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Abstract In this paper, the Hermitian positive definite solutions of the nonlinear matrix

equation Xs − A∗X−tA = Q are studied, where Q is a Hermitian positive definite matrix, s

and t are positive integers. The existence of a Hermitian positive definite solution is proved.

A sufficient condition for the equation to have a unique Hermitian positive definite solution is

given. Some estimates of the Hermitian positive definite solutions are obtained. Moreover, two

perturbation bounds for the Hermitian positive definite solutions are derived and the results

are illustrated by some numerical examples.
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1. Introduction

We consider the matrix equation:

Xs −A∗X−tA = Q, (1.1)

where Q is an n × n Hermitian positive definite matrix, s and t are positive integers. Here A∗

stands for the conjugate transpose of the matrix A.

The nonlinear matrix equation (1.1) arises in a wide variety of application and research
areas, including automatic control, ladder networks, dynamic programming, stochastic filtering
and statistics [4, 11, 12]. The Hermitian positive definite solutions of Eq. (1.1) have been studied
in some special cases [3–9, 11, 12, 14, 15]. The case that s = t = 1, the one arising specifically
in the analysis of a stationary Gaussian reciprocal processes over a finite interval [13], has been
investigated systematically by many authors, such as Ferrante and Levy [4], Fital and Guo [5],
Guo and Lancaster [6], Hasanov and Ivanov [9], Ivanov et al. [12], and Meini [15], and some basic
properties, efficient iterative algorithms, and perturbation estimates of the Hermitian positive
definite solutions have been obtained. Ivanov et al. [11] studed the equation X−A∗X−2A = I. El-
Sayed [3] proposed two iterative methods for obtaining the Hermitian positive definite solutions

Received July 29, 2012; Accepted November 22, 2012

Supported by the National Natural Science Foundation of China (Grant No. 11071079) and the Natural Science

Foundation of Zhejiang Province (Grant No.Y6110043).

E-mail address: caijing@hutc.zj.cn



674 Jing CAI

of the equation X − A∗X−nA = Q and Hasanov and Ivanov [7] derived some perturbation
bounds for these solutions. Liu and Gao [14] studied the equation Xs − AT X−tA = I and
presented the properties and the sensitivity analysis of the symmetric positive definite solutions
of this equation. Note that only in the case of s = t can Eq. (1.1) be reduced to the equation
Xs − AT X−tA = I (see [4, Proposition 3.1]). Hence it is necessary to consider Eq. (1.1) which
has the more general form.

In this paper, we mainly discuss the basic properties and the sensitivity analysis of the
Hermitian positive definite solutions of Eq. (1.1). The rest of the paper is organized as follows.
In Section 2, we show that Eq. (1.1) always has a Hermitian positive definite solution and give
a sufficient condition for the equation to have a unique solution. Some new estimates of the
solutions are also obtained. In Section 3, two perturbation bounds for a Hermitian positive
definite solution and the unique solution of Eq. (1.1) are derived respectively. Finally, we give a
numerical example in Section 4 to illustrate our theoretical results.

The following notations are used throughout the paper. The symbol C n×n and P(n) denote
the set of n× n complex matrices and positive semi-definite matrices, respectively. AT denotes
the transpose of a matrix A. λ(A) stands for an eigenvalue of a square matrix A. Let λ1(H)
and λn(H) denote the maximal and the minimal eigenvalue of an n × n Hermitian matrix H,
respectively. Let ‖ · ‖ be the spectral norm and ‖ · ‖F be the Frobenius norm. The symbol
A⊗B stands for the Kronecker product of matrices A and B. For A = (a1, a2, . . . , an) ∈ C m×n,
the symbol vec(A) stands for a vector defined by vec(A) = (aT

1 , aT
2 , . . . , aT

n )T . The notation
B ≥ 0 (B > 0) means that B is a Hermitian positive semi-definite (definite) matrix. For two
Hermitian matrices B and C, the notation B ≥ C (B > C) indicates that B−C ≥ 0 (B−C > 0),
and X ∈ [B,C] implies that B ≤ X ≤ C.

