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Abstract This work focuses on the existence and stability of positive quasi-periodic solutions

for the 3-dimensional Lotka-Volterra system. Using KAM (Kolmogorov-Arnold-Moser) theory

and Newton iteration, it is shown that there exists a positive quasi-periodic solution in a

Cantor family for the 3-dimensional Lotka-Volterra system. On the above basis, we can show

the stability of the solution with the help of Lyapunov function.
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1. Introduction and main results

In recent years, various mathematical models have been applied in the study of popula-
tion dynamics, and one of the most famous models is the Lotka-Volterra model. Owing to its
theoretical and practical significance, the Lotka-Volterra system has been studied extensively in
[1, 2, 4, 7–9]. In this paper, we consider the 3-dimensional Lotka-Volterra system





dy1/dt = y1((λ1 + h̃1(t))− (λ11 + h̃11(t))y1 −
∑3

i=2(λ1i + h̃1i(t))yi),

dy2/dt = y2((λ2 + h̃2(t)) + (λ21 + h̃21(t))y1 −
∑3

i=2(λ2i + h̃2i(t))yi),

dy3/dt = y3((λ3 + h̃3(t)) + (λ31 + h̃31(t))y1 −
∑3

i=2(λ3i + h̃3i(t))yi).

(1)

This system describes a situation that three populations have the relations of predator-prey and
competition, where population y1 is prey, y2 and y3 prey on y1, λi, λij (i, j = 1, 2, 3) are positive
constants, and h̃i(t), h̃ij(t) (i, j = 1, 2, 3) are the quasi-periodic functions in time t.

In [6], the authors proved the existence of positive quasi-periodic solutions for the 2-
dimensional Lotka-Volterra system. In fact, when dealing with such problem in the above paper,
it is inevitable to encounter the so-called small divisor problem. As we know, KAM theory is a
very powerful tool to cope with this problem; hence, the authors have perfectly utilized the KAM
technique and Newton iteration to structure a positive quasi-periodic solution in a Cantor family.
A natural question is: can we get the analogous conclusion for the 3-dimensional situation? After

Received July 3, 2012; Accepted October 12, 2012

Supported by the Ability Enhancement Projects of the National Basic Science Talent Trainning Fund (Grant

No. J1103110).

* Corresponding author

E-mail address: 124097272@qq.com (Shouxia LU)



684 Gang HUANG, Wenbo LI and Shouxia LU

a further study, we find that the “twist” condition is hard to be proved, which is essential to
apply KAM theory, because of a more complex coefficient matrix in the 3-dimensional system.
However, we can overcome the difficulty by the creative skills in [11] where a finite number of
terms in the Fourier expansion of the perturbation are killed in each iteration, and the remainder
is included in the time-independent term.

Since error is inevitable in the observation, the biological significance of the stability for
solutions is self-evident. So it is important for us to know whether the solution of the Lotka-
Volterra system is stable. Luckily, we can prove solution’s stability of (1) by Lyaponov function,
which is not discussed in [6].

Before giving our results, we need the following definitions that have been concerned in [6].

Definition 1.1 A function F is called quasi-periodic function in time t with the basic frequencies

ω = (ω1, . . . , ωn), if there exists a function F(θ1, . . . , θn) that is 2π-periodic in all its arguments

θj (j = 1, . . . , n) and satisfies F (t) = F(ω1t, . . . , ωnt). We call F the hull of F (t).
If F is analytic in the complex strip

Dσ = {θ ∈ Tn = (C/2πZ)n : |Im θ| = max
i
|Im θi| < σ, i = 1, . . . , n},

then we say that F is analytic quasi-periodic in Dσ.

It is also known that the above analytical quasi-periodic function F(θ) has Fourier expansion
defined by

F(θ) =
∑

k∈Zn

F̂(k)e
√−1〈k,θ〉,

where
F̂(k) =

1
(2π)n

∫

T̂n

F(θ)e−
√−1〈k,θ〉dθ

is called Fourier coefficients, T̂n = (R/2πZ)n, and 〈k, θ〉 = k1θ1 + k2θ2 + · · ·+ knθn is the usual
inner product. In Dσ we define

‖F‖Dσ := ‖F(θ)‖Dσ :=
∑

k∈Zn

|F̂(k)|e|k|σ.

It is easy to see that ‖ · ‖Dσ is a norm.
Analogously, if the frequency ω ∈ O is seen as a parameter, where

O = {ω ∈ Cn : |Im ω| = max
i
|Im ωi| < q, i = 1, . . . , n},

we define
‖F‖Dσ×O := ‖F(θ;ω)‖Dσ×O :=

∑

k∈Zn

‖F̂(k, ω)‖Oe|k|σ,

where
‖F̂(k, ω)‖O = sup

ω∈O
‖F̂(k, ω)‖.

When F = (Fij) is a matrix-valued function in Dσ ×O, we define

‖F‖Dσ×O :=
∑

k∈Zn

‖F̂(k, ω)‖Oe|k|σ,
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where

‖F̂(k, ω)‖O = sup
ω∈O

‖F̂(k, ω)‖,

with ‖F̂(k, ω)‖ being the sup-norm of the matrix F̂(k, ω) = (F̂ij(k, ω)), i.e.,

‖F̂(k, ω)‖ = max
ij

|F̂ij(k, ω)|.

