, 11)}.

(ii) B2 = A
⋃{(12, 0, 13, 2, 14, 1), (14, 0, 15, 2, 12, 3), (13, 1, 15, 5, 12, 4), (13, 3, 15, 4, 14, 5),

(12, 6, 13, 8, 14, 7), (14, 6, 15, 8, 12, 9), (13, 7, 15, 11, 12, 10), (13, 9, 15, 10, 14, 11)}.
(iii) B3 = A

⋃{(12, 0, 13, 1, 15, 4), (14, 0, 15, 2, 16, 4), (16, 0, 17, 2, 12, 3), (13, 2, 14, 5, 15, 3),
(14, 3, 17, 9, 12, 6), (12, 1, 16, 7, 13, 5), (13, 4, 17, 7, 15, 6), (16, 8, 17, 11, 12, 10), (7, 12, 8, 15, 10, 14),
(13, 8, 14, 11, 15, 9), (10, 13, 11, 16, 5, 17), (6, 16, 9, 14, 1, 17)}. ¤

Set D = {(2, 5, 11, 4, 14,∞), (0, 3, 4, 7, 1, 5), (13, 6, 16, 12, 17,∞), (9, n − 3, 13, 14, 11, 3),
(10, 12, 9, 14, 16,∞), (11, 13, 16, 2, 15,∞), (1, 4, 9, 16, 8,∞), (0, 2, 6, 12, 1, 9), (1, 3, 7, 13, 2, 10), (3,

5, 9, 15, 4, 12), (4, 6, 10, 16, 5, 13), (5, 7, 11, 17, 6, 14), (6, 8, 12, 0, 7, 15), (0, 4, 10, 3, 8, 11), (0, 17, 1, 6,

9, 8), (2, 4, n− 3, 3, n− 2, 7)}. D will be used in Lemmas 3.5(i)–3.5(iii).

Lemma 3.5 (i) There exists a 6-cycle system B1 of G = K19 + K18,2 + [(∞, n − 2) + (∞, n −
3)]−3C5− [(17, n−2)+(17, n−3)], where 3C5 = (∞, 0, 1, 2, 3)+(4, 5, 6, 7, 8)+(9, 10, 11, 12, 13),
V (K19) = Z18

⋃{∞} and V (K18,2) = (Z18, {n− 2, n− 3}).
(ii) There exists a 6-cycle system B2 of G = K19 + K18,4 + [(∞, n − 2) + (∞, n − 3) +

(∞, n − 4) + (∞, n − 5)] − [(17, n − 2) + (17, n − 3) + (8, n − 4) + (8, n − 5)] − 3C5, where

3C5 = (∞, 0, 1, 2, 3) + (∞, 4, 5, 6, 7) + (9, 10, 11, 12, 13), V (K19) = Z18

⋃{∞} and V (K18,4) =
(Z18, {n− 2, n− 3, n− 4, n− 5}).

(iii) There exists a 6-cycle system B3 of G = K19 + K18,6 + [(∞, n − 2) + (∞, n − 3) +
(∞, n− 4) + (∞, n− 5) + (∞, n− 6) + (∞, n− 7)]− [(17, n− 2) + (17, n− 3) + (8, n− 4) + (8, n−
5)+(13, n−6)+(13, n−7)]−3C5, where V (K18,6) = Z18

⋃{n−2, n−3, n−4, n−5, n−6, n−7},
V (K19) = Z18

⋃{∞} and 3C5 = (∞, 0, 1, 2, 3) + (∞, 4, 5, 6, 7) + (∞, 9, 10, 11, 12).
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Proof We give the proof by direct construction of Bi, 1 ≤ i ≤ 3 by three cases as follows.

