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Abstract Let G be a graph. The Hosoya index Z(G) of a graph G is defined to be the total

number of its matchings. In this paper, we characterize the graph with the smallest Hosoya

index of bicyclic graphs with given pendent vertices. Finally, we present a new proof about

the smallest Hosoya index of bicyclic graphs.
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1. Introduction

The Hosoya index of G, denoted by Z(G), is defined to be the total number of its matchings
(independent edge subsets), namely, Z(G) =

∑bn
2 c

s=0 m(G, s), where m(G, s) denotes the number
of s-matchings of G, and m(G, 0) = 1. It was introduced by Hosoya in 1971 (see [1]), and was
applied to correlations with boiling points, entropies, calculated bond orders, as well as for coding
of chemical structures.

Many results have been obtained on the Hosoya index of graphs, for example, a survey [2],
trees [3–7], quasi-tree graphs [8], unicyclic graphs [9–12], bicyclic graphs [13], cacti [14]. In [2],
Wanger and Gutman pointed out that since the aforementioned questions can be answered for
trees with fixed diameter [3], trees with given pendent vertices [5, 7], unicyclic graphs with given
pendent vertices [10], and graphs with given clique number [15], it is also natural to consider the
analogous questions for other treelike graphs.

In this paper we investigate the bicyclic graphs with given pendent vertices, and charac-
terize the graph with the smallest Hosoya index of bicyclic graphs with given pendent vertices.
Moreover, we present a new proof of the result in [13].

2. Some preliminaries

Received July 3, 2012; Accepted October 12, 2013

Supported by National Natural Science Foundation of China (Grant No. 11301093), the Zhujiang Technology

New Star Foundation of Guangzhou (Grant No. 2011J2200090) and Program on International Cooperation and

Innovation, Department of Education, Guangdong Province (Grant No. 2012gjhz0007).

* Corresponding author

E-mail address: ylhua@scnu.edu.cn (Lihua YOU); 970535930@qq.com (Chaoxia WEI); youzhf@hotmail.com

(Zhifu YOU)



The smallest Hosoya index of bicyclic graphs with given pendent vertices 13

In this section, we introduce some definitions, notations and basic properties which we need
to use in the proofs of our main results. Other undefined notations may refer to [16].

Let G = (V, E) be a simple connected graph with the vertex set V (G) and the edge set
E(G). For any v ∈ V , NG(v) = {u|uv ∈ E} denotes the neighbors of v, and dG(v) = |NG(v)|
is the degree of v in G. A pendent vertex is a vertex of degree one. For E′ ⊆ E and V ′ ⊆ V ,
we denote by G− E′ and G− V ′, the subgraphs of G obtained by deleting the edges of E′, the
vertices of V ′ and the edges incident with them, respectively.

Let Pn be the path on n vertices, Cn be the cycle on n vertices, and Sn be the star on n

vertices. Let T k
n be a tree with n vertices and k pendent vertices, and Sk

n be a tree obtained
from a star Sk+1 by attaching a path Pn−k to a pendent vertex of Sk+1.

The following basic results will be used and can be found in the references cited.

Lemma 2.1 (1) If e = uv is an edge of a graph G, then Z(G) = Z(G− e) + Z(G− {u, v}).
(2) If v is a vertex of a graph G, then Z(G) = Z(G− v) +

∑
u∈NG(v) Z(G− {v, u}).

(3) If G is a graph with components G1, G2, . . . , Gt, then Z(G) = Πt
i=1Z(Gi).

(4) For paths, stars and cycles, we have Z(P1) = 1, Z(Pn) = Fn+1 for n ≥ 2, Z(Sn) =
n,Z(Cn) = Fn−1 +Fn+1, where Fn denotes the n-th Fibonacci number such that F0 = 0, F1 = 1
and Fn = Fn−1 + Fn−2 for n ≥ 2, Fn = FkFn−k+1 + Fk−1Fn−k for 1 ≤ k ≤ n.

For convenience, let Z(P0) = 1. Thus Z(Pn) = Fn+1 for n ≥ 0.

Transformation A ([14]) Let H, X, Y be three connected disjoint graphs. Suppose that u, v

are two vertices of H, u1 is a vertex of X, v1 is a vertex of Y . Let G∗ be the graph resulting from
H, X, Y by identifying u with u1, and v with v1, respectively. Let G∗u be the graph obtained
from H, X, Y by identifying vertices u, u1, v1, and G∗v be the graph obtained from H, X, Y by
identifying vertices v, u1, v1 (see Figure 1).
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Figure 1 Graphs G∗, G∗u, G∗v from H, X, Y by Transformation A

Lemma 2.2 ([14]) Let G∗, G∗u, G∗v be graphs obtained from H, X, Y by Transformation A.

Then Z(G∗) ≥ Z(G∗u) or Z(G∗) ≥ Z(G∗v).

Transformation B ([6]) Let t, n be integers with 1 ≤ t ≤ n, H be a connected graph.
Choose v ∈ V (H). Let P (n, t, H, v) (see Figure 2) be the graph resulting from H and a path
Pn = v1v2 · · · vt · · · vn by identifying v with the vertex vt.
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Figure 2 Graph P (n, t, H, v) from H and Pn by Transformation B

Lemma 2.3 ([6]) Let t, n, l,m, i be integers with 1 ≤ t ≤ n = 4m+i where m ≥ 0, i ∈ {1, 2, 3, 4},
l = b i−1

2 c, H be a connected graph but not a path and v ∈ V (H), P (n, t, H, v) be the graph

obtained from H and Pn by Transformation B. Then

Z(P (n, 2,H, v)) < Z(P (n, 4,H, v)) < · · · < Z(P (n, 2m + 2l, H, v))

< Z(P (n, 2m + 1,H, v)) < · · · < Z(P (n, 3,H, v)) < Z(P (n, 1,H, v)).

Lemma 2.4 Let t, n, k be nonnegative integers with 1 ≤ t ≤ n−1, H be a connected graph but

not a path and v ∈ V (H), P (n, 1,H, v, t, k) (see Figure 3) be the graph obtained from H and a

path Pn = v1v2 · · · vt · · · vn by identifying v with the vertex v1, and adding k pendent edges to

vt ∈ V (Pn). Then we have

(1) Z(P (n, 1,H, v, 1, k)) = Z(H)Fn + Z(H − v)Fn−1 + kZ(H − v)Fn.