Remark For convenience, we use the decorated letter of a function or itself to express its hull
in the following paper.

After giving the above definitions we present the main results of this paper:

Theorem 1.1 Let positive constants λi, λij (i, j = 1, 2, 3) and a compact set of positive Lebesgue

measure Π ⊂ Rn
+ be given. Assume the functions h̃i(t), h̃ij(t) (i, j = 1, 2, 3) are real analytic

quasi-periodic functions in Dσ (σ > 0) with basic frequency ω = (ω1, . . . , ωn) ∈ Π. Then, for

“most” ω ∈ Π (in the sense of Lebesgue measure), the equations (1) possesses a positive quasi-

periodic solution, provided the norms ‖h̃i(t)‖Dσ×O, ‖h̃ij(t)‖Dσ×O (i, j = 1, 2, 3) are bounded by

a sufficiently small constant ε > 0 and O is a complex q-neighborhood of Π.

Theorem 1.2 If (1) satisfies the conditions in Theorem 1.1 and
∑

j 6=i λji + 1 < λii (i, j =
1, 2, 3), the positive quasi-periodic solution y∗(t) = (y∗1(t), y∗2(t), y∗3(t))T that we have structured

is stable. That is, if y(t) = (y1(t), y2(t), y3(t))T is any positive solution, the following equations

are established.

lim
t→∞

|yi(t)− y∗i (t)| = 0, i = 1, 2, 3.

We will make the following arrangements in the rest paper: in the second part, we do
coordinate changes to transform (1) into the ordinary vector form that is helpful for us to solve
the problems. In the third part, some significant iterative lemmas that would be cited in the
following proof will be given. In the fourth part, we plan to structure the positive quasi-periodic
solution by Newton iteration. In the fifth part, we will prove the stability of the solution. In the
end some technical lemmas will be presented.

2. Coordinate changes

Since we assume the norms ‖h̃i(t)‖Dσ×O, ‖h̃ij(t)‖Dσ×O are bounded by a sufficiently small
constant ε > 0, we can write

h̃i(t) = εhi(t), h̃ij(t) = εhij(t), i, j = 1, 2, 3

with ‖hi(t)‖Dσ×O ≤ 1, ‖hij(t)‖Dσ×O ≤ 1. Suppose the frequency ω ∈ Π satisfies the Diophantine
conditions:

|〈k, ω〉| ≥ γ

|k|n+1
, ∀ 0 6= k ∈ Zn,

otherwise, we can remove the set containing those ω that do not satisfy the Diophantine condi-
tions, whose measure is less than or equal to γ

∑
k∈Zn |k|−(n+1) ≤ Cγ.
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Without loss of generality, we assume that ĥi(0) = 0 (i = 1, 2, 3), otherwise, we can replace
λi with ĥi(0) + λi. Thus we can expand hi(t) into Fourier series

hi(t) =
∑

k∈Zn\{0}
ĥi(k)e

√−1〈k,ω〉t, i = 1, 2, 3.

Since ω satisfies the Diophantine conditions and hi(t) are analytic and quasi-periodic in Dσ with
σ > 0, we have

∫ t

0

hi(s)ds =
∑

k∈Zn\{0}

ĥi(k)√−1〈k, ω〉 (e
√−1〈k,ω〉t − 1), i = 1, 2, 3

are analytic and quasi-periodic too. We set the following linear quasi-periodic coordinate changes

yi(t) = e
∫ t
0 εhi(s)dsỹi(t), i = 1, 2, 3,

then equations (1) become




dỹ1/dt = λ1ỹ1 − (λ11 + εH11(t))ỹ2
1 −

∑3
i=2(λ1i + εH1i)ỹiỹ1

dỹ2/dt = λ2ỹ2 + (λ21 + εH21(t))ỹ2
2 −

∑3
i=2(λ2i + εH2i)ỹiỹ2

dỹ3/dt = λ3ỹ3 + (λ31 + εH31(t))ỹ2
3 −

∑3
i=2(λ3i + εH3i)ỹiỹ3

(2)

where

Hij(t) = hij(t) + ε−1(λij + εhij(t))(e
∫ t
0 εhi(s)ds − 1), i, j = 1, 2, 3.

Let

ỹi(t) = αie
εxi(t), i = 1, 2, 3,

where αi are constants to be determined. Then the equations (2) become




εdx1/dt = λ1 −
∑3

i=1 αi(λ1i + εH1i)eεxi(t)

εdx2/dt = λ2 + α1(λ21 + εH21)eεx1(t) −∑3
i=2 αi(λ2i + εH2i)eεxi(t)

εdx3/dt = λ3 + α1(λ31 + εH31)eεx1(t) −∑3
i=2 αi(λ3i + εH3i)eεxi(t).

