All Nearly 2-Regular Leaves of Partial 6-Cycle Systems

Liqun PU^{1,*}, Hengzhou XU¹, Hao SHEN²

1. School of Mathematics and Statistics, Zhengzhou University, Henan 450001, P. R. China;

2. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Abstract Let K_n be a complete graph on n vertices. In this paper, we find the necessary conditions for the existence of a 6-cycle system of $K_n - L$ for every nearly 2-regular leave L of K_n . This condition is also sufficient when the number of vertices of L is n - 4.

Keywords complete graph; 6-cycle; nearly 2-regular.

MR(2010) Subject Classification 05C38

1. Introduction

Let V(G) be the vertex set of the graph G and E(G) be the edge set of the graph G. An m-cycle system of a graph G is an ordered pair (V(G), B), where B is a set of edge-disjoint cycles of length m, such that each edge of G is contained in exactly one cycle in B. For convenience, we call B an m-cycle system of a graph G instead of an ordered pair (V(G), B).

There have been many results found on *m*-cycle systems of *G* for various graphs *G*, see surveys [1, 2]. The existence of an *m*-cycle system of $K_n - I$, where *I* is a 1-factor (called leave) was solved in [3, 4]. Recently, an *m*-cycle system of $K_n - L$, where *L* is a subgraph of K_n (called leave) is considered in several papers. This can alternatively be viewed as a partial *m*-cycle system of K_n with leave *L*. A solution of partial 4-cycle system of K_n and a partial 6-cycle system of K_n with a 2-regular leave can be found in [5, 6], respectively. And the existence of a partial 6-cycle system of K_n with a forest leave can be found in [7].

In this paper, we shall consider the existence of a partial 6-cycle system of K_n with a nearly 2-regular leave L. It is an extension of [5–7]. Not only is this result of interest in its own right in the context of history of cycle systems, but, it also arose as a useful tool in studying the cycle systems of the line graphs of complete multipartite graphs [8, 9].

L is said to be nearly 2-regular of K_n if all vertices in L have degree 2 except for one (named ∞) whose degree is greater than 2, and L need not be a spanning subgraph of K_n . The necessity of the existence of a partial 6-cycle system of K_n with a nearly 2-regular leave L can be found in Lemma 1.1.

Lemma 1.1 Let *L* be a nearly 2-regular subgraph of a complete graph K_n on *n* vertices. $K_n - L$

Received August 28, 2012; Accepted May 17, 2013

Supported by the National Natural Science Foundation of China (Grant No.11071163).

 \ast Corresponding author

E-mail address: liqunpu@zzu.edu.cn (Liqun PU)

denotes K_n with a subgraph L removed. The necessary conditions for the existence of a partial 6-cycle systems of K_n with leave L are: (i) n is odd, (ii) 6 divides $|E(K_n - L)|$, and (iii) $n \ge 7$.

Proof The necessity of condition (i) follows from the fact that in a 6-cycle system, each vertex clearly has even degree. The necessity of condition (ii) follows since each 6-cycle has six edges. The necessity of condition (iii) is obvious. \Box

In this paper, our main result is Theorem 4.1 which shows that Lemma 1.1 is also sufficient when the number of vertices of L is n - 4.

The following two theorems are useful in order to prove Theorem 4.1.

Theorem 1.2 ([10]) There exists a 6-cycle system of $K_{m,n}$ if and only if:

- (i) m and n are even;
- (ii) 6 divides m or n; and
- (iii) $\min\{m, n\} \ge 4$.

Theorem 1.3 ([6]) Let L be 2-regular subgraph in the complete graph K_n . There exists a 6-cycle system of $G = K_n - L$ if and only if:

- (i) $|E(K_n L)|$ is divisible by 6;
- (ii) n is odd; and
- (iii) $n \ge 7$.

We will use some symbols in this paper. Let E(G) be the set of edges of the graph G and V(G) be the set of vertices of G. Let (u, v) or (v, u) be the edge with endpoints $\{u, v\}$. For convenience, we can use uv or vu instead of (u, v) or (v, u). If vertex v is an end point of edge uv (or vu), then v and uv are incident. For $v \in G$, the degree of vertex v (in a loopless graph), denoted by $d_G(v)$, is the number of incident edges. The graph union H = G + F between two simple graphs G and F is the graph H defined by $V(H) = V(G) \bigcup V(F)$ and $E(H) = \{uv | uv \in E(G) \text{ or } uv \in E(F)\}$. The graph difference H = G - F between G and its subgraph F is the graph H defined by $V(H) = V(G) \setminus \{v \in V(F) | d_F(v) = d_G(v)\}$ and $E(H) = E(G) \setminus E(F)$. Let $C_s = (a_1, a_2, \ldots, a_s)$ be a cycle of length s. nC_s is a graph union of $n C_s$ s. Let $K_{A,B}$ or $K_{a,b}$ be the complete bipartite graph with vertex set A and B, where |A| = a, |B| = b and $V(K_{A,B}) = A \bigcup B$. Z_n consists of n residual classes. Let $Z_n = \{0, 1, \ldots, n-1\}$. Then $Z_n \setminus Z_m = \{m, m+1, \ldots, n-3, n-2, n-1\}$ when $m \leq n$.

2. 6-cycle systems of $K_n - L$ where $7 \le n \le 29$

We shall give some small cases which will be used in the proof of Theorem 4.1.

Lemma 2.1 There exists a 6-cycle system B of $G = K_7 - [(\infty, 0, 1) + (\infty, 2, 3) + (\infty, 4, 5)]$, where $V(K_7) = Z_6 \cup \{\infty\}$.

Proof We give the proof by direct construction. Let $B = \{(2, 0, 3, 5, 1, 4), (1, 2, 5, 0, 4, 3)\}$. And B is a 6-cycle system of G. \Box

Lemma 2.2 Let $V(K_9) = Z_8 \cup \{\infty\}$. There exists a 6-cycle system B of $G = K_9 - L$, where L is a nearly 2-regular subgraph of K_9 and |E(G)| is divisible by 6.

Proof (i) When $L=(\infty, 0, 1) + (\infty, 2, 3)$, $B = \{(2, 0, 6, 4, 3, 1), (3, 0, 4, 7, 1, 5), (4, 2, 7, 6, \infty, 5), (4, \infty, 7, 5, 6, 1), (5, 0, 7, 3, 6, 2)\}.$

(ii) When $L = (\infty, 0, 1) + (\infty, 2, 3) + (\infty, 4, 5) + (\infty, 6, 7), B = \{(2, 0, 6, 4, 3, 1), (3, 0, 4, 7, 1, 5), (4, 2, 7, 5, 6, 1), (5, 0, 7, 3, 6, 2)\}.$

Lemma 2.3 Let $V(K_{11})=Z_{10} \cup \{\infty\}$. There exists a 6-cycle system B of $G = K_{11} - L$, where L is a nearly 2-regular subgraph of K_{11} and |E(G)| is divisible by 6.

Proof (i) When $L = (\infty, 0, 1) + (\infty, 2, 3, 4) + (\infty, 5, 6, 7, 8, 9), B = \{(3, \infty, 8, 2, 5, 0), (6, \infty, 7, 1, 5, 3), (2, 0, 9, 4, 8, 1), (6, 0, 8, 3, 9, 1), (4, 0, 7, 5, 9, 2), (3, 1, 4, 6, 2, 7), (5, 4, 7, 9, 6, 8)\}.$

(ii) When $L = (\infty, 0, 1) + (\infty, 2, 3) + (\infty, 4, 5, 6, 7, 8, 9), B = \{(6, \infty, 7, 1, 5, 3), (3, 1, 4, 6, 2, 7), (5, \infty, 8, 2, 9, 0), (0, 2, 5, 7, 4, 3), (1, 2, 4, 8, 5, 9), (6, 1, 8, 0, 4, 9), (8, 3, 9, 7, 0, 6)\}.$

(iii) When $L = (\infty, 0, 1) + (\infty, 2, 3, 4, 5) + (\infty, 6, 7, 8, 9), B = \{(8, 3, 9, 7, 0, 6), (6, 1, 8, 0, 4, 9), (3, \infty, 7, 2, 1, 5), (4, \infty, 8, 2, 9, 1), (0, 9, 5, 6, 4, 2), (3, 0, 5, 8, 4, 7), (3, 1, 7, 5, 2, 6)\}.$

(iv) When $L = (\infty, 0, 1, 2) + (\infty, 3, 4, 5) + (\infty, 6, 7, 8, 9), B = \{(1, \infty, 7, 3, 0, 8), (4, \infty, 8, 2, 5, 0), (2, 0, 7, 9, 1, 6), (6, 0, 9, 4, 1, 3), (5, 1, 7, 2, 9, 3), (5, 9, 6, 8, 4, 7), (3, 2, 4, 6, 5, 8)\}.$

(v) When $L = (\infty, 0, 1) + (\infty, 2, 3) + (\infty, 4, 5) + (6, 7, 8, 9), B = \{(6, \infty, 9, 4, 3, 0), (7, \infty, 8, 1, 2, 0), (4, 0, 9, 1, 5, 8), (5, 0, 8, 6, 4, 7), (1, 4, 2, 6, 5, 3), (6, 1, 7, 2, 9, 3), (5, 9, 7, 3, 8, 2)\}.$

(vi) When $L = (\infty, 0, 1) + (\infty, 2, 3) + (7, 8, 9) + (\infty, 4, 5, 6), B = \{(5, \infty, 9, 1, 3, 0), (7, \infty, 8, 1, 2, 0), (4, 0, 9, 2, 7, 1), (6, 0, 8, 3, 5, 2), (5, 1, 6, 4, 3, 7), (4, 7, 6, 9, 5, 8), (3, 9, 4, 2, 8, 6)\}.$

(vii) When $L = (\infty, 0, 1) + (\infty, 2, 3) + (\infty, 4, 5) + (\infty, 6, 7, 8), B = \{(9, \infty, 7, 0, 3, 4), (0, 6, 9, 8, 1, 2), (4, 0, 9, 1, 5, 8), (5, 0, 8, 6, 4, 7), (1, 4, 2, 6, 5, 3), (6, 1, 7, 2, 9, 3), (5, 9, 7, 3, 8, 2)\}. \square$

Lemma 2.4 Let $V(K_{13}) = Z_{12} \cup \{\infty\}$. There exists a 6-cycle system B of $G = K_{13} - L$, where L is a nearly 2-regular subgraph of K_{13} and |E(G)| is divisible by 6.