(i) B1 = D
⋃{(12, 14, 17, 3, 6,∞), (4,∞, n − 3, 2, 11, n − 2), (7,∞, n − 2, 0, 10, n − 3),

(16, 4, 17, 2, 8, n− 3), (9, 2, 14, 0, 15, n− 2), (12, 2, n− 2, 6, n− 3, 5), (8, 5, 17, 13, 1, 15), (10, 5, n−
2, 14, 8, 17), (8, 10, 14, 15, 12, n− 2), (13, 10, n− 2, 1, 11, 15), (13, n− 2, 16, 7, 14, 3), (1, 8, 13, 0, n−
3, 14), (6, 0, 16, 1, n− 3, 11), (12, 7, 17, 16, 15, n− 3), (3, 16, 11, 9, 17, 15), (9, 7, 10, 15, 5,∞)}.

(ii) B2 = D
⋃{(9, 7, 10, 15, 5,∞), (n − 3,∞, n − 4, 1, 13, 0), (n − 2,∞, n − 5, 1, 14, 0),

(6, 0, n− 5, 2, 9, 11), (10, 0, 16, n− 5, 4, n− 2), (15, 0, n− 4, 2, n− 3, 14), (11, 1, n− 3, 7, 12, n− 2),
(8, 1, n− 2, 5, n− 4, 4), (15, 1, 16, 7, n− 4, 11), (2, 11, n− 5, 10, 13, n− 2), (n− 3, 6, n− 4, 17, 10, 5),
(14, 3, n−4, 15, 17, 2), (n−5, 13, n−4, 16, 17, 9), (16, 11, n−3, 15, 13, 3), (12, 2, 8, 7, 17, 5), (8, 5, n−
5, 7, 14, 10), (15, 3, n − 5, 6, n − 2, 8), (16, 4, 17, 13, 8, n − 3), (8, 17, n − 5, 15, n − 2, 14), (9, n −
2, 16, 15, 12, n− 4), (n− 3, 12, n− 5, 14, n− 4, 10)}.

(iii) B3 = D
⋃{(n − 3,∞, n − 4, 1, 13, 0), (n − 2,∞, n − 5, 1, 14, 0), (6, 0, n − 5, 2, 9, 11),

(10, 0, 16, n−5, 4, n−2), (15, 0, n−4, 2, n−3, 14), (11, 1, n−3, 7, 12, n−2), (5,∞, n−7, 0, n−6, 10),
(6,∞, n− 6, 14, 3, n− 4), (8, 1, n− 6, 12, 14, 7), (15, 1, n− 7, 3, n− 5, 13), (16, 1, n− 2, 8, 13, n− 4),
(17, 13, n − 2, 15, 10, 14), (8, 2, n − 6, 3, 17, 10), (8, 4, n − 7, 5, 15, 17), (14, 2, 17, n − 6, 15, n − 7),
(8, n−7, 12, 5, n−5, 14), (13, 3, 16, 17, n−5, 9), (17, 4, n−6, 16, 11, n−7), (n−3, 8, n−6, 11, 15, 10),
(6, n− 7, 10, n− 4, 7, n− 5), (n− 3, 6, n− 6, 7, 17, 5), (6, 3, 15, 8, 5, n− 2), (11, 2, n− 7, 7, 9, n− 4),
(n − 3, 11, n − 5, 10, 7, 16), (n − 4, 5, n − 6, 9, n − 2, 14), (15, n − 3, 10, 13, 12, n − 5), (9, 17, n −
4, 15, 16, n− 7), (2, n− 2, 16, 4, n− 4, 12)}. ¤

4. The main result

Now we are in the position to prove Theorem 4.1.

We will assume |V (L)| ≥ n − 4. Since if |V (L)| ≤ n − 5, we can get a C6 such that
V (C6) ∩ V (L) ⊆ {∞} and V (C6) ⊆ V (Kn). Let L∗ = C6 + L. A 6-cycle system of Kn − L

is equal to a 6-cycle system of Kn − L∗ and C6. If |V (L∗)| ≤ n − 5, repeat the process until
|V (L∗)| ≥ n− 4.

Theorem 4.1 Let L be a nearly 2-regular graph in the complete graph Kn and |V (L)| = n− 4.