(2) If t ≥ 2, then Z(P (n, 1,H, v, t, k)) = Z(H)Fn + Z(H − v)Fn−1 + k(Z(H − v)Ft−2 +
Z(H)Ft−1)Fn−t+1.
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Graph P (n, 1,H, v, t, k) for t ≥ 2
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Figure 3 Graph P (n, 1, H, v, t, k)

Proof We only prove (2) since the proof of (1) is similar.

Case 1 k = 0.

Note that P (n, 1,H, v, t, 0) = P (n, 1,H, v), and let e = v1v2. By (1), (3), (4) of Lemma 2.1,
we have Z(P (n, 1,H, v)) = Z(H)Z(Pn−1) + Z(H − v)Z(Pn−2) = Z(H)Fn + Z(H − v)Fn−1.

Case 2 k ≥ 1.

Let e be one of the k pendent edges added to vt. By (1), (3), (4) of Lemma 2.1, we have

Z(P (n, 1,H, v, t, k)) = Z(P (n, 1,H, v, t, k − 1)) + Z(P (t− 1, 1,H, v))Z(Pn−t)

= Z(P (n, 1,H, v, t, k − 2)) + 2Z(P (t− 1, 1,H, v))Z(Pn−t)

= · · ·
= Z(P (n, 1,H, v, t, 0)) + kZ(P (t− 1, 1,H, v))Z(Pn−t).

Case 2.1 t = 2. It is clear.
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Case 2.2 t ≥ 3.

Z(P (n, 1,H, v, t, k)) =Z(H)Z(Pn−1) + Z(H − v)Z(Pn−2)+

k[Z(H)Z(Pt−2) + Z(H − v)Z(Pt−3)]Z(Pn−t)

=Z(H)Fn + Z(H − v)Fn−1 + k(Z(H − v)Ft−2 + Z(H)Ft−1)Fn−t+1.

Hence (2) follows.

Remark 2.5 In Lemma 2.4, if H is a cycle on r vertices and k = 0, we have

Z(P (n, 1, Cr, v, t, 0)) =Z(P (n, 1, Cr, v))

=Z(Cr)Z(Pn−1) + Z(Cr − v)Z(Pn−2)

=2Fr−1Fn + FrFn+1.

For nonnegative integers n, r(≥ 3), let f(n, r) = 2Fr−1Fn + FrFn+1. Then f(n, r) =
Z(P (n, 1, Cr, v)) for n ≥ 1. Note that f(0, r) = Fr = Z(Pr−1), for convenience, we can de-
fine f(0, r) = Z(P (0, 1, Cr, v)). Therefore, f(n, r) = Z(P (n, 1, Cr, v)) for n ≥ 0.

It is easy to prove the following proposition.

Proposition 2.6 Let n, r(≥ 3) be positive integers. Then

(1) f(n, r) = f(n− 1, r) + f(n− 2, r) for n ≥ 2.

(2) f(n, r) < 3f(n− 1, r) for n ≥ 1.

The following Lemmas 2.7–2.10 will play an important role in Sections 3–5.

Lemma 2.7 Let n ≥ 4, Fn be the n-th Fibonacci number. Then 3
5 ≤ Fn−1

Fn
≤ 2

3 .

Proof By induction on n.

It is obvious that F3
F4

= 2
3 , F4

F5
= 3

5 . Then for n = 4, 5, the result holds.

Suppose the result holds for n = s (s ≥ 4). For n = s + 1,

8
5
Fs = Fs +

3
5
Fs ≤ Fs+1 = Fs + Fs−1 ≤ Fs +

2
3
Fs =

5
3
Fs,

thus 3
5 = Fs

5
3 Fs

≤ Fs

Fs+1
= Fs

Fs+Fs−1
≤ Fs

8
5 Fs

= 5
8 < 2

3 . The result follows.

Remark 2.8 Note that F2
F3

= 1
2 < 2

3 , then Fn−1
Fn

≤ 2
3 holds for all n ≥ 3.

Lemma 2.9 Let n(≥ 3), t, k be positive integers with 1 ≤ t ≤ n − 1, and P (n, 1,H, v, t, k) be

defined as before. If Z(H − v) < 3
2

∑
u∈NH(v) Z(H − {v, u}), then

Z(P (n, 1,H, v, 1, k)) ≤ Z(P (n, 1,H, v, t, k)),

with the equality holding if and only if t = 1.

Proof We only need to show Z(P (n, 1,H, v, 1, k)) < Z(P (n, 1,H, v, t, k)) when t ≥ 2.

Suppose t ≥ 2, by Lemmas 2.4, 2.7, and (2), (4) of Lemma 2.1, we have

Z(P (n, 1,H, v, 1, k))− Z(P (n, 1,H, v, t, k))
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= kZ(H − v)Fn − kZ(H − v)Ft−2Fn−t+1 − kZ(H)Ft−1Fn−t+1

= kZ(H − v)Fn − kZ(H − v)Ft−2Fn−t+1 − k(Z(H − v) +
∑

u∈NH(v)

Z(H − {v, u}))Ft−1Fn−t+1

= kZ(H − v)[Fn − (Ft−2 + Ft−1)Fn−t+1]− k
∑

u∈NH(v)

Z(H − {v, u})Ft−1Fn−t+1

= kZ(H − v)(Fn − FtFn−t+1)− k
∑

u∈NH(v)

Z(H − {v, u})Ft−1Fn−t+1

= kZ(H − v)Ft−1Fn−t − k
∑

u∈NH(v)

Z(H − {v, u})Ft−1Fn−t+1

= kFt−1[Z(H − v)Fn−t −
∑

u∈NH(v)

Z(H − {v, u})Fn−t+1]

≤ kFt−1Fn−t[Z(H − v)− 3
2

∑

u∈NH(v)

Z(H − {v, u})].

Then Z(P (n, 1,H, v, 1, k)) < Z(P (n, 1,H, v, t, k)) by Z(H − v) < 3
2

∑
u∈NG(v) Z(H − {v, u}).

The result holds. ¤

Lemma 2.10 Let n, k be nonnegative integers, H be a connected graph and x ∈ V (H),
P (n, 1,H, x, 1, k) be defined as above. If Z(H − u) < Z(H − v) for u, v ∈ V (H), then we have

Z(P (n, 1,H, u, 1, k)) < Z(P (n, 1,H, v, 1, k)).

Proof By (1) of Lemma 2.4,

Z(P (n, 1,H, u, 1, k))− Z(P (n, 1,H, v, 1, k)) = [Z(H − u)− Z(H − v)][kFn + Fn−1] < 0. ¤

Let G(n, n+1, k) be the set of bicyclic graphs on n vertices and k pendent vertices. For any
graph G ∈ G(n, n + 1, k), there are two cycles of Cp, Cq and k pendent vertices in G.