Proof (i) When $L = (\infty, 0, 1) + (\infty, 2, 3, 4, 5, 6, 7, 8, 9), B = \{(\infty, 10, 1, 11, 5, 3), (\infty, 8, 11, 2, 0, 4), (\infty, 7, 3, 11, 0, 5), (\infty, 11, 4, 9, 0, 6), (3, 0, 8, 10, 2, 1), (7, 0, 10, 6, 4, 1), (5, 1, 9, 3, 8, 2), (6, 1, 8, 5, 10, 3), (6, 2, 7, 5, 9, 11), (4, 2, 9, 10, 11, 7), (4, 8, 6, 9, 7, 10)\}.$

(ii) When $L = (\infty, 0, 1) + (\infty, 2, 3) + (4, 5, 6, 7, 8, 9), B = \{(\infty, 8, 11, 2, 0, 4), (\infty, 7, 3, 11, 0, 5), (\infty, 11, 10, 5, 9, 6), (3, 0, 8, 10, 2, 1), (7, 0, 10, 6, 4, 1), (5, 1, 9, 3, 8, 2), (\infty, 10, 3, 6, 0, 9), (4, 3, 5, 11, 9, 7), (8, 1, 10, 7, 2, 4), (7, 5, 8, 6, 1, 11), (6, 2, 9, 10, 4, 11)\}.$

(iii) When $L = (\infty, 0, 1) + (7, 8, 9) + (\infty, 2, 3, 4, 5, 6), B = \{(\infty, 8, 11, 2, 0, 4), (\infty, 7, 3, 11, 0, 5), (\infty, 10, 3, 6, 0, 9), (3, 0, 8, 10, 2, 1), (7, 0, 10, 6, 4, 1), (5, 1, 9, 3, 8, 2), (3, \infty, 11, 4, 7, 5), (6, 1, 11, 7, 10, 9), (8, 1, 10, 5, 9, 4), (2, 4, 10, 11, 6, 7), (6, 2, 9, 11, 5, 8)\}.$

(iv) When $L = (\infty, 0, 1) + (\infty, 7, 8) + (\infty, 2, 3, 4, 5, 6), B = \{(\infty, 5, 9, 2, 0, 4), (5, 0, 11, 8, 1, 10), (3, 7, 9, 8, 5, 11), (8, 4, 9, 11, 2, 6), (\infty, 10, 3, 6, 0, 9), (3, 0, 8, 10, 2, 1), (7, 0, 10, 6, 4, 1), (5, 1, 9, 3, 8, 2), (3, \infty, 11, 4, 7, 5), (6, 1, 11, 7, 10, 9), (2, 4, 10, 11, 6, 7)\}.$

(v) When $L = (\infty, 0, 1) + (\infty, 2, 3, 4) + (5, 6, 7, 8, 9), B = \{(3, \infty, 11, 4, 7, 5), (6, 1, 11, 7, 10, 9), (6, 1, 11, 7, 10, 9), (6, 1, 11, 7, 10, 9), (6, 1, 11, 7, 10, 9), (6, 1, 11, 7, 10, 9), (7, 10, 10), (7$

 $(2, 0, 4, 5, \infty, 7), (6, \infty, 8, 10, 4, 2), (0, 7, 3, 9, 11, 5), (1, 7, 9, 2, 5, 10), (1, 9, 4, 8, 11, 2), (8, 2, 10, 11, 0, 3), (1, 5, 8, 6, 11, 3), (0, 10, 6, 4, 1, 8), (\infty, 10, 3, 6, 0, 9)$.

(vi) When $L = (\infty, 0, 1) + (7, 8, 9, 10) + (\infty, 2, 3, 4, 5), B = \{(3, \infty, 11, 4, 7, 5), (6, \infty, 8, 10, 4, 2), (\infty, 10, 3, 6, 0, 9), (0, 7, 3, 9, 11, 5), (1, 7, 9, 2, 5, 10), (1, 9, 4, 8, 11, 2), (4, \infty, 7, 6, 8, 0), (2, 7, 11, 3, 0, 10), (5, 9, 6, 10, 11, 1), (2, 0, 11, 6, 1, 8), (5, 6, 4, 1, 3, 8)\}.$

(vii) When $L = (6, 7, 8) + (\infty, 0, 1, 9) + (\infty, 2, 3, 4, 5), B = \{(3, \infty, 11, 4, 7, 5), (6, \infty, 8, 10, 4, 2), (6, 1, 11, 7, 10, 9), (0, 7, 3, 9, 11, 5), (1, 7, 9, 2, 5, 10), (8, 2, 10, 11, 0, 3), (0, 10, 6, 4, 1, 8), (2, 7, \infty, 1, 3, 11), (4, \infty, 10, 3, 6, 0), (0, 9, 8, 5, 1, 2), (8, 4, 9, 5, 6, 11)\}.$

(viii) When $L = (\infty, 0, 1) + (\infty, 2, 3, 4) + (\infty, 5, 6, 7, 8), B = \{(3, \infty, 11, 4, 7, 5), (6, 1, 11, 7, 10, 9), (0, 7, 3, 9, 11, 5), (1, 7, 9, 2, 5, 10), (1, 9, 4, 8, 11, 2), (0, 10, 6, 4, 1, 8), (\infty, 10, 3, 6, 0, 9), (7, \infty, 6, 11, 0, 2), (5, 1, 3, 11, 10, 8), (4, 5, 9, 8, 6, 2), (10, 2, 8, 3, 0, 4)\}.$

(ix) When $L = (\infty, 0, 1) + (\infty, 2, 3) + (4, 5, 6) + (7, 8, 9), B = \{(\infty, 8, 11, 2, 0, 4), (\infty, 7, 3, 11, 0, 5), (\infty, 11, 10, 5, 9, 6), (3, 0, 8, 10, 2, 1), (5, 1, 9, 3, 8, 2), (\infty, 10, 3, 6, 0, 9), (8, 1, 10, 7, 2, 4), (5, 8, 6, 11, 4, 3), (7, 0, 10, 4, 1, 11), (6, 2, 9, 4, 7, 1), (7, 5, 11, 9, 10, 6)\}.$

(x) When $L = (\infty, 0, 1) + (\infty, 2, 3) + (\infty, 4, 5) + (7, 8, 9)$, or $L = (\infty, 0, 1) + (\infty, 2, 3) + (\infty, 4, 5) + (\infty, 7, 8)$, $B = B_1 \bigcup B_2 \bigcup B_3$. By Lemma 2.1, B_1 is a 6-cycle system of $K_7 - 3C_3$, where $3C_3 = (\infty, 0, 1) + (\infty, 2, 3) + (\infty, 4, 5)$. B_2 is a 6-cycle system of $K_{6,6}$ by Theorem 1 where $V(K_{6,6}) = Z_6 \bigcup (Z_{12} \setminus Z_6)$. B_3 is a 6-cycle system of $K_7 - C_3$ by Theorem 2, where $C_3 = (\infty, 7, 8)$, or (7, 8, 9) and $V(K_7) = (Z_{12} \setminus Z_6) \cup \{\infty\}$.

(xi) When $L = (\infty, 0, 1, 2) + (\infty, 4, 5, 6, 7, 8, 9, 10), B = \{(\infty, 11, 10, 5, 9, 6), (5, 1, 9, 3, 8, 2), (7, 0, 10, 4, 1, 11), (6, 2, 9, 4, 7, 1), (2, 7, 10, 1, 8, 4), (5, 8, 6, 11, 2, 0), (\infty, 1, 3, 11, 0, 8), (10, 2, 3, 4, 0, 6), (3, 0, 9, \infty, 5, 7), (3, \infty, 7, 9, 11, 5), (4, 11, 8, 10, 3, 6)\}.$

(xii) When $L = (\infty, 0, 1, 2, 3) + (\infty, 4, 5, 6, 7, 8, 9), B = \{(\infty, 11, 10, 5, 9, 6), (\infty, 1, 3, 11, 0, 8), (\infty, 2, 10, 9, 11, 5), (3, 5, 7, \infty, 10, 6), (5, 1, 9, 3, 8, 2), (7, 0, 10, 4, 1, 11), (6, 2, 9, 4, 7, 1), (2, 7, 10, 1, 8, 4), (5, 8, 6, 11, 2, 0), (0, 6, 4, 3, 7, 9), (3, 10, 8, 11, 4, 0)\}.$

(xiii) When $L = (\infty, 0, 1, 2) + (\infty, 3, 4, 5) + (6, 7, 8, 9), B = \{(2, 3, 1, 4, 8, 0), (7, 5, 8, 6, 11, 2), (3, 8, 11, 9, 0, 6), (9, 2, 6, 1, 7, 3), (1, \infty, 7, 11, 0, 10), (4, 0, 7, 9, 1, 11), (11, \infty, 10, 2, 5, 3), (5, 10, 6, \infty, 8, 1), (4, \infty, 9, 10, 8, 2), (3, 0, 5, 9, 4, 10), (5, 6, 4, 7, 10, 11)\}$).