For convenience of discussion, in the sequel, a solution always means a Hermitian positive
definite solution unless otherwise noted.

2. Properties of the solutions

In this section, we discuss the properties of the solutions of Eq. (1.1), including existence,
uniqueness and estimates of the solutions.

Note that Ran and Reurings [17] have considered the following more general nonlinear
matrix equation:

X + A∗F (X)A = Q (2.1)

where F is a map from P(n) into C n×n, and obtained sufficient conditions for the existence of
a solution of the equation as follows.

Lemma 2.1 ([17, Lemma 2.2]) Let F : P(n) → −P(n) be continuous on {X ∈ P(n)|X ≥ Q}.
(i) If Eq. (2.1) has a positive semi-definite solution X̄, then X̄ ≥ Q.

(ii) If there exist a B ≥ Q such that

Q−B ≤ A∗F (X)A ≤ 0 (2.2)
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for all X ∈ [Q,B], then Eq.(2.1) has a solution in [Q,B]. Moreover, if (2.2) is satisfied for every

X ≥ Q, Then all solutions of Eq. (2.1) are in [Q,B].

Lemma 2.2 ([16]) If B > C > 0 (or B ≥ C > 0), then Bγ > Cγ > 0 (or Bγ ≥ Cγ > 0) for all

γ ∈ (0, 1], and 0 < Bγ < Cγ (or 0 < Bγ ≤ Cγ) for all γ ∈ [−1, 0).

Theorem 2.1 Eq. (1.1) has a solution in [Q
1
s , (Q + λn(Q)−

t
s A∗A)

1
s ], and all the solutions are

in [Q
1
s , (Q + λn(Q)−

t
s A∗A)

1
s ].

Proof Let Y = Xs. Then Eq. (1.1) is equivalent to

Y −A∗Y − t
s A = Q. (2.3)

Hence the existence of a solution of Eq. (1.1) is equivalent to that of Eq. (2.3). Let B = Q +
λn(Q)−

t
s A∗A and F (Y ) = −Y − t

s . Then for all Y ∈ [Q,B], we have

Q−B = −λn(Q)−
t
s A∗A ≤ A∗F (Y )A ≤ 0, (2.4)

and (2.4) holds for all Y ≥ Q. According to Lemma 2.1, we know that Eq. (2.3) has a solution
in [Q,Q+λn(Q)−

t
s A∗A], and all the solutions of Eq. (2.3) are in [Q,Q+λn(Q)−

t
s A∗A]. Then it

follows from Lemma 2.2 that Eq. (1.1) has a solution in [Q
1
s , (Q + λn(Q)−

t
s A∗A)

1
s ], and all the

solutions are in [Q
1
s , (Q + λn(Q)−

t
s A∗A)

1
s ]. ¤

Theorem 2.2 If ‖A‖2 < s
t λ

s+t
s

n (Q), then Eq. (1.1) has a unique solution.

Proof Suppose that Eq. (1.1) has two different solutions X, Y ∈ [Q
1
s , (Q + λn(Q)−

t
s A∗A)

1
s ].

Since

Xs − Y s =
s−1∑

k=0

Xk(X − Y )Y s−1−k

and

Y −t −X−t = X−t(Xt − Y t)Y −t =
t∑

k=1

X−k(X − Y )Y k−t−1, (2.5)

we have

‖Xs − Y s‖F = ‖(
s−1∑

k=0

Y s−1−k ⊗Xk)vec(X − Y )‖ ≥ sλ
s−1

s
n (Q)‖X − Y ‖F (2.6)

and

‖X−t − Y −t‖F = ‖(
t∑

k=1

Y k−t−1 ⊗X−k)vec(X − Y )‖ ≤ t

λ
t+1

s
n (Q)

‖X − Y ‖F . (2.7)

If ‖A‖2 < s
t λ

s+t
s

n (Q), then by (2.6) and (2.7), we get

‖X − Y ‖F ≤ 1

sλ
s−1

s
n (Q)

‖Xs − Y s‖F =
1

sλ
s−1

s
n (Q)

‖A∗(X−t − Y −t)A‖F

≤ ‖A‖2
s
t λ

s+t
s

n (Q)
‖X − Y ‖F < ‖X − Y ‖F .
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This is a contradiction. Hence Eq. (1.1) has a unique solution. ¤

Corollary 2.1 ([14, Theorem 2.4]) If ‖A‖2 < s
t , then the equation Xs − AT X−tA = I has a

unique solution.