There exists a 6-cycle system of Kn − L for positive integer n satisfying the following three

conditions: (i) n is odd, (ii) 6 divides |E(Kn − L)| and (iii) n ≥ 7.

Proof We use induction method to prove the result. When n ≤ 13, the proof can be seen in
Lemma 2.1-2.4. Suppose that for any odd z < n and any nearly 2-regular leave L1 ⊆ L of Kz

for which 6 divides |E(Kz − L1)|, there exists a 6-cycle system of Kz − L1. In the following, we
shall show there exists a 6-cycle system of Kn − L by five cases.

Case 1 L contains at least one C3.

Without lose of generality, suppose C3 = (1, 2, 3), or C3 = (∞, 1, 2). Let L = L1 + C3.
We can get Kn − L = (Kn−6 − L1) + K6,n−7 + (K7 − C3) where V (Kn−6) = (Zn−1\Z6)

⋃{∞},
V (K6,n−7) = Z6

⋃
(Zn−1\Z6) and V (K7) = Z6

⋃{∞}. Since 6 divides |E(Kn−L)|, |E(K6,n−7)|
and |E(K7 − C3)|, then 6 divides |E(Kn−6 − L1)|. By induction or Theorem 2, B1 is a 6-cycle
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system of Kn−6 − L1. B2 is a 6-cycle system of K6,n−7 by Theorem 1. B3 is a 6-cycle system
of K7 − C3 by Theorem 2, where V (C3) ⊆ V (K7). Then B1

⋃
B2

⋃
B3 is a 6-cycle system of

Kn − E(L).

Case 2 L contains at least one Cm, m (m ≥ 6).

Let Cm = (0, 1, 2, 3, 4, . . . , m − 2,∞) ∈ L. Then Cm = Cm−3 + [(0, 1) + (1, 2) + (2, 3) +
(3, 4)]−(0, 4) where Cm−3 = (0, 4, 5, 6, . . . , m−2,∞). Let L = (L−Cm)+Cm−3+[(0, 1)+(1, 2)+
(2, 3)+(3, 4)]− (0, 4) = L1 +[(0, 1)+(1, 2)+(2, 3)+(3, 4)]− (0, 4) where L1 = (L−Cm)+Cm−3.
Kn − L = (Kn−6 − L1) + K6,n−11 + [K7 + K6,4 − (0, 1) − (1, 2) − (2, 3) − (3, 4) + (0, 4)], where
V (Kn−6) = (Zn−4\Z4)

⋃{0,∞}, V (K6,n−11) = A
⋃

(Zn−4\Z7), V (K7) = A
⋃{∞}, K6,4 =

A
⋃{0, 4, 5, 6} and A = {1, 2, 3, n − 2, n − 3, n − 4}. Since 6 divides |E(Kn − L)|, |E(K6,n−11)|

and |E[K7 + K6,4 − (0, 1) − (1, 2) − (2, 3) − (3, 4) + (0, 4)]|, then 6 divides |E(Kn−6 − L1)|. By
induction and Theorem 2, B1 is a 6-cycle system of Kn−6−L1. B2 is a 6-cycle system of K6,n−11

by Theorem 1. B3 is a 6-cycle system of K7 + K6,4 − (1, 2) − (2, 3) − (3, 4) − (0, 1) + (0, 4) by
Lemma 3.2(iii). Then B1

⋃
B2

⋃
B3 is a 6-cycle system of Kn − L.

Case 3 L contains only cycles of length 4.

When n < 21, since 6 divides |E(Kn − L)|, there exist the following cases:

(1) n = 13, L contains three 4-cycles. This case has been constructed in Lemma 2.4(iii)
and 2.4(iv).