 $\begin{array}{l} ({\rm xiv}) \ \ {\rm When} \ L = (\infty, 0, 1, 2) \cup (\infty, 3, 4, 5) \cup (\infty, 6, 7, 8), \\ B = \{(2, 3, 1, 4, 8, 0), (7, 5, 8, 6, 11, 2), (3, 8, 11, 9, 0, 6), \ (9, 8, 1, 5, 10, 4), \ (1, \infty, 7, 11, 0, 10), \ (9, 2, 6, 1, 7, 3), \ (11, \infty, 10, 2, 5, 3), \ (0, 5, 9, 6, 10, 3), \ (4, \infty, 9, 10, 8, 2), \ (5, 6, 4, 7, 10, 11), \ (4, 0, 7, 9, 1, 11)\}. \end{array}$

(xv) When $L = (\infty, 0, 1) + (\infty, 2, 3) + (\infty, 4, 5) + (\infty, 6, 7) + (\infty, 8, 9) + (\infty, 10, 11), B = B_1 \bigcup B_2 \bigcup B_3$. By Lemma 2.1, B_1 is a 6-cycle system of $K_7 - 3C_3$, where $3C_3 = (\infty, 0, 1) + (\infty, 2, 3) + (\infty, 4, 5)$ and $V(K_7) = Z_6 \cup \{\infty\}$. By Lemma 2.1, B_2 is a 6-cycle system of $K_7 - 3C_3$, where $3C_3 = (\infty, 6, 7) + (\infty, 8, 9) + (\infty, 10, 11)$ and $V(K_7) = (Z_{12} \setminus Z_6) \cup \{\infty\}$. By Theorem 1, B_3 is a 6-cycle system of $K_{6,6}$ where $V(K_{6,6}) = Z_6 \bigcup (Z_{12} \setminus Z_6)$.

 $\begin{array}{l} (\text{xvi}) \ \ \text{When} \ L = (\infty, 0, 1, 2, 3, 9) \cup (\infty, 4, 5, 6, 7, 8), \\ B = \{(\infty, 11, 10, 5, 9, 6), (7, 0, 10, 4, 1, 11), \\ (2, 7, 10, 1, 8, 4), (5, 8, 6, 11, 2, 0), (\infty, 2, 10, 9, 11, 5), (3, 5, 7, \infty, 10, 6), (3, 10, 8, 11, 4, 0), (1, \infty, 3, 8, 2, 9), \\ (0, 11, 3, 4, 9, 8), (0, 9, 7, 3, 1, 6), (5, 1, 7, 4, 6, 2)\}. \end{array}$

 $(2, 4, 7, 10, 8, 0), (5, 11, 13, 12, 2, \infty), (1, \infty, 12, 6, 13, 10), (4, 6, 9, 13, 2, 8), (7, 8, 13, 0, 10, 12)$. A will be used in Lemma 2.5.

Lemma 2.5 Let $V(K_{15}) = Z_{14} \cup \{\infty\}$. There exists a 6-cycle system B of $G = K_{15} - L$, where L is a nearly 2-regular subgraph of K_{15} and |E(G)| is divisible by 6.

Proof (i) When $L = (\infty, 0, 1, 2, 3) + (\infty, 4, 5, 6, 7) + (9, 10, 11, 12, 13), B = A \cup B_1$ where $B_1 = \{(7, 5, 8, 6, 11, 2), (11, \infty, 10, 2, 5, 3), (5, 10, 6, \infty, 8, 1), (12, 5, 13, 4, 1, 3), (4, 3, 13, \infty, 9, 12)\}.$

(ii) When $L = (\infty, 0, 1, 2, 3) + (\infty, 4, 5, 6, 7) + (\infty, 8, 9, 10, 11), B = A \cup B_2$ where $B_2 = \{(10, 6, \infty, 9, 12, 5), (5, 2, 10, \infty, 13, 3), (3, 11, 12, 8, 1, 4), (1, 3, 12, 4, 13, 5), (5, 8, 6, 11, 2, 7)\}.$

(iii) When $L = (\infty, 0, 1, 2, 3) + (\infty, 4, 5, 6), B = A \cup B_3$ where $B_3 = \{(7, 5, 8, 6, 11, 2), (11, \infty, 10, 2, 5, 3), (10, 6, 7, \infty, 13, 5), (9, 10, 11, 12, 3, 13), (1, 8, \infty, 9, 12, 4), (3, 4, 13, 12, 5, 1)\}$. \Box

Lemma 2.6 Let $V(K_{17}) = Z_{16} \cup \{\infty\}$. There exists a 6-cycle system B of $G = K_{17} - L$, where L is a nearly 2-regular subgraph of K_{17} and |E(G)| is divisible by 6.

Proof (i) When $L = (\infty, 0, 1, 2, 3) + (\infty, 4, 5, 6, 7), B = \{(9, 2, 6, 1, 7, 3), (11, \infty, 10, 2, 5, 3), (4, 0, 7, 9, 1, 11), (1, \infty, 8, 2, 13, 3), (7, 5, 8, 6, 11, 2), (3, 8, 11, 9, 0, 6), (6, \infty, 9, 12, 7, 13), (12, 5, 10, 7, 4, 2), (5, 0, 14, 12, 1, 15), (8, 0, 13, 14, 9, 15), (4, 8, 1, 10, 15, 6), (5, 1, 13, 15, 7, 14), (11, 14, 6, 10, 9, 13), (10, 6, 14, 11, 13, 9), (13, 4, 14, 15, 11, 5), (4, 1, 14, \infty, 5, 9), (11, 7, 8, 9, 6, 12), (10, 8, 13, 12, 3, 4), (0, 3, 14, 2, \infty, 15), (0, 11, 10, 13, \infty, 12), (2, 0, 10, 12, 4, 15)\}.$

(ii) When $L = 4C_4$, $B = B_1 \bigcup B_2 \bigcup B_3$. Let $K_{17} - 4C_4 = (K_{13} - 3C_4) + K_{4,6} + (K_{4,6} + K_5 - C_4)$, where $V(K_{13}) = (Z_{16} \backslash Z_4) \cup \{\infty\}$, $V(K_{4,6}) = Z_4 \bigcup (Z_{16} \backslash Z_{10})$, and $V(K_{4,6} + K_5 - C_4) = Z_{10} \cup \{\infty\}$. B_1 is a 6-cycle system of $K_{13} - 3C_4$ by Lemma 2.4 (xiii) and (xiv). B_2 is a 6-cycle system of $K_{4,6}$ by Theorem 1. $B_3 = \{(0, \infty, 2, 9, 1, 8), (0, 9, 3, 8, 2, 5), (1, 5, 3, 6, 2, 4), (1, \infty, 3, 7, 0, 6), (2, 0, 4, 3, 1, 7)\}$ is a 6-cycle system of $K_5 + K_{4,6} - C_4$ where $C_4 = (0, 1, 2, 3), V(K_5) = Z_4 \cup \{\infty\}$ and $V(K_{4,6}) = Z_4 \bigcup (Z_{10} \backslash Z_4)$. (When $C_4 = (\infty, 1, 2, 3)$, the method can also be used). \Box

The method in Lemma 2.6 will be used in Lemma 2.7.

Lemma 2.7 Let $V(K_{19}) = Z_{18} \cup \{\infty\}$. There exists a 6-cycle system B of $G = K_{19} - L$, where L is a nearly 2-regular subgraph of K_{19} and |E(G)| is divisible by 6.

Proof (i) When $L = C_5 \bigcup C_5 \bigcup C_5$, $B = B_1 \bigcup B_2 \bigcup B_3$. B_1 is a 6-cycle system of $K_{15} - 3C_5$ by (i) and (ii) of Lemma 2.5. B_2 is a 6-cycle system of $K_{4,12}$ by Theorem 1. $B_3 = \{(0, 4, 1, \infty, 3, 2), (2, 4, 3, 5, 0, 1), (3, 0, \infty, 2, 5, 1)\}$ is a 6-cycle system of $K_5 + K_{4,2}$, where $V(K_5) = Z_4 \bigcup \{\infty\}$ and $V(K_{4,2}) = Z_4 \bigcup \{4, 5\}$.