(3)

Expand eεxi(t) with Taylor expansion

eεxi = 1 + εxi(t) +
1
2
eθεxiε2x2

i (t), i = 1, 2, 3, 0 < θ < 1,

then bringing back (3), we obtain

dx/dt = (A + εB(t))x(t) + ξ(t) + F (t, x(t)) (4)

with

A =



−α1λ11 −α2λ12 −α3λ13

α1λ21 −α2λ22 −α3λ23

α1λ31 −α2λ32 −α3λ33


 ,

B(t) =



−α1C11(t) −α2C12(t) −α3C13(t)

α1C21(t) −α2C22(t) −α3C23(t)

α1C31(t) −α2C32(t) −α3C33(t)


 ,
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ξ(t) =



−α1C11(t)− α2C12(t)− α3C13(t)

α1C21(t)− α2C22(t)− α3C23(t)

α1C31(t)− α2C32(t)− α3C33(t)


 ,

F (t, x(t)) =



−α1(λ11 + εC11(t)) 1

2eθεx1x2
1(t)ε−G1

α1(λ21 + εC21(t)) 1
2eθεx1x2

1(t)ε−G2

α1(λ31 + εC31(t)) 1
2eθεx1x2

1(t)ε−G3


 , (5)

Gj =
3∑

i=2

αi(λji + εCji(t))
1
2
eθεx1x2

i (t)ε, i, j = 1, 2, 3,

Cij(t) = (λij + εhij(t))e
∫ t
0 εhi(s)ds, i, j = 1, 2, 3,

while

α1 =
λ1λ22λ33 − λ1λ23λ32 + λ2λ13λ32 − λ2λ12λ33 + λ3λ12λ23 − λ3λ13λ22

λ11λ22λ33 − λ11λ23λ32 + λ12λ21λ33 − λ12λ23λ31 + λ13λ31λ22 − λ13λ32λ21
,

α2 =
λ1λ21λ33 − λ1λ23λ31 + λ2λ11λ33 + λ2λ13λ31 − λ3λ11λ23 − λ3λ13λ21

λ11λ22λ33 − λ11λ23λ32 + λ12λ21λ33 − λ12λ23λ31 + λ13λ31λ22 − λ13λ32λ21
,

α3 =
−λ1λ21λ32 + λ1λ22λ31 − λ2λ11λ32 − λ2λ12λ31 + λ3λ11λ22 + λ3λ12λ21

λ11λ22λ33 − λ11λ23λ32 + λ12λ21λ33 − λ12λ23λ31 + λ13λ31λ22 − λ13λ32λ21
.

From (5), it is easy to get
‖F (t, x(t))‖Dσ×O ≤ Cε, (6)

where C is a constant.

3. Iterative lemmas

The proof of Theorem 1.1 is based on some iterative lemmas. Before we state the main
iterative lemmas, we need introduce some notations.

In the following we denote by C, C1, C2, · · · positive constants that will arise in the estimates.
Denote by m the number of the iterative step, and let

(i) εm = ε(
4
3 )m−1

, ε1 = ε, m = 1, 2, 3, . . .; especially, set ε0 = 1.

(ii) σm = σ − σ
∑m

j=1 3−j

2
∑∞

j=1 3−j , σ0 = σ.

(iii) βm = β − β
∑m

j=1 3−j

2
∑∞

j=1 3−j , β0 = β.
(iv) Dm = {θ ∈ Tn : |Imθ| = maxi |Im θi| < σm, i = 1, . . . , n}, Um = U(σm, βm) =

{(θ, x) ∈ Tn ×K3 : |Im θ| < σm, |x| < βm}. K denotes R or C.
(v) qm = ε

1/36
m+1.

(vi) γm = γ/m2×32
.

(vii) C(m) be a constant of the form a1m
a2 , where a1, a2 are constants independent of m.

(viii) Let D ⊂ Cn. If a matrix-valued function F : Um×D → K3 is real analytic in variables
(θ, x) ∈ Um, ω ∈ D, and there are a series of functions {Fi(θ;ω)} for l ∈ {0, 1, 2, . . .} satisfying

F (θ, x;ω) =
∞∑

i=l

Fi(θ;ω)xi,
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then we write

F = Oσm,βm,D(xl).

And by (5), we have

F (θ, x;ω) = Oσ0,β0,O(x2). (7)

Let Π = Π0 ⊃ Π1 ⊃ · · · ⊃ Πm−1 be the compact sets in Rn
+ and Πm ⊂ Πm−1 be defined in

the proof of Lemma 3.2. Let Ol be the complex ql-neighborhood of Πl for l = 0, 1, . . . , m and

R̃k(m) := {ω ∈ Πm−1 :
∣∣|√−1〈k, ω〉E32 − E3 ⊗Am + AT

m ⊗ E3|d
∣∣ ≤ γm/|k|τ1},

Π̃0 = Π0, Π̃m = Π̃m−1\
⋃

0<|k|≤Mm

R̃k(m),

where ⊗ is kronecker product, Em is the m×m identity matrix, Am is a 3× 3 constant matrix
and satisfies (H1)m+1 in Lemma 3.1, τ1 = 9(n+1) and Mm = | ln εm|/(σm−1−σm). Assume Õl

is the complex ql-neighborhood of Π̃l.