The following theorem is a direct generalization of Liu and Gao’s Theorem 2.5 in [14]. Its
proof is similar, and is omitted here.

Theorem 2.3 Every solution X of Eq. (1.1) satisfies

αI ≤ X ≤ βI, (2.8)

where α and β are solutions of the following system of equations:
{

αs = λn(Q) + 1
βt λn(A∗A),

βs = λ1(Q) + 1
αt λ1(A∗A).

Next we shall derive a new estimate which is sharper than the estimate (2.8).

Lemma 2.3 Let f(x) = xt(xs − θ), θ > 0, x ≥ 0. Then

(i) f is decreasing on [0, ( t
s+tθ)

1
s ] and increasing on [( t

s+tθ)
1
s ,+∞);

(ii) fmin = f(( t
s+tθ)

1
s ) = − s

s+t (
t

s+t )
t
s θ

t
s +1.

Consider two polynomial equations as follows:

xs+t − λn(Q)xt − λn(A∗A) = 0, (2.9)

xs+t − λ1(Q)xt − λ1(A∗A) = 0. (2.10)

Then from Lemma 2.3 it follows that both Eqs. (2.9) and (2.10) have unique positive solutions,
denoted by α̃ and β̃, respectively. Moreover, one can easily see that α̃ ≤ β̃.

Theorem 2.4 Every solution X of Eq. (1.1) satisfies

α̃I ≤ X ≤ β̃I, (2.11)

where α̃ and β̃ are the unique positive solutions of Eqs. (2.9) and (2.10), respectively.

Proof By Theorem 3.3.16 (d) of Horn and Johnson [10], we have

λ(A∗X−tA) ≤ λ(X−t)λ1(A∗A). (2.12)

Moreover, if A is nonsingular, then we have

λ(X−t) = λ((A−1)∗A∗X−tAA−1) ≤ λ(A∗X−tA)λ1((A∗A)−1)

= λ(A∗X−tA)(λn(A∗A))−1,

which yields
λ(A∗X−tA) ≥ λ(X−t)λn(A∗A). (2.13)

If A is singular, the inequality (2.13) still holds since λn(A∗A) = 0.

From λ(X)s = λ(Xs) = λ(Q + A∗X−tA), we get

λn(Q) + λ(A∗X−tA) ≤ λ(X)s ≤ λ1(Q) + λ(A∗X−tA). (2.14)
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Then by (2.12)–(2.14), we obtain

λn(Q) + (λ(X))−tλn(A∗A) ≤ λ(X)s ≤ λ1(Q) + (λ(X))−tλ1(A∗A),

which implies

(λ(X))s+t − λ1(Q)(λ(X))t ≤ λ1(A∗A)

and

(λ(X))s+t − λn(Q)(λ(X))t ≥ λn(A∗A).

Then according to Lemma 2.3, we conclude that α̃ ≤ λ(X) ≤ β̃, from which it follows that
α̃I ≤ X ≤ β̃I. ¤

Remark 2.1 From Theorem 2.3, we have αs = λn(Q) + 1
βt λn(A∗A) ≤ λn(Q) + 1

αt λn(A∗A),
i.e., αs+t−λn(Q)αt ≤ λn(A∗A). Then according to Lemma 2.3, we know that α ≤ α̃. Similarly,
we get β ≥ β̃. Therefore, the estimate (2.11) is sharper than the estimate (2.8).