(ii) When $L = (\infty, 0, 1, 2, 3) + (\infty, 4, 5, 6)$, $B = B_1 \bigcup B_2 \bigcup B_3$. B_1 is a 6-cycle system of $K_{15} - L$ by Lemma 2.5(iii). B_2 is a 6-cycle system of $K_{4,12}$ by Theorem 1. $B_3 = \{(0, 4, 1, \infty, 3, 2), (2, 4, 3, 5, 0, 1), (3, 0, \infty, 2, 5, 1)\}$ is a 6-cycle system of $K_5 + K_{4,2}$ where $V(K_5) = Z_4 \bigcup \{\infty\}$ and $V(K_{4,2}) = Z_4 \bigcup \{4, 5\}$. \Box

Lemma 2.8 Let $V(K_{21}) = Z_{20} \bigcup \{\infty\}$. There exists a 6-cycle system B of $G = K_{21} - L$, where

L is a nearly 2-regular subgraph of K_{21} and |E(G)| is divisible by 6.

Proof (i) When $L = 2C_5 + 2C_4$, $B = B_1 \bigcup B_2$. B_1 is a 6-cycle system of $K_{10,6}$ by Theorem 1. $B_2 = \{(1, \infty, 2, 11, 3, 10), (\infty, 5, 11, 6, 10, 4), (7, \infty, 8, 11, 9, 10), (6, \infty, 9, 3, 4, 0), (0, 10, 5, 8, 1, 11), (2, 10, 8, 3, 7, 0), (4, 11, 7, 5, 3, 1), (0, 3, 6, 1, 9, 5), (1, 5, 2, 8, 9, 7), (2, 7, 8, 4, 9, 6), (0, 9, 2, 4, 6, 8)\}$ is a 6-cycle system of $K_{11} + K_{10,2} - (C_5 + C_4)$, where $C_5 + C_4 = (\infty, 0, 1, 2, 3) + (4, 5, 6, 7), V(K_{11}) = Z_{10} \bigcup \{\infty\}$ and $V(K_{10,2}) = Z_{10} \bigcup \{10, 11\}$ (The construction can also be used for other form of $C_5 \bigcup C_4$. When $V(K_{11}) = (Z_{20} \setminus Z_{10}) \bigcup \{\infty\}$, $V(K_{10,2}) = Z_{10} \bigcup \{18, 19\}$, there also exists a 6-system B_2 of $K_{11} + K_{10,2} - (C_5 + C_4)$, where $V(C_5 + C_4) = (Z_{20} \setminus Z_{10}) \bigcup \{\infty\}$).

(ii) When $L = 4C_5 + C_4$, $B = B_1 \bigcup B_2 \bigcup B_3^i$, i = 1, 2, 3. B_1 is a 6-cycle system of $K_{15} - 3C_5$ by Lemma 2.5(i). B_2 is a 6-cycle system of $K_{6,12}$ by Theorem 1 where $V(K_{6,12}) = K(Z_6 \bigcup \{i | 8 \le i \le 19\}$. Let $B_3^1 = \{(1, \infty, 5, 0, 4, 3), (2, \infty, 4, 5, 3, 6), (0, 6, 1, 4, 2, 7), (1, 5, 2, 0, 3, 7)\}$, $B_3^2 = \{(1, \infty, 5, 0, 7, 2), (1, 7, 4, 0, 2, 3), (3, 7, 5, 1, 4, 6), (2, 4, 3, 0, 6, 5)\}$, and $B_3^3 = \{(0, 6, 5, 1, \infty, 2), (0, \infty, 4, 3, 2, 7), (1, 7, 4, 5, 3, 6), (0, 5, 2, 4, 1, 3)\}$. When $C_5 + C_4 = (\infty, 0, 1, 2, 3) + (4, 6, 5, 7)$, B_3^1 is a 6-cycle system of $K_7 + K_{6,2} - (C_5 + C_4)$, where $V(K_7) = Z_6 \bigcup \{\infty\}$ and $V(K_{6,2}) = Z_6 \bigcup \{6, 7\}$. When $C_5 + C_4 = (\infty, 0, 1, 6, 2) + (\infty, 4, 5, 3)$, B_3^2 is a 6-cycle system of $K_7 + K_{6,2} - (C_5 + C_4)$, where $V(K_7) = Z_6 \bigcup \{\infty\}$, $V(K_{6,2}) = Z_6 \bigcup \{6, 7\}$. When $C_5 + C_4 = (0, 1, 2, 6, 4) + (\infty, 5, 7, 3)$, B_3^3 is a 6-cycle system of $K_7 + K_{6,2} - (C_5 + C_4)$, where $V(K_7) = Z_6 \bigcup \{\infty\}$, $V(K_{6,2}) = Z_6 \bigcup \{6, 7\}$. \Box

Lemma 2.9 Let $V(K_{23}) = Z_{22} \bigcup \{\infty\}$. There exists a 6-cycle system B of $G = K_{23} - L$, where L is a nearly 2-regular subgraph of K_{23} and |E(G)| is divisible by 6.

Proof (i) When $L = 3C_5 + C_4$, B_1 is a 6-cycle system of $K_{19} - 3C_5$ by Lemma 2.7(i). B_2 is a 6-cycle system of $K_{4,12}$ by Theorem 1. $B_3 = \{(0, \infty, 2, 9, 1, 8), (0, 9, 3, 8, 2, 5), (1, 5, 3, 6, 2, 4), (1, \infty, 3, 7, 0, 6), (2, 0, 4, 3, 1, 7)\}$ is a 6-cycle system of $K_5 + K_{4,6} - C_4$, where $C_4 = (0, 1, 2, 3)$ (The construction can also be used when $C_4 = (\infty, 1, 2, 3)$).

(ii) When $L = 5C_5$, let $B = B_1 \bigcup B_2 \bigcup B_3$ where B_1 is a 6-cycle system of $K_{15} - 3C_5$ by Lemma 2.5(i) and $V(K_{15}) = (Z_{22} \setminus Z_8) \bigcup \{\infty\}$, B_2 is a 6-cycle system of $K_{8,12}$ by Theorem 1 and $B_3 = \{(1, \infty, 2, 9, 3, 8), (6, 2, 7, 1, 9, 0), (5, \infty, 6, 9, 7, 8), (4, 9, 5, 7, 0, 3), (0, 8, 4, 1, 5, 2), (4, 0, 5, 3, 1, 6), (2, 8, 6, 3, 7, 4)\}$ is a 6-cycle system of $K_9 + K_{8,2} - 2C_5$, where $2C_5 = (\infty, 0, 1, 2, 3) + (\infty, 4, 5, 6, 7), V(K_9) = Z_8 \bigcup \{\infty\}$, and $V(K_{8,2}) = Z_8 \bigcup \{8, 9\}$. \Box

Lemma 2.10 Let $V(K_{25}) = Z_{24} \bigcup \{\infty\}$. There exists a 6-cycle system of $G = K_{25} - L$, where L is a nearly 2-regular subgraph of K_{25} and |E(G)| is divisible by 6.

Proof (i) When $L = 2C_5 + 2C_4$, $B = B_1 \bigcup B_2 \bigcup B_3$. B_1 is a 6-cycle system of $K_{21} - (2C_5 + 2C_4)$ by Lemma 2.8(i). B_2 is a 6-cycle system of $K_{4,3} + K_4$, where $V(K_4) = \{20, 21, 22, 23\}$ and $V(K_{4,3}) = \{20, 21, 22, 23\} \bigcup \{\infty, 18, 19\}$. $B_3 = \{(20, \infty, 23, 18, 22, 21), (21, \infty, 22, 20, 23, 19), (20, 19, 22, 23, 21, 18)\}$ is a 6-cycle system of $K_{4,18}$ by Theorem 1.

(ii) When $L = 4C_5 \bigcup C_4$, $B = B_1 \bigcup B_2 \bigcup B_3$. B_1 is a 6-cycle system of $K_{15} - 3C_5$ by Lemma 2.5(i) where $V(K_{15}) = (Z_{24} \setminus Z_{10}) \bigcup \{\infty\}$. B_2 is a 6-cycle system of $K_{10,12}$ by Theorem 1 where $V(K_{10,12}) = Z_{10} \bigcup (Z_{24} \setminus Z_{12})$. $B_3 = \{(1, \infty, 5, 0, 11, 3), (4, \infty, 7, 3, 2, 0), (8, \infty, 9, 7, 0, 6), (3, 0, 9, 4, 2, 10), (8, 0, 10, 5, 1, 4), (5, 3, 9, 6, 4, 11), (6, 3, 8, 7, 1, 10), (7, 4, 10, 8, 5, 2), (7, 5, 9, 11, 1, 6), (8, 1, 9, 2, 6, 11), (8, 2, 11, 7, 10, 9)\}$ is a 6-cycle system of $K_{10,3} + K_{10} - (C_4 + C_5)$, where $V(K_{10,3}) = Z_{10} \bigcup (\{\infty, 10, 11\}), V(K_{10}) = Z_{10}$, and $C_4 + C_5 = (\infty, 0, 1, 2) + (\infty, 3, 4, 5, 6)$ (The construction can also be used for other form of $C_4 + C_5$). \Box

Lemma 2.11 Let $V(K_{29}) = Z_{28} \bigcup \{\infty\}$. There exists a 6-cycle system B of $G = K_{29} - (4C_5 + 2C_4)$, where L is a nearly 2-regular subgraph of K_{29} and |E(G)| is divisible by 6.