Let G0(p, q, k) be the set of G ∈ G(n, n + 1, k) in which the cycles Cp and Cq do not have
common vertices, and Gl(p, q, k)(l ≥ 1) be the set of G ∈ G(n, n + 1, k) in which the cycles Cp

and Cq have l common vertices. Let G(0, k) be the set of G ∈ G(n, n + 1, k) in which the two
cycles do not have common vertices, and G(l, k)(l ≥ 1) be the set of G ∈ G(n, n + 1, k) in which
the two cycles have l common vertices. Clearly, G0(p, q, k) ⊆ G(0, k) and Gl(p, q, k) ⊆ G(l, k)
for l ≥ 1.

In Sections 3–5, we will characterize the graph on n vertices with the smallest Hosoya index
in G(0, k), G(1, k), and G(l, k) (l ≥ 2), respectively.

3. The graph with the smallest Hosoya index in G(0, k)

In this section, we will characterize the graph on n vertices with the smallest Hosoya index
in G(0, k).

Let s, p(≥ 3), q(≥ 3), l(≥ 2) be positive integers with s = p + q + l− 2, Sl(p, q) be the graph
on s vertices, obtained by connecting Cp and Cq by a path Pl (see Figure 4). For convenience,
we let u1(u4) be the common vertex of Pl and Cp(Cq), u2 ∈ V (Cp)\{u1}, u3 ∈ V (Pl)\{u1, u4}
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(if l ≥ 3), u5 ∈ V (Cq)\{u4}.
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Figure 4 Graph Sl(p, q)

Lemma 3.1 For 1 ≤ i ≤ 5, we have Z(Sl(p, q)− ui) < 3
2

∑
x∈NSl(p,q)(ui)

Z(Sl(p, q)− {x, ui}).

Proof There are five cases.

Case 1 i = 1.

By Lemma 2.1, Remark 2.5 and Fp ≤ 2Fp−1,

Z(Sl(p, q)− u1)− 3
2

∑

x∈NSl(p,q)(u1)

Z(Sl(p, q)− {x, u1})

< Z(Sl(p, q)− u1)−
∑

x∈NSl(p,q)(u1)

Z(Sl(p, q)− {x, u1})

= Z(P (l − 1, 1, Cq, u4))Z(Pp−1)−
[2Z(Pp−2)Z(P (l − 1, 1, Cq, u4)) + Z(Pp−1)Z(P (l − 2, 1, Cq, u4))]

= f(l − 1, q)(Fp − 2Fp−1)− f(l − 2, q)Fp < 0.

Case 2 i = 2.

Let d(u1, u2) = t− 1, u∗1(∈ Pl) be adjacent to u1 and e = u1u
∗
1. Then t ≥ 2. By Lemma 2.1,

Remark 2.5 and Fp ≤ 2Fp−1 < 3Fp−1, we have

Subcase 2.1 t ≥ 3.

2Z(Sl(p, q)− u2)− 3
∑

x∈NSl(p,q)(u2)

Z(Sl(p, q)− {x, u2})

= 2(Z(Sl(p, q)− u2 − e) + Z(Sl(p, q)− {u1, u
∗
1, u2}))−

3
∑

x∈NSl(p,q)(u2)

[Z(Sl(p, q)− {x, u2} − e) + Z(Sl(p, q)− {x, u2, u1, u
∗
1})]

= 2Z(P (l − 1, 1, Cq, u4))Z(Pp−1) + 2Z(P (l − 2, 1, Cq, u4))Z(Pt−2)Z(Pp−t)−
[6Z(P (l − 1, 1, Cq, u4))Z(Pp−2) + 3Z(P (l − 2, 1, Cq, u4))(Z(Pt−3)Z(Pp−t)+

Z(Pt−2)Z(Pp−t−1))]

= 2f(l − 1, q)(Fp − 3Fp−1) + f(l − 2, q)[(Ft−1 − 3Ft−2)Fp−t+1 + Ft−1(Fp−t+1 − 3Fp−t)] < 0.

Subcase 2.2 t = 2.

Z(Sl(p, q)− u2)− 3
2

∑

x∈NSl(p,q)(u2)

Z(Sl(p, q)− {x, u2})

< Z(Sl(p, q)− u2)−
∑

x∈NSl(p,q)(u2)

Z(Sl(p, q)− {x, u2})

= (Z(Sl(p, q)− u2 − e) + Z(Sl(p, q)− {u1, u
∗
1, u2}))−
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∑

x∈NSl(p,q)(u2)

[Z(Sl(p, q)− {x, u2} − e) + Z(Sl(p, q)− {x, u2, u1, u
∗
1})]

= Z(P (l − 1, 1, Cq, u4))Z(Pp−1) + Z(P (l − 2, 1, Cq, u4))Z(Pp−2)−
[2Z(P (l − 1, 1, Cq, u4))Z(Pp−2) + Z(P (l − 2, 1, Cq, u4))(Z(Pp−2) + Z(Pp−3))]

= f(l − 1, q)(Fp − 2Fp−1)− f(l − 2, q)Fp−2 < 0.

Case 3 i = 3.

Let d(u1, u3) = h1 − 1. Then h1 ≥ 2 and l ≥ h1 + 1 ≥ 3. By Lemma 2.1, Remark 2.5 and
Proposition 2.6, we have

2Z(Sl(p, q)− u3)− 3
∑

x∈NSl(p,q)(u3)

Z(Sl(p, q)− {x, u3})

= 2Z(P (h1 − 1, 1, Cp, u1))Z(P (l − h1, 1, Cq, u4))−
3Z(P (h1 − 2, 1, Cp, u1))Z(P (l − h1, 1, Cq, u4))−
3Z(P (h1 − 1, 1, Cp, u1))Z(P (l − h1 − 1, 1, Cq, u4))

= (f(h1 − 1, p)− 3f(h1 − 2, p))f(l − h1, q) + f(h1 − 1, p)(f(l − h1, q)− 3f(l − h1 − 1, q)) < 0.

Case 4 i = 4. It is similar to Case 1.

Case 5 i = 5. It is similar to Case 2.

Combining the above arguments, we prove the result.