What we would like to remind readers is there is a relation Πm ⊃ Π̃m ⊃ Πm−1 established,
if we carefully observe the definition of Πm in the proof of Lemma 3.2.

Lemma 3.1 Consider a quasi-periodic differential equation

dx/dt = (Am−1 + εmQm(t;ω))x, (8)

where the following conditions are satisfied

(H1)m Am−1 = A + ε1L̃1(ω) + · · ·+ εm−1L̃m−1(ω),m ≥ 2, A0 = A with L̃l(ω) analytic in

Õl and ‖L̃l‖Õl ≤ C for l = 1, . . . , m− 1;

(H2)m The hull Qm of Qm(t;ω) is analytic in Dm−1 × Õm−1 and

‖Qm(θ;ω)‖Dm−1×Õm−1 ≤ C, (9)

where C is constant.

Then there is a quasi-periodic transformation

x = (E + εmPm(t))y, (10)

where Pm(t) is quasi-periodic with frequency ω. Its hull Pm(θ;ω) is analytic in Dm × Õm and

‖Pm(θ;ω)‖Dm×Õm ≤ C(m)

such that (8) is changed into

dy/dt = (Am + εm+1Qm+1(t))y, (11)

where Am and Qm+1 satisfy the conditions (H1)m+1 and (H2)m+1.

Proof This proof can be found in [12, p. 4074].

Lemma 3.2 Consider the following differential equation

dx/dt = Am(ω)x + ξ(θ;ω), (12)



The existence and stability of positive quasi-periodic solutions for Lotka-Volterra system 689

where θ = ωt, Am(ω) is a 3× 3 constant matrix and satisfies (H1)m+1, and the function ξ(θ;ω)
is analytic in Dm × Õm. Then equations (12) has an analytic quasi-periodic solution in one of

its subsets Dm ×Om and we have the following estimation of the norm for the solution

‖x(t)‖Dm×Om ≤ Cγ−1
m ‖ξ‖Dm×Om/βτ+n

m , (13)

where τ = 9n + 11.

Proof We can expand x(θ), ξ(θ) into Fourier series

x(t) =
∑

k∈Zn

x̂(k)e
√−1〈k,ω〉t, ξ(t) =

∑

k∈Zn

ξ̂(k)e
√−1〈k,ω〉t.

Contrasting the corresponding Fourier coefficients on both sides of (12), we get

diag(
√−1〈k, ω〉E −Am)X = Ξ, (14)

where diag(∗) is the diagonal matrix whose diagonal entry is ∗, E is the 3 × 3 identity matrix,
X = (. . . x̂(k) . . .)T , and Ξ = (. . . ξ̂(k) . . .)T .

Set
G(ω) =

√−1〈k, ω〉E −Am, Mk(ω) = |G(ω)|d
and

Rk(m) = {ω ∈ Πm−1 : |Mk| < γm/|k|τ1}, (15)

where | · |d is the determinant of a matrix and

Πm = Π̃m\
⋃

0<|k|≤Mm

Rk(m) (16)

with Mm = | ln εm|/(σm−1 − σm) being the number of Fourier coefficients we must consider at
the mth step of the iteration. Denote by Om the complex qm-neighborhood of Πm. By the
definition of Πm, we can get

|Mk| ≥ γm/|k|τ1

for 0 < |k| ≤ Mm and ω ∈ Πm.
It is easy to know that

‖G(ω)‖Om ≤ C1|k|, k 6= 0,

where C1 = 2(max{|ω| : ω ∈ Π}+ ‖A‖+ 1). Since |G(ω)|d = Mk(ω), G−1(ω) exists for ω ∈ Πm

and
G−1(ω) =

adjG(ω)
Mk(ω)

,

where adj is the adjoint of a matrix. Thus, for 0 < |k| ≤ Mm, there exists a constant C2 satisfying

‖G−1(ω)‖Πm ≤ C2
|k|2

γm/|k|τ1
= C2γ

−1
m |k|τ ,

where τ = τ1 + 2 = 9n + 11.
Now, we assume that ω ∈ Om. Then there is an ω0 ∈ Πm such that |ω − ω0| ≤ qm. Thus,

‖G−1(ω0)‖‖G(ω)−G(ω0)‖ ≤ ‖G−1(ω)‖Πm‖∇ωG(ω)‖Om · |ω − ω0|
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≤ C2γ
−1
m |k|τ‖ G(ω)‖ Om−1

qm

qm−1 − qm

≤ C2γ
−1
m |k|τ+1 qm

qm−1 − qm

≤ C2M
τ+1
m γ−1

m

qm

qm−1 − qm

≤ C2m
9(6+2n)| ln εm|τ+1ε

1/36
m+1(γσ0)−1

ε
1/36
m − ε

1/36
m+1

<
1
2
,

where ∇ is the differential operator of vector. Therefore, E + G−1(ω0)(G(ω) − G(ω0)) has its
inverse which is analytic in Om since

(E + G−1(ω0)(G(ω)−G(ω0)))−1 =
∞∑

j=0

(−G−1(ω0)(G(ω)−G(ω0)))j .