Proof Let $B = B_1 \bigcup B_2 \bigcup B_3$. B_1 is a 6-cycle system of $K_{25} - (4C_5 + C_4)$ by Lemma 2.10(ii) where $V(K_{25}) = (Z_{28} \setminus Z_4) \bigcup \{\infty\}$. B_2 is a 6-cycle system of $K_{4,8}$ by Theorem 1 where $V(K_{4,8}) = Z_4 \bigcup (Z_{28} \setminus Z_{10})$. $B_2 = \{(0, \infty, 2, 9, 1, 8), (0, 9, 3, 8, 2, 5), (1, 5, 3, 6, 2, 4), (1, \infty, 3, 7, 0, 6), (2, 0, 4, 3, 1, 7)\}$ is a 6-cycle system of $K_5 + K_{4,6} - C_4$, where $C_4 = (0, 1, 2, 3), V(K_5) = Z_4 \bigcup \{\infty\}$, and $V(K_{4,6}) = Z_4 \bigcup (Z_{10} \setminus Z_4)$ (The construction can also be used when $C_4 = (\infty, 1, 2, 3)$). \Box

3. Some special cases

In this section, we provide some special 6-cycle systems which will be used in the proof of Theorem 4.1.

Lemma 3.1 (i) There exists a 6-cycle system B_1 of $G = K_7 + K_{6,2} + (\infty, a) + (\infty, b) - [(0, a) + (0, b)] - (\infty, 1, 2)$, where $V(K_{6,2}) = \{c, 1, 2, 3, 4, 5\} \bigcup \{a, b\}$ and $V(K_7) = \{1, 2, 3, 4, 5, c, \infty\}$.

(ii) There exists a 6-cycle system B_2 of $G = K_7 + K_{6,2} + (\infty, n-2) + (\infty, n-3) - [(0, n-2) + (0, n-3)] - (1, 2, 3)$, where $V(K_7) = Z_6 \bigcup \{\infty\}$ and $V(K_{6,2}) = Z_6 \bigcup \{n-2, n-3\}$.

Proof We give the proof by direct construction of B_i , i = 1, 2, in the following two cases.

- (i) Let $B_1 = \{(c, \infty, 3, 5, a, 4), (4, \infty, 5, c, 1, b), (3, c, 2, 5, 4, 1), (a, \infty, b, 2, 4, 3), (1, a, 2, 3, b, 5)\}.$ (ii) Let $B_2 = \{(3, n-3, 5, n-2, 4, 0), (1, n-3, \infty, 4, 2, n-2), (3, n-2, \infty, 0, 1, 5), (2, 0, 5, 4, 1, \infty)\}$
- (ii) Let $B_2 = \{(3, n-3, 5, n-2, 4, 0), (1, n-3, \infty, 4, 2, n-2), (3, n-2, \infty, 0, 1, 5), (2, 0, 5, 4, 1, \infty), (3, 4, n-3, 2, 5, \infty)\}$. \Box

Lemma 3.2 (i) There exists a 6-cycle system B_1 of $G = K_7 + K_{6,4} + (\infty, n-2) + (\infty, n-3) + (\infty, n-4) + (\infty, n-5) - [(5, n-2) + (5, n-3) + (4, n-4) + (4, n-5)] - (\infty, 1, 2)$, where $V(K_7) = Z_6 \bigcup \{\infty\}$ and $V(K_{6,4}) = Z_6 \bigcup \{n-2, n-3, n-4, n-5\}$.

(ii) There exists a 6-cycle system B_2 of $G = K_7 + K_{6,4} + (\infty, n-2) + (\infty, n-3) + (\infty, n-4) + (\infty, n-5) - [(5, n-2) + (5, n-3) + (4, n-4) + (4, n-5)] - (1, 2, 3)$, where $V(K_7) = Z_6 \bigcup \{\infty\}$ and $V(K_{6,4}) = Z_6 \bigcup \{n-2, n-3, n-4, n-5\}$.

(iii) There exists a 6-cycle system B_3 of $G = K_7 + K_{6,4} - [(1,2) + (2,3) + (3,4) + (0,1)] + (0,4)$, where $V(K_7) = \{1, 2, 3, n-2, n-3, n-4, \infty\}$ and $V(K_{6,4}) = \{1, 2, 3, n-2, n-3, n-4\} \cup \{0, 4, 5, 6\}$.

Proof We give the proof by direct construction of B_i , $1 \le i \le 3$ by three cases as follows.

(i) Let $B_1 = \{(0, n-2, \infty, n-3, 4, 3), (n-2, 4, 1, 5, 3, 2), (n-2, 3, n-4, 0, n-3, 1), (5, n-4, \infty, 0, 2, n-5), (n-3, 3, n-5, 0, 4, 2), (1, 0, 5, 4, \infty, n-5), (\infty, 5, 2, n-4, 1, 3)\}.$

 $(5, n-4, \infty, 0, 2, n-5), (n-3, 3, n-5, 0, 4, 2), (1, 0, 5, 4, \infty, n-5), (2, n-2, 4, 1, 5, \infty)\}.$

(iii) Let $B_3 = \{(3, 1, n-2, 2, n-3, n-4), (n-3, 1, n-4, 2, \infty, n-2), (4, n-2, n-4, \infty, n-3, 0), (n-2, 3, n-3, 5, n-4, 0), (6, n-4, 4, 1, \infty, 3), (5, 1, 6, 2, 0, 3), (4, 2, 5, n-2, 6, n-3)\}. \square$

Lemma 3.3 (i) There exists a 6-cycle system B_1 of $G = K_7 + K_{6,6} + (\infty, n-2) + (\infty, n-3) + (\infty, n-4) + (\infty, n-5) + (\infty, n-6) + (\infty, n-7) - [(3, n-2) + (3, n-3) + (4, n-4) + (4, n-5) + (5, n-6) + (5, n-7)] - (\infty, 1, 2)$, where $V(K_7) = Z_6 \bigcup \{\infty\}$ and $V(K_{6,6}) = Z_6 \bigcup \{n-2, n-3, n-4, n-5, n-6, n-7\}$.

(ii) There exists a 6-cycle system B_2 of $G = K_7 + K_{6,6} + [(\infty, n-2) + (\infty, n-3) + (\infty, n-4) + (\infty, n-5) + (\infty, n-6) + (\infty, n-7)] - [(3, n-2) + (3, n-3) + (4, n-4) + (4, n-5) + (5, n-6) + (5, n-7)] - (1, 2, 3), where <math>V(K_7) = Z_6 \bigcup \{\infty\}$ and $V(K_{6,6}) = Z_6 \bigcup \{n-2, n-3, n-4, n-5, n-6, n-7\}.$

(iii) There exists a 6-cycle system B_3 of $G = K_7 + K_{6,6} + (\infty, n-2) + (\infty, n-3) + (\infty, n-4) + (\infty, n-5)] - [(3, n-2) + (3, n-3) + (4, n-4) + (4, n-5) + (6, \infty)] - [(\infty, 0) + (0, 1) + (1, 2) + (2, 6),$ where $V(K_7) = Z_6 \bigcup \{\infty\}$ and $V(K_{6,6}) = Z_6 \bigcup \{n-2, n-3, n-4, n-5, 6, 7\}$).

(iv) There exists a 6-cycle system B_4 of $G = K_7 + K_{6,8} + [(\infty, n-2) + (\infty, n-3) + (\infty, n-4) + (\infty, n-5) + (\infty, n-6) + (\infty, n-7) + (\infty, n-8) + (\infty, n-9)] - [(3, n-2) + (3, n-3) + (4, n-4) + (4, n-5) + (5, n-6) + (5, n-7) + (2, n-8) + \{2, n-9\}] - (\infty, 1, 2)$, where $V(K_7) = Z_6 \bigcup \{\infty\}$ and $V(K_{6,8}) = Z_6 \bigcup \{n-2, n-3, n-4, n-5, n-6, n-7, n-8, n-9\}$.

(v) There exists a 6-cycle system B_5 of $G = K_7 + K_{6,8} + [(\infty, n-2) + (\infty, n-3) + (\infty, n-4) + (\infty, n-5) + (\infty, n-6) + (\infty, n-7) - [(3, n-2) + (3, n-3) + (4, n-4) + (4, n-5) + (5, n-6) + (5, n-7)] - [(\infty, 0) + (1, 2) + (0, 1) + (2, 6) + (6, \infty)], where <math>V(K_7) = Z_6 \bigcup \{\infty\}$ and $V(K_{6,8}) = Z_6 \bigcup \{6, 7, n-2, n-3, n-4, n-5, n-6, n-7\}.$

(vi) There exists a 6-cycle system B_6 of $G = K_7 + K_{6,4} + [(\infty, 8) + (\infty, 9)] - [(5, 8) + (5, 9)] - [(1, 7) + (1, 2) + (2, 3) + (3, 6)] + (6, 7)$, where $V(K_7) = Z_6 \bigcup \{\infty\}$ and $V(K_{6,4}) = Z_6 \bigcup \{6, 7, 8, 9\}$.

Proof We give the proof by direct construction of B_i , $1 \le i \le 6$ by six cases as follows.