By Lemmas 2.9 and 3.1, we have

Corollary 3.2 Let n(≥ 3), t, k be positive integers with 1 ≤ t ≤ n − 1, P (n, 1,H, v, t, k) and

Sl(p, q) be defined as before. Then for any i(1 ≤ i ≤ 5),

Z(P (n, 1, Sl(p, q), ui, 1, k)) ≤ Z(P (n, 1, Sl(p, q), ui, t, k))

with the equality holding if and only if t = 1.

Let G1 and G2 be two graphs, v1 ∈ V (G1), v2 ∈ V (G2). G = (G1, v1)4(G2, v2) denotes the
graph resulting from identifying v1 with v2 as one common vertex.

Let m, k be positive integers with 2 ≤ k ≤ m − 1, v ∈ V (T k
m) and d(v) ≥ 2. Take

Ri
l(p, q, T k

m) = (Sl(p, q), ui) 4 (T k
m, v) (i = 1, 2, 3, 4, 5) (see Figure 5), then Ri

l(p, q, T k
m) ∈

G0(p, q, k).
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Figure 5 Ri
l(p, q, T k

m) (i = 1, 2, 3, 4, 5)

Lemma 3.3 Let m, k, p, q, l, t be positive integers with p, q ≥ 3, l ≥ 2 and 2 ≤ k ≤ m − 1,

Sl(p, q), ui, Ri
l(p, q, T k

m), P (m − k + 1, 1, Sl(p, q), ui, t, k − 1) be defined as before for 1 ≤ i ≤ 5.

Then for any i(1 ≤ i ≤ 5), there exists some integer t with 1 ≤ t ≤ m− k such that

Z(Ri
l(p, q, T k

m)) ≥ Z(P (m− k + 1, 1, Sl(p, q), ui, t, k − 1)).

Proof For any i(1 ≤ i ≤ 5), repeating Transformations A and B on Ri
l(p, q, T k

m), we get a
graph P (m− k + 1, 1, Sl(p, q), ui, t, k − 1). By Lemmas 2.2 and 2.3, Z(Ri

l(p, q, T k
m)) ≥ Z(P (m−

k + 1, 1, Sl(p, q), ui, t, k − 1)).
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Figure 6 R1
2(4, 4, T 4

9 ) is transformed to Z(P (6, 1, S2(4, 4), u1, 3, 3)) by Transformations A and B

Note that Ri
l(p, q, Sk

m) = P (m− k + 1, 1, Sl(p, q), ui, 1, k − 1), by Corollary 3.2 and Lemma
3.3, we can get the following corollary immediately.

Corollary 3.4 Let 1 ≤ i ≤ 5. We have Z(Ri
l(p, q, T k

m)) ≥ Z(Ri
l(p, q, Sk

m)), with the equality

holding if and only if T k
m = Sk

m.

Lemma 3.5 Suppose G ∈ G0(p, q, k) on n vertices, and Pl is the path connecting Cp and Cq

with length l − 1. Then Z(G) ≥ Z(R1
l (p, q, Sk

m)) or Z(G) ≥ Z(R4
l (p, q, Sk

m)).

Proof It is obvious that there exists some i (1 ≤ i ≤ 5) and some tree T k
m such that

Z(G) ≥ Z(Ri
l(p, q, T k

m)) by Transformation A. Then we only need to show Z(Ri
l(p, q, Sk

m)) >

Z(R1
l (p, q, Sk

m)) for i = 2, 3 and Z(Rj
l (p, q, Sk

m)) > Z(R4
l (p, q, Sk

m)) for j = 3, 5 by Corollary 3.4.
Note that Ri

l(p, q, Sk
m) = P (m − k + 1, 1, Sl(p, q), ui, 1, k − 1), we only need to show the

following inequalities by Lemma 2.10:

Z(Sl(p, q)− u1) < Z(Sl(p, q)− u2) (3.1)

Z(Sl(p, q)− u1) < Z(Sl(p, q)− u3) (3.2)

Z(Sl(p, q)− u4) < Z(Sl(p, q)− u5) (3.3)
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Z(Sl(p, q)− u4) < Z(Sl(p, q)− u3) (3.4)

Now we show (3.1). Let d(u1, u2) = t− 1. Then t ≥ 2.

Case 1 t = 2.

Z(Sl(p, q)− u1)− Z(Sl(p, q)− u2) = f(l − 1, q)Z(Pp−1)− f(l − 1, q)Z(Pp−1)− f(l − 2, q)Z(Pp−2)

= −f(l − 2, q)Z(Pp−2) < 0.

Case 2 t ≥ 3.

Z(Sl(p, q)− u1)− Z(Sl(p, q)− u2)

= f(l − 1, q)Z(Pp−1)− f(l − 1, q)Z(Pp−1)− f(l − 2, q)Z(Pp−t)Z(Pt−2)

= −f(l − 2, q)Z(Pp−t)Z(Pt−2) < 0.

Now we show (3.2). Let d(u1, u3) = h1 − 1. Then h1 ≥ 2 and l ≥ h1 + 1 ≥ 3.

Z(Sl(p, q)− u1)− Z(Sl(p, q)− u3)

= Z(Pp−1)f(l − 1, q)− f(h1 − 1, p)f(l − h1, q)

= Fp(2Fq−1Fl−1 + FqFl)− (2Fp−1Fh1−1 + FpFh1)(2Fq−1Fl−h1 + FqFl−h1+1)

= Fq−1Fh1−1(FpFl−h1−1 − 2Fp−1Fl−h1) + FqFh1−1(FpFl−h1 − 2Fp−1Fl−h1+1)

< 0.

Since the proof of (3.3) (or (3.4)) is similar to that of (3.1) (or (3.2)) by the symmetry of
Cp and Cq, we ignore it. The result follows.

Lemma 3.6 Let l, m, k, p, q be positive integers with l ≥ 2, p, q ≥ 3 and 2 ≤ k ≤ m − 1,

R1
l (p, q, T k

m) and ui (1 ≤ i ≤ 5) be defined as above. Then

Z(R1
l (p, q, Sk

m)) = [kFpFm−k+1 + FpFm−k + 2Fp−1Fm−k+1]f(l − 1, q) + FpFm−k+1f(l − 2, q).