(2) n = 17, L contains one 4-cycle, or four 4-cycles. When L contains one 4-cycle, we
can obtain this 6-cycle system by Theorem 2. When L contains four 4-cycles, the proof can
be seen in Lemma 2.6(ii). So in the following we assume n ≥ 21. As long as L meets the
condition of the induction, we can construct a 6-cycle system. So we only consider 3C4 =
(∞, 0, 1, 2) + (∞, 3, 4, 5) + (∞, 6, 7, 8). Let L = L1 + 3C4. So Kn − E(L) = (Kn−12 − L1) +
K12,n−13 + (K13− 3C4), where V (Kn−12) = (Zn−1\Z12)

⋃{∞}, V (K12,n−13) = Z12

⋃
Zn−1\Z12

and V (K13) = Z12

⋃{∞}. Since 6 divides |E(Kn−L)|, |E(K12,n−13)| and |E(K13− 3C4)|, then
6 divides |E(Kn−12 − L1)|. By induction or Theorem 2, B1 is a 6-cycle system of Kn−12 − L1.
B2 is a 6-cycle system of K12,n−13 by Theorem 1. B3 is a 6-cycle system of K13 − 3C4 by
Lemma 2.4(iii) and 2.4(iv), where V (3C4) ⊆ V (K13). Then B1

⋃
B2

⋃
B3 is a 6-cycle system of

Kn − E(L).

Case 4 L contains only cycles of length 5.

When n < 25, since 6 divides |E(Kn − E(L))|, there exist the following cases:

(1) n = 15, L contains three 5-cycles. This case has been constructed in Lemma 2.5(i);

(2) n = 17, L contains two 5-cycles. This case has been constructed in Lemma 2.6(i);

(3) n = 19, L contains three 5-cycles. This case has been constructed in Lemma 2.7(i);

(4) n = 23, L contains five 5-cycles. This case has been constructed in Lemma 2.9(ii).
So in the following we assume n ≥ 25. Let L = L1 + 3C5. So Kn − L = (Kn−18 − L1) +
K18,n−19+(K19−3C5), where V (Kn−18) = (Zn−1\Z18)

⋃{∞}, V (K18,n−19) = Z18

⋃
(Zn−1\Z18)

and V (K19) = Z18

⋃{∞}. Since 6 divides |E(Kn−L)|, |E(K18,n−19)| and |E(K19− 5C5)|, then
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6 divides |E(Kn−12 − L1)|. By induction or Theorem 2, B1 is a 6-cycle system of Kn−18 − L1.
B2 is a 6-cycle system of K(18, n − 19) by Theorem 1. B3 is a 6-cycle system of K19 − 3C5 by
Lemma 2.7(i), where V (3C5) ⊆ V (K19). Then B1

⋃
B2

⋃
B3 is a 6-cycle system of Kn − E(L).

Case 5 L contains only cycles of length 4 and 5.

Case 5.1 L contains one 5-cycle.
Since 6 divides |E(Kn − L)|, we can get the following two cases:
(1) When n = 12k+3 or 12k+7 , there are one 5-cycle and 3m+1 4-cycles (k ≥ 1, 0 ≤ m ≤ k.

m, k ∈ N).
We give the proof by induction on k. When k = 1, and n = 15 or 19, we give the proof in

Lemma 2.5(iii) and 2.7(ii). Suppose that for k = n0 and any nearly 2-regular leave L1, there
exists a 6-cycle system of K12n0+7 − L1. When k = n0 + 1, let L1 = L − 3C4. We can get
K12k+7 − L = K12n0+19 − L = (K12n0+7 − L1) + K12,12n0+6 + (K13 − 3C4), where V (L1) ⊆
V (K12n0+7) = Z12n0+6

⋃{∞}, V (K12,12n0+6) = A
⋃

Z12n0+6, V (3C4) ⊆ V (K13) = A
⋃{∞}

and A = {12n0 + i|7 ≤ i ≤ 18. i ∈ N}. Since 6 divides |E(Kn − L)|, |E(K12,12n0+6)| and
|E(K13 − 3C4)|, then 6 divides |E(K12n0+19 − L1)|. By induction or Theorem 2, B1 is a 6-cycle
system of K12n0+7 −L1, where L1 = L− 3C4. B1 is a 6-cycle system of K12,12n0+6 by Theorem
1. B2 is a 6-cycle system of K13 − 3C4 by Lemma 2.4(xiii) and 2.4(iv). Then B1