(i) Let $B_1 = \{(0, n-2, \infty, n-3, 1, 3), (5, n-4, \infty, 0, n-7, 4), (2, n-5, 5, n-2, 4, n-6), (1, n-4, 3, 4, 0, n-6), (3, n-6, \infty, 5, 0, n-5), (1, n-5, \infty, 3, 2, n-2), (n-7, 3, 5, n-3, 0, 2), (1, 0, n-4, 2, n-3, 4), (5, 1, n-7, \infty, 4, 2)\}.$

(ii) Let $B_2 = \{(2, n-6, 4, n-2, 1, \infty), (5, n-4, \infty, 0, n-7, 4), (n-3, 1, n-5, 2, n-2, \infty), (1, n-4, 3, 4, 0, n-6), (3, n-6, \infty, 5, 0, n-5), (3, \infty, n-5, 5, n-2, 0), (n-7, 3, 5, n-3, 0, 2), (1, 0, n-4, 2, n-3, 4), (5, 1, n-7, \infty, 4, 2)\}.$

(iii) Let $B_3 = \{(0, 7, 5, 3, 1, n-2), (1, 7, 3, n-4, 2, n-3), (2, 7, 4, 3, n-5, 5), (0, 6, \infty, 4, 5, n-3), (4, n-3, \infty, n-4, 5, n-2), (0, n-4, 1, \infty, n-5, 2), (2, n-2, \infty, 3, 0, 4), (2, 3, 6, 1, 5, \infty), (4, 6, 5, 0, n-5, 1)\}.$

(iv) Let $B_4 = \{(0, n-2, \infty, 4, n-8, 2), (5, n-4, \infty, 0, n-7, 4), (2, n-5, 5, n-2, 4, n-6), (1, n-4, 3, 4, 0, n-6), (3, \infty, 5, 0, n-5), (1, n-5, \infty, 3, 2, n-2), (n-7, \infty, n-3, 5, n-9, 1), (1, 0, n-4, 2, n-3, 4), (0, n-3, 1, 3, 5, n-8), (1, n-8, 3, n-9, 2, 5), (0, n-9, 4, 2, n-7, 3).$

(v) Let $B_5 = \{(0, 7, 5, 3, 1, n-2), (1, 7, 3, n-4, 2, n-3), (2, 7, 4, 3, n-5, 5), (0, 6, \infty, 4, 5, n-3), (4, n-3, \infty, n-4, 5, n-2), (0, n-4, 1, \infty, n-5, 2), (2, n-2, \infty, 3, 0, 4), (0, n-5, 1, n-6, \infty, 5), (0, n-4, 1, \infty, n-5, 2), (0, n-4, 1, n-5, 1), (0, n-4, 1, n-5, 1), (0, n-4, 1, n-5, 1), (0,$

All nearly 2-regular leaves of partial 6-cycle systems

 $(2, \infty, n-7, 0, n-6, 3), (2, n-6, 4, 6, 1, n-7), (4, 1, 5, 6, 3, n-7)\}.$

(vi) Let $B_6 = \{(2, 6, 5, 4, 1, 0), (4, 6, 7, 2, 5, 0), (1, 5, 7, 3, 4, 8), (0, 7, 4, 9, \infty, 3), (8, 3, 9, 2, 4, \infty), (1, \infty, 2, 8, 0, 9)\}$. \Box

Set $A = \{(2, 3, 1, 4, 8, 0), (7, 5, 8, 6, 11, 2), (3, 8, 11, 9, 0, 6), (9, 8, 1, 5, 10, 4), (1, <math>\infty$, 7, 11, 0, 10), $(9, 2, 6, 1, 7, 3), (11, \infty, 10, 2, 5, 3), (0, 5, 9, 6, 10, 3), (4, <math>\infty$, 9, 10, 8, 2), (5, 6, 4, 7, 10, 11), (4, 0, 7, 9, 1, 11)\}. A will be used in Lemmas 3.4(ii) and 3.4(iii).

Lemma 3.4 (i) There exists a 6-cycle system B_1 of $G = K_{13} + K_{12,2} + [(\infty, 12) + (\infty, 13)] - [(1, 12) + (1, 13)] - 3C_4$, where $V(K_{13}) = Z_{12} \bigcup \{\infty\}$ and $V(K_{12,2}) = (Z_{12}, \{12, 13\})$.

(ii) There exists a 6-cycle system B_2 of $G = K_{13} + K_{12,4} + [(\infty, 12) + (\infty, 13) + (\infty, 14) + (\infty, 15)] - [(6, 12) + (6, 13) + (0, 14) + (0, 15)] - 3C_4$, where $V(K_{13}) = Z_{12} \bigcup \{\infty\}$ and $V(K_{12,4}) = Z_{12} \bigcup \{12, 13, 14, 15\}$.

(iii) There exists a 6-cycle system B_3 of $G = K_{13} + K_{12,6} + [(\infty, 12) + (\infty, 13) + (\infty, 14) + (\infty, 15) + (\infty, 16) + (\infty, 17)] - [(0, 12) + (0, 13) + (5, 14) + (5, 15) + (8, 16) + (8, 17)] - 3C_4$, where $V(K_{13}) = Z_{12} \bigcup \{\infty\}$ and $V(K_{12,6}) = Z_{12} \bigcup \{12, 13, 14, 15, 16, 17\}.$

Proof We give the proof by direct construction of B_i , $1 \le i \le 3$ by three cases as follows.

(i) $B_1 = \{(2,3,1,4,8,0), (7,5,8,6,11,2), (3,8,11,9,0,6), (9,8,1,5,10,4), (1,\infty,7,11,0,10), (11,\infty,10,2,5,3), (4,\infty,9,10,8,2), (12,8,13,5,0,7), (12,0,13,4,7,9), (4,0,3,13,10,12), (11,4,6,5,9,1), (11,5,12,6,9,13), (2,9,3,10,7,13), (1,7,3,12,2,6), (10,6,13,1,12,11)\}.$

(ii) $B_2 = A \bigcup \{ (12, 0, 13, 2, 14, 1), (14, 0, 15, 2, 12, 3), (13, 1, 15, 5, 12, 4), (13, 3, 15, 4, 14, 5), (12, 6, 13, 8, 14, 7), (14, 6, 15, 8, 12, 9), (13, 7, 15, 11, 12, 10), (13, 9, 15, 10, 14, 11) \}.$

(iii) $B_3 = A \bigcup \{ (12, 0, 13, 1, 15, 4), (14, 0, 15, 2, 16, 4), (16, 0, 17, 2, 12, 3), (13, 2, 14, 5, 15, 3), (14, 3, 17, 9, 12, 6), (12, 1, 16, 7, 13, 5), (13, 4, 17, 7, 15, 6), (16, 8, 17, 11, 12, 10), (7, 12, 8, 15, 10, 14), (13, 8, 14, 11, 15, 9), (10, 13, 11, 16, 5, 17), (6, 16, 9, 14, 1, 17) \}. \square$

Set $D = \{(2, 5, 11, 4, 14, \infty), (0, 3, 4, 7, 1, 5), (13, 6, 16, 12, 17, \infty), (9, n - 3, 13, 14, 11, 3), (10, 12, 9, 14, 16, \infty), (11, 13, 16, 2, 15, \infty), (1, 4, 9, 16, 8, \infty), (0, 2, 6, 12, 1, 9), (1, 3, 7, 13, 2, 10), (3, 5, 9, 15, 4, 12), (4, 6, 10, 16, 5, 13), (5, 7, 11, 17, 6, 14), (6, 8, 12, 0, 7, 15), (0, 4, 10, 3, 8, 11), (0, 17, 1, 6, 9, 8), (2, 4, n - 3, 3, n - 2, 7)\}. D will be used in Lemmas 3.5(i)-3.5(iii).$

Lemma 3.5 (i) There exists a 6-cycle system B_1 of $G = K_{19} + K_{18,2} + [(\infty, n-2) + (\infty, n-3)] - 3C_5 - [(17, n-2) + (17, n-3)]$, where $3C_5 = (\infty, 0, 1, 2, 3) + (4, 5, 6, 7, 8) + (9, 10, 11, 12, 13)$, $V(K_{19}) = Z_{18} \bigcup \{\infty\}$ and $V(K_{18,2}) = (Z_{18}, \{n-2, n-3\})$.

(ii) There exists a 6-cycle system B_2 of $G = K_{19} + K_{18,4} + [(\infty, n-2) + (\infty, n-3) + (\infty, n-4) + (\infty, n-5)] - [(17, n-2) + (17, n-3) + (8, n-4) + (8, n-5)] - 3C_5$, where $3C_5 = (\infty, 0, 1, 2, 3) + (\infty, 4, 5, 6, 7) + (9, 10, 11, 12, 13), V(K_{19}) = Z_{18} \bigcup \{\infty\}$ and $V(K_{18,4}) = (Z_{18}, \{n-2, n-3, n-4, n-5\}).$

(iii) There exists a 6-cycle system B_3 of $G = K_{19} + K_{18,6} + [(\infty, n-2) + (\infty, n-3) + (\infty, n-4) + (\infty, n-5) + (\infty, n-6) + (\infty, n-7)] - [(17, n-2) + (17, n-3) + (8, n-4) + (8, n-5) + (13, n-6) + (13, n-7)] - 3C_5$, where $V(K_{18,6}) = Z_{18} \bigcup \{n-2, n-3, n-4, n-5, n-6, n-7\}$, $V(K_{19}) = Z_{18} \bigcup \{\infty\}$ and $3C_5 = (\infty, 0, 1, 2, 3) + (\infty, 4, 5, 6, 7) + (\infty, 9, 10, 11, 12)$.

Proof We give the proof by direct construction of B_i , $1 \le i \le 3$ by three cases as follows.