So, G(ω) has its inverse for ω ∈ Om and

‖G−1(ω)‖ = ‖(E + G−1(ω0)(G(ω)−G(ω0)))−1 ·G−1(ω0)‖
≤ ‖(E + G−1(ω0)(G(ω)−G(ω0)))−1‖ · ‖G−1(ω0)‖
≤ Cγ−1

m |k|τ .

In the end, we get

‖x(t)‖Dm×Om =
∑

k∈Zn

‖x̂(k)‖Ome|k|σm ≤
∑

k∈Zn

γ−1
m |k|τ‖ξ̂(k)‖Ome|k|σm

≤ Cγ−1
m |k|τe−|k|(σm−1−σm)‖ξ‖Dm×Om ≤ Cγ−1

m ‖ξ‖Dm×Om/βτ+n
m ,

where the last inequality follows from Lemma 6.1. So (12) has a bounded analytic quasi-periodic
solution in the set Dm ×Om.

Lemma 3.3 If ξ(t) is an analytic quasi-periodic function and its hull

‖ξ(θ;ω)‖Dm+1×Õm+1 ≤ εm.

Meanwhile,

ξ(θ;ω) = ξ1(θ;ω) + ξ2(θ;ω),

where

ξ1(θ;ω) =
∑

0<|k|≤Mm

ξ̂(k)e
√−1〈k,θ〉

and

ξ2(θ;ω) =
∑

|k|>Mm

ξ̂(k)e
√−1〈k,θ〉.

Then the following inequality holds

‖ξ2(θ;ω)‖Dm+1×Om+1 ≤ εm+1.
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Proof In view of

ξ2(θ;ω) =
∑

|k|>Mm

ξ̂(k)e
√−1〈k,θ〉

and the definition of ‖ξ2(θ;ω)‖Dm+1×Om+1 , we get

‖ξ2(θ;ω)‖Dm+1×Om+1 =
∑

|k|>Mm

‖ξ̂(k;ω)‖Om+1e|k|σm+1

=
∑

|k|>Mm

‖ξ̂(k;ω)‖Om+1e|k|σme−|k|σme|k|σm+1

≤
∑

|k|>Mm

‖ξ(θ;ω)‖Dm+1×Õm+1e−|k|σme|k|σm+1

≤ εm

∑

|k|>Mm

e−|k|(σm−σm+1)

= ε2m
∑

|k|>0

e−|k|(σm−σm+1)

≤ C(m)ε2m ≤ εm+1(ε ¿ 1).

4. Newton iteration

When we use the Newton iteration to structure the solution of (4), we need the following
definition to describe the approximation.

Definition 4.1 Consider the M -dimensional system dx/dt = f(t, x), where M ∈ Z+. If there

exists x = x(t) defined in some set Ω such that

sup
t∈Ω

|dx/dt− f(t, x(t))| < Cε,

where C is a constant, then we call x(t) an ε-approximate solution of the system dx/dt = f(t, x).

Lemma 4.1 Assume the equation

dx/dt = A(t)x + ξ(t) (17)

is defined in Ω. A(t) and ξ(t) are real analytic. For any analytic linear transformation x = P (t)y,

where P (t) is bounded and has a bounded inverse, (17) can be turned into

dy/dt = P−1APy − P−1Ṗ y + P−1ξ, (18)

where · means the derivative with respect to time t. If y0(t) is an ε-approximate solution of (18),

P (t)y0(t) is an ε-approximate solution of (17).

Proof We calculate derivative on the both sides of x = P (t)y with respect to t

ẋ = Ṗ y + P ẏ,

bringing it back to (17), then we can get (18) directly.
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If y0(t) is an ε-approximate solution of (18), then

|ẏ0 − P−1APy0 + P−1Ṗ y0 − P−1ξ| ≤ Cε.

Due to ‖P‖, ‖P−1‖ ≤ C,

|d(Py0)/dt−APy0 − ξ| =|P ẏ0 + Ṗ y0 −APy0 − ξ|
=|P (ẏ0 − P−1APy0 + P−1Ṗ y0 − P−1ξ)|
≤‖P‖ · |ẏ0 − P−1APy0 + P−1Ṗ y0 − P−1ξ|
≤Cε.

Thus P (t)y0(t) is an ε-approximate solution of (17).
We will use mathematical induction to structure the εm-approximate solution of (4). In the

first place, let us try to find an ε-approximate solution of the equations (4). Consider a part of
(4)

dx/dt = Ax + ξ1(θ;ω), (19)

where

ξ(θ;ω) = ξ1(θ;ω) + ξ2(θ;ω),

ξ1(θ;ω) =
∑

0<|k|≤M1

ξ̂(k)e
√−1〈k,θ〉,

ξ2(θ;ω) =
∑

|k|>M1

ξ̂(k)e
√−1〈k,θ〉.

Since D1 ×O1 ⊂ D0 ×O0, we think over the solution of (19) in D1 ×O1. When we notice
the specific form of ξ, it is easy to know ‖ξ‖D0×O0 ≤ C. As a subset of D0 × O0, the same
inequality is right in D1 × Õ1.