Theorem 2.5 Suppose X is a solution of Eq. (1.1). Then for any eigenvalue of A, the following

inequality holds.

(λn(X))t[(λn(X))s − λ1(Q)] ≤ |λ(A)|2 ≤ (λ1(X))t[(λ1(X))s − λn(Q)]. (2.15)

Proof Let v be an eigenvector corresponding to λ(A) with ‖v‖2 = 1. Then we have

vT Xsv − vT A∗X−tAv = vT Qv,

which yields

|λ(A)|2vT X−tv = vT (Xs −Q)v.

From which it follows that

(λn(X))s − λ1(Q) ≤ |λ(A)|2vT X−tv ≤ (λ1(X))s − λn(Q). (2.16)

From the left inequality of (2.16), we get

(λn(X))s − λ1(Q) ≤ |λ(A)|2(λn(X))−t, (2.17)

and from its right one, we obtain

|λ(A)|2(λ1(X))−t ≤ (λ1(X))s − λn(Q). (2.18)

Then it follows from (2.17) and (2.18) that the inequality (2.15) holds. ¤

3. Perturbation estimates

Assume that Eq. (1.1) is perturbed to:

X̃s − Ã∗X̃−tÃ = Q̃. (3.1)

Let ∆X = X̃ −X, ∆A = Ã−A, and ∆Q = Q̃−Q.
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Theorem 3.1 Suppose X and X̃ are the solutions of Eqs. (1.1) and (3.1), respectively. If

γ = s ·min{λn(Q), λn(Q̃)} s−1
s − ‖A‖2

t∑

k=1

‖Q̃−1‖ k
s ‖Q−1‖ t+1−k

s > 0,

then

‖∆X‖ ≤ 1
γ

[‖∆Q‖+ ‖Q̃−1‖ t
s ‖∆A‖(2‖A||+ ‖∆A‖)] (3.2)

and
‖∆X‖
‖X‖ ≤ 1

γ
[
‖∆Q‖
‖Q‖ ‖Q‖

1− 1
s +

‖∆A‖
‖A‖

‖Q̃−1‖ t
s ‖A‖2

‖Q‖ 1
s

(
‖∆A‖
‖A‖ + 2)]. (3.3)

Proof Firstly, by (2.5), we get

∆Q = X̃s −Xs − Ã∗X̃−tÃ + A∗X−tA

= X̃s −Xs −∆A∗X̃−t∆A−∆A∗X̃−tA−A∗X̃−t∆A + A∗(X−t − X̃−t)A

= X̃s −Xs −∆A∗X̃−t∆A−∆A∗X̃−tA−A∗X̃−t∆A + A∗
t∑

k=1

X̃−k∆XXk−t−1A.(3.4)

Then, we have

‖X̃s −Xs + A∗
t∑

k=1

X̃−k∆XXk−t−1A‖

≥ ‖X̃s −Xs‖ − ‖A‖2
t∑

k=1

‖X̃−1‖k‖∆X‖‖X−1‖t+1−k

≥ ‖
s−1∑

k=0

X̃k∆XXs−1−k‖ − ‖A‖2
t∑

k=1

‖Q̃−1‖ k
s ‖∆X‖‖Q−1‖ t+1−k

s

≥ [s ·min{λn(Q), λn(Q̃)} s−1
s − ‖A‖2

t∑

k=1

‖Q̃−1‖ k
s ‖Q−1‖ t+1−k

s ]‖∆X‖ ≡ γ‖∆X‖. (3.5)

If γ > 0, then by (3.4), (3.5) and the fact that X̃ ≥ Q
1
s , we obtain

‖∆X‖ ≤ 1
γ
‖∆Q + ∆A∗X̃−t∆A + ∆A∗X̃−tA + A∗X̃−t∆A‖

≤ 1
γ

(‖∆Q‖+ ‖∆A‖2‖X̃−1‖t + 2‖X̃−1‖‖A‖‖∆A‖)

≤ 1
γ

[‖∆Q‖+ ‖∆A‖‖Q̃−1‖ t
s (‖∆A‖+ 2‖A‖)].