(i) $B_1 = D \bigcup \{ (12, 14, 17, 3, 6, \infty), (4, \infty, n - 3, 2, 11, n - 2), (7, \infty, n - 2, 0, 10, n - 3), (16, 4, 17, 2, 8, n - 3), (9, 2, 14, 0, 15, n - 2), (12, 2, n - 2, 6, n - 3, 5), (8, 5, 17, 13, 1, 15), (10, 5, n - 2, 14, 8, 17), (8, 10, 14, 15, 12, n - 2), (13, 10, n - 2, 1, 11, 15), (13, n - 2, 16, 7, 14, 3), (1, 8, 13, 0, n - 3, 14), (6, 0, 16, 1, n - 3, 11), (12, 7, 17, 16, 15, n - 3), (3, 16, 11, 9, 17, 15), (9, 7, 10, 15, 5, \infty) \}.$

(ii) $B_2 = D \bigcup \{(9,7,10,15,5,\infty), (n-3,\infty,n-4,1,13,0), (n-2,\infty,n-5,1,14,0), (6,0,n-5,2,9,11), (10,0,16,n-5,4,n-2), (15,0,n-4,2,n-3,14), (11,1,n-3,7,12,n-2), (8,1,n-2,5,n-4,4), (15,1,16,7,n-4,11), (2,11,n-5,10,13,n-2), (n-3,6,n-4,17,10,5), (14,3,n-4,15,17,2), (n-5,13,n-4,16,17,9), (16,11,n-3,15,13,3), (12,2,8,7,17,5), (8,5,n-5,7,14,10), (15,3,n-5,6,n-2,8), (16,4,17,13,8,n-3), (8,17,n-5,15,n-2,14), (9,n-2,16,15,12,n-4), (n-3,12,n-5,14,n-4,10)\}.$

(iii) $B_3 = D \bigcup \{(n-3, \infty, n-4, 1, 13, 0), (n-2, \infty, n-5, 1, 14, 0), (6, 0, n-5, 2, 9, 11), (10, 0, 16, n-5, 4, n-2), (15, 0, n-4, 2, n-3, 14), (11, 1, n-3, 7, 12, n-2), (5, \infty, n-7, 0, n-6, 10), (6, \infty, n-6, 14, 3, n-4), (8, 1, n-6, 12, 14, 7), (15, 1, n-7, 3, n-5, 13), (16, 1, n-2, 8, 13, n-4), (17, 13, n-2, 15, 10, 14), (8, 2, n-6, 3, 17, 10), (8, 4, n-7, 5, 15, 17), (14, 2, 17, n-6, 15, n-7), (8, n-7, 12, 5, n-5, 14), (13, 3, 16, 17, n-5, 9), (17, 4, n-6, 16, 11, n-7), (n-3, 8, n-6, 11, 15, 10), (6, n-7, 10, n-4, 7, n-5), (n-3, 6, n-6, 7, 17, 5), (6, 3, 15, 8, 5, n-2), (11, 2, n-7, 7, 9, n-4), (n-3, 11, n-5, 10, 7, 16), (n-4, 5, n-6, 9, n-2, 14), (15, n-3, 10, 13, 12, n-5), (9, 17, n-4, 15, 16, n-7), (2, n-2, 16, 4, n-4, 12)\}. \Box$

4. The main result

Now we are in the position to prove Theorem 4.1.

We will assume $|V(L)| \ge n-4$. Since if $|V(L)| \le n-5$, we can get a C_6 such that $V(C_6) \cap V(L) \subseteq \{\infty\}$ and $V(C_6) \subseteq V(K_n)$. Let $L^* = C_6 + L$. A 6-cycle system of $K_n - L$ is equal to a 6-cycle system of $K_n - L^*$ and C_6 . If $|V(L^*)| \le n-5$, repeat the process until $|V(L^*)| \ge n-4$.

Theorem 4.1 Let *L* be a nearly 2-regular graph in the complete graph K_n and |V(L)| = n - 4. There exists a 6-cycle system of $K_n - L$ for positive integer *n* satisfying the following three conditions: (i) *n* is odd, (ii) 6 divides $|E(K_n - L)|$ and (iii) $n \ge 7$.

Proof We use induction method to prove the result. When $n \leq 13$, the proof can be seen in Lemma 2.1-2.4. Suppose that for any odd z < n and any nearly 2-regular leave $L_1 \subseteq L$ of K_z for which 6 divides $|E(K_z - L_1)|$, there exists a 6-cycle system of $K_z - L_1$. In the following, we shall show there exists a 6-cycle system of $K_n - L$ by five cases.

Case 1 L contains at least one C_3 .

Without lose of generality, suppose $C_3 = (1, 2, 3)$, or $C_3 = (\infty, 1, 2)$. Let $L = L_1 + C_3$. We can get $K_n - L = (K_{n-6} - L_1) + K_{6,n-7} + (K_7 - C_3)$ where $V(K_{n-6}) = (Z_{n-1} \setminus Z_6) \bigcup \{\infty\}$, $V(K_{6,n-7}) = Z_6 \bigcup (Z_{n-1} \setminus Z_6)$ and $V(K_7) = Z_6 \bigcup \{\infty\}$. Since 6 divides $|E(K_n - L)|$, $|E(K_{6,n-7})|$ and $|E(K_7 - C_3)|$, then 6 divides $|E(K_{n-6} - L_1)|$. By induction or Theorem 2, B_1 is a 6-cycle

662

system of $K_{n-6} - L_1$. B_2 is a 6-cycle system of $K_{6,n-7}$ by Theorem 1. B_3 is a 6-cycle system of $K_7 - C_3$ by Theorem 2, where $V(C_3) \subseteq V(K_7)$. Then $B_1 \bigcup B_2 \bigcup B_3$ is a 6-cycle system of $K_n - E(L)$.

Case 2 L contains at least one C_m , $m \ (m \ge 6)$.

Let $C_m = (0, 1, 2, 3, 4, \dots, m-2, \infty) \in L$. Then $C_m = C_{m-3} + [(0, 1) + (1, 2) + (2, 3) + (3, 4)] - (0, 4)$ where $C_{m-3} = (0, 4, 5, 6, \dots, m-2, \infty)$. Let $L = (L-C_m) + C_{m-3} + [(0, 1) + (1, 2) + (2, 3) + (3, 4)] - (0, 4) = L_1 + [(0, 1) + (1, 2) + (2, 3) + (3, 4)] - (0, 4)$ where $L_1 = (L - C_m) + C_{m-3}$. $K_n - L = (K_{n-6} - L_1) + K_{6,n-11} + [K_7 + K_{6,4} - (0, 1) - (1, 2) - (2, 3) - (3, 4) + (0, 4)]$, where $V(K_{n-6}) = (Z_{n-4} \setminus Z_4) \bigcup \{0, \infty\}, V(K_{6,n-11}) = A \bigcup (Z_{n-4} \setminus Z_7), V(K_7) = A \bigcup \{\infty\}, K_{6,4} = A \bigcup \{0, 4, 5, 6\}$ and $A = \{1, 2, 3, n-2, n-3, n-4\}$. Since 6 divides $|E(K_n - L)|, |E(K_{6,n-11})|$ and $|E[K_7 + K_{6,4} - (0, 1) - (1, 2) - (2, 3) - (3, 4) + (0, 4)]|$, then 6 divides $|E(K_{n-6} - L_1)|$. By induction and Theorem 2, B_1 is a 6-cycle system of $K_{n-6} - L_1$. B_2 is a 6-cycle system of $K_{6,n-11}$ by Theorem 1. B_3 is a 6-cycle system of $K_7 + K_{6,4} - (1, 2) - (2, 3) - (3, 4) - (0, 1) + (0, 4)$ by Lemma 3.2(iii). Then $B_1 \bigcup B_2 \bigcup B_3$ is a 6-cycle system of $K_n - L$.

Case 3 L contains only cycles of length 4.

When n < 21, since 6 divides $|E(K_n - L)|$, there exist the following cases:

(1) n = 13, L contains three 4-cycles. This case has been constructed in Lemma 2.4(iii) and 2.4(iv).

(2) n = 17, L contains one 4-cycle, or four 4-cycles. When L contains one 4-cycle, we can obtain this 6-cycle system by Theorem 2. When L contains four 4-cycles, the proof can be seen in Lemma 2.6(ii). So in the following we assume $n \ge 21$. As long as L meets the condition of the induction, we can construct a 6-cycle system. So we only consider $3C_4 = (\infty, 0, 1, 2) + (\infty, 3, 4, 5) + (\infty, 6, 7, 8)$. Let $L = L_1 + 3C_4$. So $K_n - E(L) = (K_{n-12} - L_1) + K_{12,n-13} + (K_{13} - 3C_4)$, where $V(K_{n-12}) = (Z_{n-1} \setminus Z_{12}) \bigcup \{\infty\}$, $V(K_{12,n-13}) = Z_{12} \bigcup Z_{n-1} \setminus Z_{12}$ and $V(K_{13}) = Z_{12} \bigcup \{\infty\}$. Since 6 divides $|E(K_n - L)|$, $|E(K_{12,n-13})|$ and $|E(K_{13} - 3C_4)|$, then 6 divides $|E(K_{n-12} - L_1)|$. By induction or Theorem 2, B_1 is a 6-cycle system of $K_{n-12} - L_1$. B_2 is a 6-cycle system of $K_{12,n-13}$ by Theorem 1. B_3 is a 6-cycle system of $K_{13} - 3C_4$ by Lemma 2.4(iii) and 2.4(iv), where $V(3C_4) \subseteq V(K_{13})$. Then $B_1 \bigcup B_2 \bigcup B_3$ is a 6-cycle system of $K_n - E(L)$.