‖ξ‖D1×Õ1 ≤ C.

By Lemma 3.3, it is easy to know

‖ξ2‖D1×O1 ≤ ε.

In fact, the present conditions do not completely fit the conditions in Lemma 3.3 if readers
observe carefully. However, we can directly get the above inequality by the proof process of
Lemma 3.3.

According to (13) in Lemma 3.2, we know (19) has a solution x1 in D1 × O1 whose norm
satisfies

‖x1‖D1×O1 ≤ Cγ−1
1 /βτ+n

1 ‖ξ1‖D1×O1 ≤ Cγ−1
1 /βτ+n

1 .

Let us confirm x1 is an ε-approximate solution of (4)

‖dx1/dt− (A + εB(t))x1(t)− ξ(t)− F (t, x1(t))‖D1×O1

= ‖εB(t)x1(t) + ξ2(t) + F (t, x1(t)‖D1×O1

≤ ‖εB(t)x1(t)‖D1×O1 + ‖ξ2(t)‖D1×O1 + ‖F (t, x1(t)‖D1×O1
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≤ Cε.

In fact ‖F (t, x1(t)‖D1×O1 ≤ Cε can be inferred from its special form (5). So x1 is an
ε-approximate solution of (4).

In the second place, we assume that xm =
∑m

i=1 xi is an analytic quasi-periodic εm-
approximate solution and ‖xi‖Di×Oi ≤ Cγ−1

i εi−1/βτ+n
i . It is easy to know that when i = 1

the assumption holds true.
Assume x = xm + x̃ is the solution of (4). Then

dxm/dt + dx̃/dt =(A + εB(t))(xm + x̃) + ξ(t) + F (t, xm + x̃)

=(A + εB(t))xm + ξ(t) + F (t, xm) + (A + εB(t))x̃ + ∂xF (t, xm)x̃+
∫ 1

0

∫ 1

0

∂2
xF (t, µνx̃ + xm)µx̃2dµdν.

We get a new equation

dx̃/dt = (A + εB(t) + ∂xF (t, xm))x̃ + ξm+1(t) + Υm+1(t, x̃), (20)

where

ξm+1(t) = dxm/dt− ((A + B(t))xm + ξ(t) + F (t, xm)),

Υm+1(t, x̃) =
∫ 1

0

∫ 1

0

∂2
xF (t, µνx̃ + xm)µx̃2dµdν = Oσm,βm,Om

(x̃2). (21)

According to the assumption that xm is the εm-approximate solution of (4), we obtain

‖ξm+1(θ;ω)‖Dm×Om ≤ Cεm.

Similarly, we consider a part of (20)

dx/dt = (A + εB(t) + ∂xF (t, xm))x + ξm+1
1 (θ;ω), (22)

where

ξm+1(θ;ω) = ξm+1
1 (θ;ω) + ξm+1

2 (θ;ω),

ξm+1
1 (θ;ω) =

∑

0<|k|≤Mm

ξ̂m+1(k)e
√−1〈k,θ〉,

ξm+1
2 (θ;ω) =

∑

|k|>Mm

ξ̂m+1(k)e
√−1〈k,θ〉.

In fact, there exists a transformation y = Pmx (Pm = (E + εmPm)Pm−1, that is, we just do
once transformation at the mth step based on the former step) to change (22) into

dy/dt = (Am + εm+1Qm+1(t, ω))y + (Pm)−1ξm+1
1 , (23)

where Am, Qm+1 satisfy the conditions (H1)m+1 and (H2)m+1. What’s more, the norms of Pm

and (Pm)−1 satisfy the following inequalities in Dm+1 × Õm+1

‖Pm(θ;ω)‖Dm+1×Õm+1 ≤ 2, ‖(Pm(θ;ω))−1‖Dm+1×Õm+1 ≤ 2.

The proof can be found in the following remark.
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Consider the main part of (23)

dy/dt = Amy + (Pm)−1ξm+1
1 . (24)

According to the Lemma 3.2, the above equation has an analytic quasi-periodic solution ym+1

that satisfies

‖ym+1‖Dm+1×Om+1 ≤ Cγ−1
m+1‖ξm+1

1 ‖/βτ+n
m+1 ≤ Cγ−1

m+1εm/βτ+n
m+1.

Similarly, ym+1 is an εm+1-approximate solution of (23) in Dm+1 ×Om+1. Now, let us test
this conclusion.

‖dym+1/dt− (Am + εm+1Qm+1(t, ω))y − (Pm)−1ξm+1
1 ‖Dm+1×Om+1

= ‖εm+1Qm+1(t, ω)ym+1‖Dm+1×Om+1

≤ Cεm+1.

According to Lemma 4.1, xm+1 = (Pm)−1ym+1 is an εm+1-approximate solution of (22). In
the meanwhile, according to Lemma 3.3 and (21), the corresponding abandon part

‖ξm+1
2 ‖Dm+1×Om+1 ≤ Cεm+1,

‖Υm+1(t, xm+1)‖Dm+1×Om+1 ≤ C(γ−1
m+1εm/βm+1)2 ≤ Cεm+1.