⋃
B2

⋃
B3 is a

6-cycle system of K12n0+19 − E(L).
The proof of n = 12k + 3 is similar to that of the case n = 12k + 7. Since n = 15, there

exists a 6-cycle system by Lemma 2.5(iii).
(2) When n = 12k + 11, there are one 5-cycle and 3m + 2 4-cycles (k ≥ 0, 0 ≤ m ≤ k.

m, k ∈ N). The proof of this case is similar to that of the case 5.1(1). Since n = 11, there exists
a 6-cycle system by Lemma 2.3(iv).

Case 5.2 L contains two 5-cycles.
Since 6 divides |E(Kn − L)|, we can get the following two cases:
(1) When n = 12k+5, there are two 5-cycles and 3m 4-cycles (k ≥ 1, 0 ≤ m ≤ k. m, k ∈ N).

The proof is similar to that of the case 5.1(1). Since n = 17, there exists a 6-cycle system by
Lemma 2.6(i).

(2) When n = 12k+1 or 12k+9, there are two 5-cycles and 3m+2 4-cycles (k ≥ 1, 0 ≤ m ≤ k.
m, k ∈ N). The proof is similar to that of the case 5.1(1). Since n = 25 or 21, there exists a
6-cycle system by Lemma 2.10(i) or 2.8(i).

Case 5.3 L contains three 5-cycles.
Since 6 divides |E(Kn − L)|, we can get the following two cases:
(1) When n = 12k+3 or 12k+7, there are three 5-cycles and 3m 4-cycles (k ≥ 1, 0 ≤ m ≤ k.

m, k ∈ N). The proof is similar to that of the case 5.1(1). Since n = 15 or 19, there exists a
6-cycle system by Lemma 2.5(i) or 2.7(i).

(2) When n = 12k + 11, there are three 5-cycle and 3m + 1 4-cycles (k ≥ 1, 0 ≤ m ≤ k.

m, k ∈ N). The proof is similar to that of the case 5.1(1). Since n = 23, there exists a 6-cycle
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system by Lemma 2.9(i).

Case 5.4 L contains at least four 5-cycles.
When n < 31, since 6 divides |E(Kn − L)|, we can get the following three cases:
(1) n = 21, L contains four 5-cycles and one 4-cycles. The 6-cycle system of this case has

been constructed in Lemma 2.8(ii).
(2) n = 25, L contains four 5-cycles and one 4-cycles. The 6-cycle system of this case has

been constructed in Lemma 2.10(ii).
(3) n = 29, L contains four 5-cycles and two 4-cycles. The 6-cycle system of this case has

been constructed in Lemma 2.11. So in the following we assume n ≥ 31.

Let L = L1 + 4C5 + C4. So Kn − L = (Kn−24 − L1) + K24,n−25 + (K25 − 4C5 −C4), where
V (L1) ⊆ V (Kn−24) = (Zn−1\Z24)

⋃{∞}, V (K24,n−25) = Z24

⋃
(Zn−1\Z24) and V (4C5

⋃
C4) ⊆

V (K25) = Z24

⋃{∞}. Since 6 divides |E(Kn−L)|, |E(K24,n−25)| and |E(K25− 4C5−C4)|, then
6 divides |E(Kn−24 − L1)|. By induction B1 is a 6-cycle system of Kn−24 − L1. B2 is a 6-cycle
system of K24,n−25 by Theorem 1 where V (K24,n−25) = {n− i, 2 ≤ i ≤ 25, i ∈ N.}⋃

Zn−25. B3

is a 6-cycle system of K25−4C5−C4 by Lemma 2.10(ii). Then B1

⋃
B2

⋃
B3 is a 6-cycle system

of Kn − E(L). ¤
Our method will result in complicated classification for the cases of n− 3 ≤ |V (L)| ≤ n. To

solve the remaining cases, a new method different from ours is needed.
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