Case 4 L contains only cycles of length 5.

When n < 25, since 6 divides $|E(K_n - E(L))|$, there exist the following cases:

- (1) n = 15, L contains three 5-cycles. This case has been constructed in Lemma 2.5(i);
- (2) n = 17, L contains two 5-cycles. This case has been constructed in Lemma 2.6(i);
- (3) n = 19, L contains three 5-cycles. This case has been constructed in Lemma 2.7(i);

(4) n = 23, L contains five 5-cycles. This case has been constructed in Lemma 2.9(ii).

So in the following we assume $n \ge 25$. Let $L = L_1 + 3C_5$. So $K_n - L = (K_{n-18} - L_1) + K_{18,n-19} + (K_{19} - 3C_5)$, where $V(K_{n-18}) = (Z_{n-1} \setminus Z_{18}) \bigcup \{\infty\}$, $V(K_{18,n-19}) = Z_{18} \bigcup (Z_{n-1} \setminus Z_{18})$ and $V(K_{19}) = Z_{18} \bigcup \{\infty\}$. Since 6 divides $|E(K_n - L)|$, $|E(K_{18,n-19})|$ and $|E(K_{19} - 5C_5)|$, then

6 divides $|E(K_{n-12} - L_1)|$. By induction or Theorem 2, B_1 is a 6-cycle system of $K_{n-18} - L_1$. B_2 is a 6-cycle system of K(18, n - 19) by Theorem 1. B_3 is a 6-cycle system of $K_{19} - 3C_5$ by Lemma 2.7(i), where $V(3C_5) \subseteq V(K_{19})$. Then $B_1 \bigcup B_2 \bigcup B_3$ is a 6-cycle system of $K_n - E(L)$.

Case 5 L contains only cycles of length 4 and 5.

Case 5.1 L contains one 5-cycle.

Since 6 divides $|E(K_n - L)|$, we can get the following two cases:

(1) When n = 12k+3 or 12k+7, there are one 5-cycle and 3m+1 4-cycles ($k \ge 1, 0 \le m \le k$. $m, k \in N$).

We give the proof by induction on k. When k = 1, and n = 15 or 19, we give the proof in Lemma 2.5(iii) and 2.7(ii). Suppose that for $k = n_0$ and any nearly 2-regular leave L_1 , there exists a 6-cycle system of $K_{12n_0+7} - L_1$. When $k = n_0 + 1$, let $L_1 = L - 3C_4$. We can get $K_{12k+7} - L = K_{12n_0+19} - L = (K_{12n_0+7} - L_1) + K_{12,12n_0+6} + (K_{13} - 3C_4)$, where $V(L_1) \subseteq$ $V(K_{12n_0+7}) = Z_{12n_0+6} \bigcup \{\infty\}$, $V(K_{12,12n_0+6}) = A \bigcup Z_{12n_0+6}$, $V(3C_4) \subseteq V(K_{13}) = A \bigcup \{\infty\}$ and $A = \{12n_0 + i | 7 \leq i \leq 18. i \in N\}$. Since 6 divides $|E(K_n - L)|$, $|E(K_{12,12n_0+6})|$ and $|E(K_{13} - 3C_4)|$, then 6 divides $|E(K_{12n_0+19} - L_1)|$. By induction or Theorem 2, B_1 is a 6-cycle system of $K_{12n_0+7} - L_1$, where $L_1 = L - 3C_4$. B_1 is a 6-cycle system of $K_{12,12n_0+6}$ by Theorem 1. B_2 is a 6-cycle system of $K_{13} - 3C_4$ by Lemma 2.4(xiii) and 2.4(iv). Then $B_1 \bigcup B_2 \bigcup B_3$ is a 6-cycle system of $K_{12n_0+19} - E(L)$.

The proof of n = 12k + 3 is similar to that of the case n = 12k + 7. Since n = 15, there exists a 6-cycle system by Lemma 2.5(iii).

(2) When n = 12k + 11, there are one 5-cycle and 3m + 2 4-cycles $(k \ge 0, 0 \le m \le k.$ $m, k \in N$). The proof of this case is similar to that of the case 5.1(1). Since n = 11, there exists a 6-cycle system by Lemma 2.3(iv).

Case 5.2 L contains two 5-cycles.

Since 6 divides $|E(K_n - L)|$, we can get the following two cases:

(1) When n = 12k+5, there are two 5-cycles and 3m 4-cycles $(k \ge 1, 0 \le m \le k, m, k \in N)$. The proof is similar to that of the case 5.1(1). Since n = 17, there exists a 6-cycle system by Lemma 2.6(i).

(2) When n = 12k+1 or 12k+9, there are two 5-cycles and 3m+2 4-cycles $(k \ge 1, 0 \le m \le k, m, k \in N)$. The proof is similar to that of the case 5.1(1). Since n = 25 or 21, there exists a 6-cycle system by Lemma 2.10(i) or 2.8(i).

Case 5.3 L contains three 5-cycles.

Since 6 divides $|E(K_n - L)|$, we can get the following two cases:

(1) When n = 12k+3 or 12k+7, there are three 5-cycles and 3m 4-cycles $(k \ge 1, 0 \le m \le k, m, k \in N)$. The proof is similar to that of the case 5.1(1). Since n = 15 or 19, there exists a 6-cycle system by Lemma 2.5(i) or 2.7(i).

(2) When n = 12k + 11, there are three 5-cycle and 3m + 1 4-cycles $(k \ge 1, 0 \le m \le k.$ $m, k \in N$). The proof is similar to that of the case 5.1(1). Since n = 23, there exists a 6-cycle system by Lemma 2.9(i).

Case 5.4 L contains at least four 5-cycles.

When n < 31, since 6 divides $|E(K_n - L)|$, we can get the following three cases:

(1) n = 21, L contains four 5-cycles and one 4-cycles. The 6-cycle system of this case has been constructed in Lemma 2.8(ii).

(2) n = 25, L contains four 5-cycles and one 4-cycles. The 6-cycle system of this case has been constructed in Lemma 2.10(ii).

(3) n = 29, L contains four 5-cycles and two 4-cycles. The 6-cycle system of this case has been constructed in Lemma 2.11. So in the following we assume $n \ge 31$.

Let $L = L_1 + 4C_5 + C_4$. So $K_n - L = (K_{n-24} - L_1) + K_{24,n-25} + (K_{25} - 4C_5 - C_4)$, where $V(L_1) \subseteq V(K_{n-24}) = (Z_{n-1} \setminus Z_{24}) \bigcup \{\infty\}, V(K_{24,n-25}) = Z_{24} \bigcup (Z_{n-1} \setminus Z_{24}) \text{ and } V(4C_5 \bigcup C_4) \subseteq V(K_{25}) = Z_{24} \bigcup \{\infty\}$. Since 6 divides $|E(K_n - L)|, |E(K_{24,n-25})|$ and $|E(K_{25} - 4C_5 - C_4)|$, then 6 divides $|E(K_{n-24} - L_1)|$. By induction B_1 is a 6-cycle system of $K_{n-24} - L_1$. B_2 is a 6-cycle system of $K_{24,n-25}$ by Theorem 1 where $V(K_{24,n-25}) = \{n - i, 2 \leq i \leq 25, i \in N.\} \bigcup Z_{n-25}$. B_3 is a 6-cycle system of $K_{25} - 4C_5 - C_4$ by Lemma 2.10(ii). Then $B_1 \bigcup B_2 \bigcup B_3$ is a 6-cycle system of $K_n - E(L)$. \Box

Our method will result in complicated classification for the cases of $n-3 \le |V(L)| \le n$. To solve the remaining cases, a new method different from ours is needed.

Acknowledgements We appreciate the anonymous referees for their valuable comments which help to improve the paper.

References

- [1] C. C. LINDNER, C. A. RODGER. Decomposition into Cycles (II). Wiley, New York, 1992.
- [2] C. A. RODGER. Cycle Systems. in: C. J. Colbourn, J. H. Dinitz (Eds.), CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 1996.
- [3] B. ALSPACH, H. GAVLAS. Cycle decompositions of K_n and $K_n I$. J. Combin. Theory Ser. B, 2001, 81(1): 77–99.
- [4] M. SAJNA. Cycle decompositions (III). J. Combin. Des., 2002, 10(1): 27-78.
- [5] H. L. FU. C. A. RODGER. Four-cycle systems with two-regular leaves. Graphs Combin., 2001, 17(3): 457–461.
- [6] D. J. ASHE, C. A. RODGER, H. L. FU. All 2-regular leaves of partial 6-cycle systems. Ars Combin., 2005, 76: 129–150.
- [7] D. J. ASHE, H. L. FU, C. A. RODGER. A solution to the forest leave problem for partial 6-cycle systems. Discrete Math., 2004, 281(1-3): 27–41.
- [8] M. COLBY, C. A. RODGER. Cycle decompositions of the line graph of K_n . J. Combin. Theory Ser. A, 1993, **62**(1): 158–161.
- B. A. COX, C. A. RODGER. Cycle systems of the line graph of complete graph. J. Graph Theory, 1996, 21(2): 173–182.
- [10] D. SOTTEAU. Decomposition of $K_{m,n}(K_{m,n}^*)$ into cycles (circuits) of length 2k. J. Combin. Theory Ser. B, 1981, **30**(1): 75–81.