To sum up, xm+1 = xm + xm+1 is an εm+1-approximate solution of (4).

Remark We will use mathematical induction to prove the existence of the transformation. First,
for k = 1, since ‖F (t, x1(t)‖D1×O1 ≤ Cε, we know ∂xF (t, x1) ≤ Cε by Lemma 6.3. Meanwhile
Õ0 = O0, we can get the conclusion from Lemma 3.1 directly when k = 1. On the other hand,
we make such assumption that there exists a transformation y = Pm−1x to change

dx/dt = (A + εB(t) + ∂xF (t, xm−1))x + ξ1(t) (25)

into

dx/dt = (Am−1 + εmQm(t;ω))x + (Pm−1)−1ξ1(t),

where Am−1, Qm satisfy the conditions (H1)m and (H2)m. In the following we will prove the
corresponding conclusion is right when k = m. In fact, we can get the conclusion for any
1 ≤ l < m by Taylor’ expansion

∂xF (t, xl) = ∂xF (t, xl−1) +
∫ 1

0

∂2
xF (t, sxl + xl−1)xlds,

and ∫ 1

0

∂2
xF (t, sxl + xl−1)xlds = O(xl) = Oσl,βl,Ol

(γ−1
l εl−1/βτ+n

l ). (26)

So we can do two transformations for (25), in the first place y′ = Pm−1x, then

dy′/dt = (Am−1 + εmQ′m(t, ω))y′ + (Pm−1)−1ξm+1
1 (t),
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where Q′m = Qm(t, ω)+(Pm−1)−1
∫ 1

0
∂2

xF (t, sxl +xl−1)xl. In the second place, from the Lemma
3.1, there exists a transformation y = (E + εmPm)y′ to take the above equation into

dy/dt = (Am + εm+1Qm+1(t, ω))y + (Pm)−1ξm+1
1 (t),

where Pm = (E + εmPm)Pm−1, Am, Qm+1 satisfy the conditions (H1)m+1 and (H2)m+1. That
is, there exists a transformation y = Pmx to change (25) into the above equation. So the
conclusion is proved by mathematical induction. What is more, from the induction process we
know Pm = Πm

i=1(E + εiPi). Let us estimate the norms of Pm and (Pm)−1 on Dm+1 × Õm+1,
in fact, according to Lemma 3.1, ‖Pi(θ;ω)‖Di×Õi ≤ C(i). Hence,

‖Pm(θ;ω)‖Dm+1×Õm+1 ≤Πm
i=1‖E + εiPi(θ;ω)‖Di×Õi

≤Πm
i=1(1 + C(i)εi) ≤ 2,

in the meanwhile

‖(E + εiPi(θ;ω))−1‖ ≤ 1 + Cεi,

so ‖(Pm(θ;ω))−1‖Dm+1×Õm+1 ≤ 2, that is, Pm is bounded and has bounded inverse.

Proof of Theorem 1.1 Let x∞(t) =
∑

i≥1 xi(t), Π∞ =
⋂∞

i=0 Πi (See Lemma 4.2 for the
estimate on the measure). In the meanwhile the sequence of coordinate changes we used in the
proof is convergent

P∞ := lim
m→∞

Pm := lim
m→∞

Πm
i=1(E + εiPi(t)).

In fact, Om+1 ⊂ Õm+1 (m = 0, 1, . . .), so

‖P∞‖D∞×O∞ = lim
m→∞

‖Pm‖Dm+1×Om+1 ≤ Π∞i=1‖E + εiPi(t)‖Dm+1×Õm+1

≤ Π∞i=1(1 + C(i)εi) ≤ 2.

Thus the infinite coordinate changes is convergent, and we have

‖x∞‖Dσ0/2×O∞ l Cγ−1(1 +
∞∑

i=1

γ−1
i εi) ≤ 2Cγ−1. (27)

Then for ω ∈ Π∞, x∞(t) = (x∞1 (t), x∞2 (t), x∞3 (t))T is a real analytic quasi-periodic solution
of (4). Therefore, (y1, y2, y3)T is a quasi-periodic solution of (1). ¤

Remark In fact, we can get the positive quasi-periodic solution when αi in the coordinate
changes satisfy αi > 0, i = 1, 2, 3.

Lemma 4.2 (Estimates on the allowed frequencies set) Let

Π∞ =
∞⋂

m=0

Πm.

Then MeasΠ∞ = (Meas Π0)(1− Cγ).

Proof This lemma can be found in [12]. ¤
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In the foregoing paragraphs we have proved the existence of the solution of (1). Now let us
prove the stability of the solution.

5. The proof of Theorem 1.2

Assume y∗(t) = (y∗1(t), y∗2(t), y∗3(t))T is the special solution that we get from Newton itera-
tion and y(t) = (y1(t), y2(t), y3(t))T is any solution of (1).