Proof By Lemma 2.1,

Z(R1
l (p, q, Sk

m)) = Z(R1
l (p, q, Sk

m)− u1) +
∑

x∈N
R1

l
(p,q,Sk

m)(u1)

Z(R1
l (p, q, Sk

m)− {u1, x})

= Z(P (l − 1, 1, Cq, u4))Z(Pp−1)Z(Pm−k) +
∑

x∈NSl(p,q)(u1)

Z(Sl(p, q)− {u1, x})Z(Pm−k)+

∑

x∈N
Sk

m
(u1)

Z(Sk
m − {u1, x})Z(P (l − 1, 1, Cq, u4))Z(Pp−1)

= [kFpFm−k+1 + FpFm−k + 2Fp−1Fm−k+1]f(l − 1, q) + FpFm−k+1f(l − 2, q).

Lemma 3.7 Let l, m, k, p, q be positive integers with l ≥ 2, p, q ≥ 3, l + q − 3 ≥ 3 and

2 ≤ k ≤ m− 1. Then Z(R1
l (p, q, Sk

m)) ≥ Z(R1
3(p, l + q− 3, Sk

m)), with the equality holding if and

only if R1
l (p, q, Sk

m) ∼= R1
3(p, l + q − 3, Sk

m).

Proof There are two cases.



The smallest Hosoya index of bicyclic graphs with given pendent vertices 21

Case 1 l ≥ 3.

Firstly, by Remark 2.5, we have

f(2, l + q − 3)− f(l − 1, q) =(2Fl+q−4F2 + Fl+q−3F3)− (2Fq−1Fl−1 + FqFl)

=2Fl+q−2 − 2Fq−1Fl−1 − FqFl

=2Fl−1Fq + 2Fl−2Fq−1 − 2Fq−1Fl−1 − FqFl

=(2Fl−1 − Fl)Fq + 2Fq−1(Fl−2 − Fl−1)

=− Fl−3Fq−3 ≤ 0.

f(1, l + q − 3)− f(l − 2, q) =(2Fl+q−4F1 + Fl+q−3F2)− (2Fq−1Fl−2 + FqFl−1)

=Fl+q−4 + Fl+q−2 − 2Fq−1Fl−2 − FqFl−1

=(Fl−1Fq−2 + Fl−2Fq−3) + (Fl−1Fq + Fl−2Fq−1)−
2Fq−1Fl−2 − FqFl−1

=Fl−1Fq−2 + Fl−2(Fq−3 − Fq−1)

=Fl−3Fq−2 ≥ 0.

Then by Lemma 3.6 and Fq−2 − kFq−3 ≤ 0 for k ≥ 2,

Z(R1
3(p, l + q − 3, Sk

m))− Z(R1
l (p, q, Sk

m))

= [kFpFm−k+1 + FpFm−k + 2Fp−1Fm−k+1][f(2, l + q − 3)− f(l − 1, q)]+

FpFm−k+1[f(1, l + q − 3)− f(l − 2, q)]

= [kFpFm−k+1 + FpFm−k + 2Fp−1Fm−k+1][−Fl−3Fq−3]+

FpFm−k+1Fl−3Fq−2

= [Fq−2 − kFq−3]FpFm−k+1Fl−3 − [FpFm−k + 2Fp−1Fm−k+1]Fl−3Fq−3 ≤ 0.

It is obvious that the equality holds if and only if l = 3. ¤

Case 2 l = 2.

Note that q ≥ 4 by l + p− 3 ≥ 3. Then by Lemma 3.6 and Fq−2 − kFq−3 ≤ 0 for k ≥ 2,

Z(R1
3(p, q − 1, Sk

m))− Z(R1
2(p, q, Sk

m))

= [kFpFm−k+1 + FpFm−k + 2Fp−1Fm−k+1][f(2, q − 1)− f(1, q)] + FpFm−k+1[f(1, q − 1)− f(0, q)]

= [kFpFm−k+1 + FpFm−k + 2Fp−1Fm−k+1][−Fq−3] + FpFm−k+1Fq−2

= [Fq−2 − kFq−3]FpFm−k+1 − [FpFm−k + 2Fp−1Fm−k+1]Fq−3 < 0.

Lemma 3.8 Let l, m, k, p, q be positive integers with l ≥ 2, p, q ≥ 3 and 2 ≤ k ≤ m − 1.

Then Z(R1
l (p, q, Sk

m)) ≥ Z(R1
l (p + m − k − 1, q, Sk

k+1)), with the equality holding if and only if

m = k + 1.

Proof By Fn = FkFn−k+1 + Fk−1Fn−k,

FpFm−k+1 − Fp+m−k−1 = FpFm−k+1 − (Fp−1Fm−k+1 + Fp−2Fm−k) = Fp−2Fm−k−1. (3.5)
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Fp−1Fm−k+1 − Fp+m−k−2 = Fp−3Fm−k−1. (3.6)

FpFm−k − Fp+m−k−1 = FpFm−k − (FpFm−k + Fp−1Fm−k−1) = −Fp−1Fm−k−1. (3.7)

Then by Lemma 3.6 and (3.5), (3.6), (3.7),

Z(R1
l (p, q, Sk

m))− Z(R1
l (p + m− k − 1, q, Sk

k+1))

= [k(FpFm−k+1 − Fp+m−k−1) + (FpFm−k − Fp+m−k−1)+

2(Fp−1Fm−k+1 − Fp+m−k−2)]f(l − 1, q) + (FpFm−k+1 − Fp+m−k−1)f(l − 2, q)

= (kFp−2Fm−k−1 − Fp−1Fm−k−1 + 2Fp−3Fm−k−1)f(l − 1, q) + Fp−2Fm−k−1f(l − 2, q)

= [(k − 1)Fp−2 + Fp−3]Fm−k−1f(l − 1, q) + Fp−2Fm−k−1f(l − 2, q) ≥ 0.

It is obvious that the equality holds if and only if m = k + 1. ¤

Lemma 3.9 Let m, k, p, q be positive integers with p, q ≥ 3 and 2 ≤ k ≤ m − 1. Then

Z(R1
3(p, q, Sk

k+1)) ≥ Z(R1
3(p + q − 3, 3, Sk

k+1)), with the equality holding if and only if q = 3.

Proof Suppose q > 3. By Fn = FkFn−k+1 + Fk−1Fn−k,

(FpFq−1 + FpFq)− 3Fp+q−3

= (Fp−1Fq−1 + Fp−2Fq−1) + (Fp−1Fq + Fp−2Fq)− 3(Fp−1Fq−1 + Fp−2Fq−2)

= (Fp−2Fq−1 − Fp−2Fq−2) + (Fp−1Fq − 2Fp−1Fq−1) + (Fp−2Fq − 2Fp−2Fq−2)

= (2Fp−2 − Fp−1)Fq−3 ≥ 0,

(Fp−1Fq−1 + Fp−1Fq)− 3Fp+q−4 = (2Fp−3 − Fp−2)Fq−3,

and

Fp(Fq−1 + Fq+1)− 4Fp+q−3 = 3FpFq−1 + FpFq−2 − 4Fp+q−3

= 3(Fp−1Fq−1 + Fp−2Fq−1) + (Fp−1Fq−2 + Fp−2Fq−2)− 4(Fp−1Fq−1 + Fp−2Fq−2)

= (3Fp−2 − Fp−1)Fq−3 > 0.