Moreover, since ‖X‖ ≥ ‖Q‖ 1
s , we have

‖∆X‖
‖X‖ ≤ 1

γ
[
‖∆Q‖
‖Q‖

‖Q‖
‖X‖ +

‖∆A‖
‖A‖

‖Q̃−1‖ t
s ‖A‖2

‖X‖ (
‖∆A‖
‖A‖ + 2)]

≤ 1
γ

[
‖∆Q‖
‖Q‖ ‖Q‖

1− 1
s +

‖∆A‖
‖A‖

‖Q̃−1‖ t
s ‖A‖2

‖Q‖ 1
s

(
‖∆A‖
‖A‖ + 2)].

The proof is completed. ¤

Lemma 3.1 ([18]) Let B ∈ C n×n be nonsingular and E ∈ C n×n. If ‖B−1‖‖E‖ < 1, then
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C = B + E is also nonsingular and

‖C−1‖ ≤ ‖B−1‖
1− ‖B−1‖‖E‖ . (3.6)

Theorem 3.2 If {[ t
s (‖A‖ + ‖∆A‖)2] s

s+t + ‖∆Q‖}‖Q−1‖ < 1, then both Eqs. (1.1) and (3.1)

have unique solutions X and X̃, respectively. And the two solutions satisfy the estimates (3.2)

and (3.3).

Proof From the assumption, we see that ‖∆Q‖‖Q−1‖ < 1. Then it follows from Lemma 3.1
that

‖Q̃−1‖ ≤ ‖Q−1‖
1− ‖Q−1‖‖∆Q‖ . (3.7)

If

{[ t
s
(‖A‖+ ‖∆A‖)2)] s

s+t + ‖∆Q‖}‖Q−1‖ < 1, (3.8)

then

[
t

s
(‖A‖+ ‖∆A‖)2] s

s+t ‖Q−1‖ < 1− ‖Q−1‖‖∆Q‖,

which yields
t

s
(‖A‖+ ‖∆A‖)2‖Q−1‖ s+t

s < (1− ‖Q−1‖‖∆Q‖) s+t
s ,

i.e.,
t

s
(‖A‖+ ‖∆A‖)2( ‖Q−1‖

1− ‖Q−1‖‖∆Q‖ )
s+t

s < 1. (3.9)

Then by (3.7) and (3.9), we have

t

s
‖Ã‖2‖Q̃−1‖ s+t

s ≤ t

s
(‖A‖+ ‖∆A‖)2( ‖Q−1‖

1− ‖Q−1‖‖∆Q‖ )
s+t

s < 1. (3.10)

According to Theorem 2.2, Eq. (3.1) has a unique solution X̃. Moreover, from (3.8), we see that

t

s
‖A‖2‖Q−1‖ s+t

s < 1, (3.11)

which implies Eq. (1.1) also has a unique solution X.

It follows from (3.7) and (3.9) that

t

s
‖A‖2‖Q̃−1‖ s+t

s ≤ t

s
(‖A‖+ ‖∆A‖)2( ‖Q−1‖

1− ‖Q−1‖‖∆Q‖ )
s+t

s < 1,

which yields

‖Q̃−1‖ < (
s

t‖A‖2 )
s

s+t .

On the other hand, by (3.11), we have

‖Q−1‖ < (
s

t‖A‖2 )
s

s+t .

From the above two inequalities, we obtain

‖Q̃−1‖, ‖Q−1‖ < (
s

t‖A‖2 )
s

s+t , (3.12)
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which implies

‖A‖2 <
s

t
min{λn(Q), λn(Q̃)} s+t

s . (3.13)

Then we have

‖A‖2
t∑

k=1

‖Q̃−1‖ k
s ‖Q−1‖ t+1−k

s

< t‖A‖2( s

t‖A‖2 )
s

s+t · t+1
s = t(

s

t
)

t+1
s+t ‖A‖2(1− t+1

s+t )

< t(
s

t
)

t+1
s+t (

s

t
min{λn(Q), λn(Q̃)} s+t

s )
s−1
s+t = s ·min{λn(Q), λn(Q̃)} s−1

s , (3.14)

which implies

γ = s ·min{λn(Q), λn(Q̃)} s−1
s − ‖A‖2

t∑

k=1

‖Q̃−1‖ k
s ‖Q−1‖ t+1−k

s > 0.