It is easy to see from
∑

j 6=i λji + 1 < λii (i, j = 1, 2, 3),

−(λ11 + h̃11(t)) + (λ21 + h̃21(t)) + (λ31 + h̃31(t)) < −µ,

(λ12 + h̃12(t))− (λ22 + h̃22(t)) + (λ32 + h̃32(t)) < −µ,

(λ13 + h̃13(t)) + (λ23 + h̃23(t))− (λ33 + h̃33(t)) < −µ,

where µ is a fixed positive constant. In order to prove the stability by Lyapunov function, we
rewrite (1) with a simple vector form

dy/dt = g(t, y). (28)

By the transformation x = y − y∗, (28) becomes

dx/dt = f(t, x), (29)

where

f(t, x) = g(t, y)− dy∗/dt = g(t, x + y∗)− g(t, y∗).

It is obvious that f(t, 0) = 0. The V function is the key to proving the stability of solutions by
Lyapunov function. Fortunately, we can define such Lyapunov function as follows

V (t, x) =
3∑

i=1

|ln(xi + y∗i )− ln y∗i | =
3∑

i=1

|ln yi − ln y∗i |,

where x = (x1, x2, x3)T . It is easy to know V (t, 0) = 0, moreover, V (t;x) > 0, for all x 6= 0.
Thus the function V is positive definite.

Calculating the right upper derivative of V (t, x) with respect to t gives

D+V (t, x) =
3∑

i=1

sign(yi − y∗i )(
ẏi

yi
− ẏ∗i

y∗i
).

That is,

D+V (t, x) =sign(y1 − y∗1)(
ẏ1

y1
− ẏ∗1

y∗1
) + sign(y2 − y∗2)(

ẏ2

y2
− ẏ∗2

y∗2
) + sign(y3 − y∗3)(

ẏ3

y3
− ẏ∗3

y∗3
)

=sign(y1 − y∗1)[(λ11 + h̃11(t))(y∗1 − y1) +
3∑

i=2

(λ1i + h̃1i(t))(y∗i − yi)]+

sign(y2 − y∗2)[−(λ21 + h̃21(t))(y∗1 − y1) +
3∑

i=2

(λ2i + h̃2i(t))(y∗i − yi)]+
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sign(y3 − y∗3)[−(λ31 + h̃31(t))(y∗1 − y1) +
3∑

i=2

(λ3i + h̃3i(t))(y∗i − yi)]

≤− (λ11 + h̃11(t))|y∗1 − y1|+
∑

i=2,3

(λ1i + h̃1i(t))|y∗i − yi|−

(λ22 + h̃22(t))|y∗2 − y2|+
∑

i=1,3

(λ2i + h̃2i(t))|y∗i − yi|

(λ33 + h̃33(t))|y∗3 − y3|+
∑

i=1,2

(λ3i + h̃3i(t))|y∗i − yi|

=(−(λ11 + h̃11(t)) + (λ21 + h̃21(t)) + (λ31 + h̃31(t)))|y∗1 − y1|+
(λ12 + h̃12(t))− (λ22 + h̃22(t)) + (λ32 + h̃32(t)))|y∗2 − y2|+
((λ13 + h̃13(t)) + (λ23 + h̃23(t))− (λ33 + h̃33(t)))|y∗3 − y3|

≤ − µ
3∑

i=1

|y∗i (t)− yi(t)|,

where sign is sign function and µ > 0.
Thus, we know D+V (t, x) ≤ 0, t ≥ 0. It follows from Lemma 6.2 that the zero solution of

(28) is stable, that is,
lim

t→∞
|y∗i (t)− yi(t)| = 0, i = 1, 2, 3.

Hence, Theorem 1.2 is proved.

6. Technical lemmas

Lemma 6.1 For δ > 0, ν > 0, the following inequality holds:
∑

k∈Zn

e−2|k|δ|k|ν ≤ (
ν

e
)ν 1

δν+n
(1 + e)n.

Proof The proof can be found in [5]. ¤

Lemma 6.2 Given the system dx/dt = f(t, x(t), x(t − σ(t))) where x ∈ Rn, f ∈ C[I × Rn ×
Rn,Rn], f(t, 0, 0) ≡ 0, 0 ≤ σ(t) < ∞. If there exists a positive definite function V (t, x) in the set

GH := {(t, x), t ≥ t0, ‖x‖ < H} so that D+V ≤ 0, then the zero solution of the system is stable.

Proof The proof can be found in [11, p. 315]. ¤

Lemma 6.3 (Cauchy inequality) Let E and F be two complex Banach spaces with norms ‖·‖E

and ‖ · ‖F , and let G be an analytic map from the open ball of radius r around v in E into F

such that ‖G‖F ≤ M on the ball. The first derivative dvG of G at v is a linear map from E into

F , whose induced operator norm is

‖dvG‖F,E = max
u 6=0

‖dvG(u)‖F

‖u‖E
.

Then ‖dvG‖F,E ≤ M
r .

Proof Let u 6= 0 in E. Then f(z) = F (v + zu) is an analytic map from the complex disc
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‖z‖ < r/‖z‖E in C into F that is uniformly bounded by M . Hence,

‖d0f‖F = ‖dvF (u)‖F ≤ M

r
‖u‖E

by the usual Cauchy inequality. The above statement follows, since u 6= 0 was arbitrary.
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