Then by Lemma 3.6,

Z(R1
3(p, q, Sk

k+1))− Z(R1
3(p + q − 3, 3, Sk

k+1))

= [(k + 1)Fp + 2Fp−1]f(2, q) + Fpf(1, q)− [(k + 1)Fp+q−3 + 2Fp+q−4]f(2, 3)− Fp+q−3f(1, 3)

= 2(k + 1)[(FpFq−1 + FpFq)− 3Fp+q−3] + 4[(Fp−1Fq−1 + Fp−1Fq)− 3Fp+q−4]+

[Fp(Fq−1 + Fq+1)− 4Fp+q−3]

= 2(k + 1)(2Fp−2 − Fp−1)Fq−3 + 4(2Fp−3 − Fp−2)Fq−3 + (3Fp−2 − Fp−1)Fq−3

= [2kFp−2 − (2k − 5)Fp−3]Fq−3 > 0.

Combining the above arguments, we have the following theorem.

Theorem 3.10 Let n, k be positive integers with 2 ≤ k ≤ n − 6 and G ∈ G(n, n + 1, k) be

a bicyclic graph on n vertices and k pendent vertices with the two cycles having no common

vertices. Then we have
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(1) If 2 ≤ k ≤ n − 7, then Z(G) ≥ 6kFn−k−4 + 10Fn−k−3 + 2Fn−k−5, with the equality

holding if and only if G ∼= R1
3(n− k − 4, 3, Sk

k+1).

(2) If k = n − 6, then Z(G) ≥ 8n − 28, with the equality holding if and only if G ∼=
R1

2(3, 3, Sn−6
n−5).

Proof Let p, q be positive integers with p, q ≥ 3 and G ∈ G0(p, q, k) on n vertices. Suppose the
two cycles in G are connected by a path Pl with l ≥ 2. Then there exist i ∈ {1, 2, 3, 4, 5} and
some tree T k

m where 2 ≤ k ≤ m− 1 and m = n− p− q− l + 3 such that Z(G) ≥ Z(Ri
l(p, q, T k

m))
by Transformation A.

Thus by Corollary 3.4 and Lemma 3.5,

Z(G) ≥ Z(Ri
l(p, q, T k

m) ≥ Z(Ri
l(p, q, Sk

m) ≥ min{Z(R1
l (p, q, Sk

m)), Z(R4
l (p, q, Sk

m)}.

Noticing the similarity of R1
l (p, q, Sk

m) and R4
l (p, q, Sk

m), we only need to consider Z(R1
l (p, q, Sk

m)).

Case 1 l ≥ 3.

By Lemmas 3.7–3.9,

Z(R1
l (p, q, Sk

m)) ≥ Z(R1
3(p, l + q − 3, Sk

m)) ≥ Z(R1
3(p + m− k − 1, l + q − 3, Sk

k+1))

≥ Z(R1
3(n− k − 4, 3, Sk

k+1)).

Case 2 l = 2 and q > 3.

The result is the same as in Case 1.

Case 3 l = 2 and q = 3.

Then by Lemma 3.8, Z(R1
2(p, 3, Sk

m)) ≥ Z(R1
2(n− k − 3, 3, Sk

k+1)).

Combining the above arguments, we have Z(G) ≥ min{Z(R1
3(n−k−4, 3, Sk

k+1)), Z(R1
2(n−

k − 3, 3, Sk
k+1))} for any G ∈ G(0, k) when 2 ≤ k ≤ n− 6.

Suppose k = n − 6. Then by p, q ≥ 3, l ≥ 2 and n = p + q + l + k − 2, we have l = 2,
p = q = 3. Thus Z(G) ≥ Z(R1

2(3, 3, Sn−6
n−5)) = 20n− 28.

Suppose 2 ≤ k ≤ n− 7. By Lemma 3.6, we have Z(R1
3(n− k − 4, 3, Sk

k+1))− Z(R1
2(n− k −

3, 3, Sk
k+1)) = (2k−3)(Fn−k−4−2Fn−k−5)−Fn−k−4 < 0. Thus Z(G) ≥ Z(R1

3(n−k−4, 3, Sk
k+1)) =

6kFn−k−4 + 10Fn−k−3 + 2Fn−k−5.

Let m be positive integers, Pm be a path on m vertices, v ∈ V (Pm) and d(v) = 1. Take
Ri

l(p, q, Pm) = (Sl(p, q), ui)4 (Pm, v) (i = 1, 2, 3, 4, 5), then Ri
l(p, q, Pm) ∈ G0(p, q, 1).

Similarly to the proof of Lemmas 3.5 and 3.6, by (1) of Proposition 2.6, we have

Lemma 3.11 Suppose G ∈ G0(p, q, 1) on n vertices, and Pl is the path connecting Cp and Cq

with length l − 1. Then Z(G) ≥ Z(R1
l (p, q, Pm)) or Z(G) ≥ Z(R4

l (p, q, Pm)).

Lemma 3.12 Let l, m, p, q be positive integers with l ≥ 2, p, q ≥ 3, R1
l (p, q, Pm) and ui(1 ≤

i ≤ 5) be defined as above. Then

Z(R1
l (p, q, Pm)) = FpFmf(l, q) + [FpFm−1 + 2Fp−1Fm]f(l − 1, q).
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Remark 3.13 For k = 1, similarly to the proof of Lemmas 3.7–3.9 and Theorem 3.10, we can
show that R1

3(n− 5, 3, P2) is the graph with the smallest Hosoya index in G(0, 1).

By Theorem 3.10 and Remark 3.13, we have

Lemma 3.14 Let n, k be positive integers. Then

(1) Z(R1
3(n− 5, 3, P2)) > Z(R1

3(n− 6, 3, S2
3)).

(2) Z(R1
3(n− k − 4, 3, Sk

k+1)) > Z(R1
3(n− k − 5, 3, Sk+1

k+2)) for 2 ≤ k ≤ n− 8.