Hence by Theorem 3.1, for the solutions X and X̃, we have the estimates (3.2) and (3.3). ¤

4. Numerical examples

In this section, we give a numerical example to show that our perturbation estimates (3.2)
and (3.3) are close to the actual perturbation for Eq. (1.1). Let In denote the n× n unit matrix
and ones(n) denote the n× n matrix whose all elements are one. All the tests are performed by
MATLAB 7.4 with machine precision around 10−16.

Example 4.1 Consider the matrix equation

X −A∗X−2A = Q, (4.1)

where A = Â
2‖Â‖ and

Â =




2 1 + i

1− i 2 1 + i

1− i 2 1 + i

. . .

1− i 2 1 + i

1− i 2




∈ Cn×n

with the solution

X = 2In + ones(n) and Q = X −A∗X−2A.

Suppose that Eq. (4.1) is perturbed to the equation Xj − A∗jX
−2
j Aj = Qj , where Aj =

A + 10−jA0 with A0 = 1
‖C+C∗‖ (C + C∗) and C is a random matrix generated by MATLAB

function randn. The exact solution Xj = X + 10−jIn and Qj = Xj −A∗jX
−2
j Aj .

We denote the left hand of the inequality proposed in the assumption of Theorem 3.2 by

η = {[ t
s
(‖A‖+ ‖∆A‖)2] s

s+t + ‖∆Q‖}‖Q−1‖.
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The perturbation bounds given by (3.2) and (3.3) are denoted by errA and errR, respectively,
i.e.,

errA =
1
γ

[‖∆Q‖+ ‖Q̃−1‖ t
s ‖∆A‖(2‖A||+ ‖∆A‖)],

and

errR =
1
γ

[
‖∆Q‖
‖Q‖ ‖Q‖

1− 1
s +

‖∆A‖
‖A‖

‖Q̃−1‖ t
s ‖A‖2

‖Q‖ 1
s

(
‖∆A‖
‖A‖ + 2)].

For the cases n = 5, 10 and 20, set j = 1, 2, 3, . . . . Some numerical results are listed in
Tables 1–3.

j ‖∆X‖ errA
‖∆X‖
‖X‖ errR η < 1

1 0.1000 0.1428 0.0143 0.0204 Yes

2 0.0100 0.0146 0.0014 0.0021 Yes

3 1.0000e-003 0.0015 1.4286e-004 2.0942e-004 Yes

4 1.0000e-004 1.4703e-004 1.4286e-005 2.1020e-005 Yes

Table 1 Perturbation estimates of the solution of Eq. (4.1) for n = 5

j ‖∆X‖ errA
‖∆X‖
‖X‖ errR η < 1

1 0.1000 0.1477 0.0083 0.0123 Yes

2 0.0100 0.0149 8.3333e-004 0.0012 Yes

3 1.0000e-003 0.0016 8.3333e-005 1.2968e-004 Yes

4 1.0000e-004 1.5279e-004 8.3333e-006 1.2735e-005 Yes

Table 2 Perturbation estimates of the solution of Eq. (4.1) for n = 10

j ‖∆X‖ errA
‖∆X‖
‖X‖ errR η < 1

1 0.1000 0.1519 0.0045 0.0069 Yes

2 0.0100 0.0154 4.5455e-004 6.9815e-004 Yes

3 1.0000e-003 0.0015 4.5455e-005 6.9839e-005 Yes

4 1.0000e-004 1.5368e-004 4.5455e-006 6.9858e-006 Yes

Table 3 Perturbation estimates of the solution of Eq. (4.1) for n = 20
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