(3) Z(R1
3(3, 3, Sn−7

n−6)) > Z(R1
2(3, 3, Sn−6

n−5)).

Theorem 3.15 Let G be a bicyclic graph on n vertices with the two cycles having no common

vertices. Then Z(G) ≥ 8n− 28, with the equality holding if and only if G ∼= R1
2(3, 3, Sn−6

n−5).

4. The graph with the smallest Hosoya index in G(1, k)

In this section, we will characterize the graph on n vertices with the smallest Hosoya index
in G(1, k).

Let p(≥ 3), q(≥ 3) be positive integers, S(p, q) be the graph on p + q − 1 vertices, obtained
by connecting Cp and Cq with a common vertex v1 (see Figure 7). That is, S(p, q) = (Cp, x)4
(Cq, y), where x ∈ V (Cp) and y ∈ V (Cq), denote x and y by v1. For convenience, we let
v2 ∈ V (S(p, q))\V (Cq), v3 ∈ V (S(p, q))\V (Cp), v∗1 6= v2 and v∗1(∈ V (Cp)\V (Pv1v2)) be adjacent
to v1, where Pv1v2 is the shortest path from v1 to v2 of Cp.
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'$
q

q q

q
v1

v∗1

v2 v3

Cp Cq

Figure 7 Graph S(p, q)

Lemma 4.1 For 1 ≤ i ≤ 3, we have Z(S(p, q)− vi) < 3
2

∑
x∈NS(p,q)(vi)

Z(S(p, q)− {x, vi}).

Proof There are three cases.

Case 1 i = 1.

By Lemma 2.1 and Fp ≤ 2Fp−1 for p ≥ 3,

Z(S(p, q)− v1)− 3
2

∑

x∈NS(p,q)(v1)

Z(S(p, q)− {x, v1})

< Z(S(p, q)− v1)−
∑

x∈NS(p,q)(v1)

Z(S(p, q)− {x, v1})

= Z(Pp−1)Z(Pq−1)− [2Z(Pp−2)Z(Pq−1) + 2Z(Pp−1)Z(Pq−2)]

= (Fp − 2Fp−1)Fq − 2FpFq−1 < 0.

Case 2 i = 2.

Let d(v1, v2) = s− 1. Then s ≥ 2.
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Subcase 2.1 s = 2.

2Z(S(p, q)− v2)− 3
∑

x∈NS(p,q)(v2)

Z(S(p, q)− {x, v2})

= 2Z(P (p− 1, 1, Cq, v1))− 3Z(P (p− 2, 1, Cq, v1))− 3Z(Pq−1)Z(Pp−2)

= 2f(p− 1, q)− 3f(p− 2, q)− 3FqFp−1

= [f(p− 3, q)− f(p− 2, q)] + [2Fq−1Fp−3 + FqFp−2 − 3FqFp−1] < 0.

Subcase 2.2 s ≥ 3.

Let e = v1v
∗
1 . By Lemma 2.1 and Propsition 2.6,

Z(S(p, q)− v2)− 3
2

∑

x∈NS(p,q)(v2)

Z(S(p, q)− {x, v2})

< Z(S(p, q)− v2)−
∑

x∈NS(p,q)(v2)

Z(S(p, q)− {x, v2})

= [Z(S(p, q)− v2 − e) + Z(S(p, q)− {v2, v1, v
∗
1})]−

[
∑

x∈NS(p,q)(v2)

Z(S(p, q)− {x, v2} − e) +
∑

x∈NS(p,q)(v2)

Z(S(p, q)− {x, v2, v1, v
∗
1})]

= Z(P (s− 1, 1, Cq, v1))Z(Pp−s) + Z(Ps−2)Z(Pp−s−1)Z(Pq−1)−
[Z(P (s− 2, 1, Cq, v1))Z(Pp−s) + Z(Pq−1)Z(Ps−3)Z(Pp−s−1)]−
[Z(P (s− 1, 1, Cq, v1))Z(Pp−s−1) + Z(Pq−1)Z(Ps−2)Z(Pp−s−2)]

= [Fp−s−1f(s− 3, q)− Fp−sf(s− 2, q)] + [Fp−s−2Fs−3 − Fp−s−1Fs−2]Fq < 0.

Case 3 i = 3. It is similar to Case 2.

Combining the above arguments, we prove the result.

By Lemmas 2.9 and 4.1, the following corollary holds:

Corollary 4.2 Let s(≥ 3), t, k, p(≥ 3), q(≥ 3) be positive integers with 1 ≤ t ≤ s − 1,

P (n, 1,H, v, t, k), S(p, q) be defined as before. Then for 1 ≤ i ≤ 3,

Z(P (s, 1, S(p, q), vi, 1, k)) ≤ Z(P (s, 1, S(p, q), vi, t, k))

with the equality holding if and only if t = 1.

Let n,m, k, p(≥ 3), q(≥ 3) be positive integers with 2 ≤ k ≤ m− 1 and n = p + q + m− 2,
v ∈ V (T k

m) and d(v) ≥ 2. Take Si(p, q, T k
m) = (S(p, q), vi)4 (T k

m, v) (i = 1, 2, 3) (see Figure 8),
then Si(p, q, T k

m) ∈ G1(p, q, k).
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Figure 8 Si(p, q, T k
m)(i = 1, 2, 3)
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Lemma 4.3 Let m, k, p, q, t be positive integers with p, q ≥ 3, 2 ≤ k ≤ m − 1, S(p, q), vi,

Si(p, q, T k
m), P (m− k + 1, 1, S(p, q), vi, t, k − 1) be defined as before for 1 ≤ i ≤ 3. Then for any

i (1 ≤ i ≤ 3), there exists some integer t with 1 ≤ t ≤ m− k such that

Z(Si(p, q, T k
m)) ≥ Z(P (m− k + 1, 1, S(p, q), vi, t, k − 1)).

Proof For any i (1 ≤ i ≤ 3), repeating Transformations A and B on Si(p, q, T k
m), we can

get a graph P (m − k + 1, 1, S(p, q), vi, t, k − 1). By Lemmas 2.2 and 2.3, Z(Si(p, q, T k
m)) ≥

Z(P (m− k + 1, 1, S(p, q), vi, t, k − 1)).

Note that Si(p, q, Sk
m) = P (m − k + 1, 1, S(p, q), vi, 1, k − 1), by Corollary 4.2 and Lemma

4.3, we can get the following corollary immediately.

Corollary 4.4 Let 1 ≤ i ≤ 3. We have Z(Si(p, q, T k
m)) ≥ Z(Si(p, q, Sk

m)), with the equality

holding if and only if T k
m = Sk

m.

Lemma 4.5 Suppose G ∈ G1(p, q, k) on n vertices. Then Z(G) ≥ Z(S1(p, q, Sk
m)).

Proof It is obvious that there exist some i (1 ≤ i ≤ 3) and some tree T k
m such that

Z(G) ≥ Z(Si(p, q, T k
m)) by Transformation A on G. Then we only need to show Z(Si(p, q, Sk

m)) >

Z(S1(p, q, Sk
m)) for i = 2, 3 by Corollary 4.4.

Note that Si(p, q, Sk
m) = P (m − k + 1, 1, S(p, q), vi, 1, k − 1), we only need to show the

following inequalities by Lemma 2.10:

Z(S(p, q)− v1) < Z(Sl(p, q)− v2), (4.1)

Z(Sl(p, q)− v1) < Z(Sl(p, q)− v3). (4.2)

Since the proof of (4.2) is similar to that of (4.1) by the symmetry of Cp and Cq, we only
show (4.1). Let d(v1, v2) = s− 1. Then s ≥ 2.

Case 1 s = 2.

Z(S(p, q)− v1)− Z(S(p, q)− v2) = Z(Pp−1)Z(Pq−1)− Z(P (p− 1, 1, Cq, v1))

= −2Fp−1Fq−1 < 0.

Case 2 s ≥ 3.

Let e = v1v
∗
1 . By Lemma 2.1 and Fn = FkFn−k+1 + Fk−1Fn−k for 1 ≤ k ≤ n, we have

Z(S(p, q)− v1)− Z(S(p, q)− v2)

= Z(S(p, q)− v1)− [Z(S(p, q)− v2 − e) + Z(S(p, q)− {v2, v1, v
∗
1})]

= Z(Pp−1)Z(Pq−1)− Z(Pp−s)Z(P (s− 1, 1, Cq, v1))− Z(Pp−s−1)Z(Ps−2)Z(Pq−1)

= −2Fp−s+1Fs−1Fq−1 < 0.

The proof of the following Lemma 4.6 is similar to the proof of Lemma 3.6.

Lemma 4.6 Let m, k, p, q be positive integers with p, q ≥ 3 and 2 ≤ k ≤ m − 1, S1(p, q, T k
m)
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and vi(1 ≤ i ≤ 3) be defined as above. Then

Z(S1(p, q, Sk
m)) = kFpFqFm−k+1 + 2Fp−1FqFm−k+1 + 2FpFq−1Fm−k+1 + FpFqFm−k.

Lemma 4.7 Let m, k, p, q be positive integers with p, q ≥ 3, p + q − 4 ≥ 3 and 2 ≤ k ≤
m− 1. Then Z(S1(p, q, Sk

m)) ≥ Z(S1(4, p + q − 4, Sk
m)), with the equality holding if and only if

S1(p, q, Sk
m) ∼= S1(4, p + q − 4, Sk

m).

Proof We will complete the proof by the following two cases.

Case 1 p ≥ 4.
By Fn = FkFn−k+1 + Fk−1Fn−k for 1 ≤ k ≤ n,

FpFq−F4Fp+q−4 = [Fp−1 +Fp−2][2Fq−2 +Fq−3]−3[Fp−1Fq−2 +Fp−2Fq−3] = Fp−4[Fq−2−Fq−3];

Fp−1Fq − F3Fp+q−4 = Fp−1[2Fq−2 + Fq−3]− 2[Fp−1Fq−2 + Fp−2Fq−3] = −Fp−4Fq−3.

Thus by Lemma 4.6,

Z(S1(p, q, Sk
m))− Z(S1(4, p + q − 4, Sk

m))

= [k(FpFq − F4Fp+q−4) + 2(Fp−1Fq − F3Fp+q−4) + 2(FpFq−1 − F4Fp+q−5)]Fm−k+1+

[FpFq − F4Fp+q−4]Fm−k

= Fp−4[Fq−2 − Fq−3][(k − 2)Fm−k+1 + Fm−k] ≥ 0.

The equality holds if and only if p = 4 or q = 4.

Case 2 p = 3.
Then q ≥ 4 by p + q − 4 ≥ 3. By Lemma 4.6,

Z(S1(p, q, Sk
m))− Z(S1(4, p + q − 4, Sk

m))

= [k(F3Fq − F4Fq−1) + 2(F2Fq − F3Fq−1) + 2(F3Fq−1 − F4Fq−2)]Fm−k+1+

[F3Fq − F4Fq−1]Fm−k

= Fq−4[(k − 2)Fm−k+1 + Fm−k] ≥ 0.

The equality holds if and only if q = 4.
Combining the two cases, we obtain the equality holds if and only if S1(p, q, Sk

m) ∼= S1(4, p+
q − 4, Sk

m).

Lemma 4.8 Let m, k, p, q be positive integers with p, q ≥ 3 and 2 ≤ k ≤ m − 1. Then

Z(S1(p, q, Sk
m)) ≥ Z(S1(p, q+m−k−1, Sk

k+1)), with the equality holding if and only if m = k+1.

Proof By Fn = FkFn−k+1 + Fk−1Fn−k for 1 ≤ k ≤ n,

Fq+m−k−1 = Fq−1Fm−k+1 + Fq−2Fm−k; Fq+m−k−2 = Fq−2Fm−k+1 + Fq−3Fm−k.

FqFm−k+1 − Fq+m−k−1 = FqFm−k+1 − [Fq−1Fm−k+1 + Fq−2Fm−k] = Fq−2Fm−k−1.

Then by Lemma 4.6,

Z(S1(p, q, Sk
m))− Z(S1(p, q + m− k − 1, Sk

k+1))
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= (kFp + 2Fp−1)[FqFm−k+1 − Fq+m−k−1] + 2Fp[Fq−1Fm−k+1 − Fq+m−k−2]+

Fp[FqFm−k − Fq+m−k−1]

= [(kFq−2 + 2Fq−3 − Fq−1)Fp + 2Fp−1Fq−2]Fm−k−1 ≥ 0.

The equality holds if and only if m = k + 1.
By Lemmas 4.1–4.6, we have the following theorem.

Theorem 4.9 Let n, k be positive integers with 2 ≤ k ≤ n− 6, G ∈ G(n, n + 1, k) be a bicyclic

graph on n vertices and k pendent vertices with the two cycles having exactly one common

vertices. Then we have

(1) If 2 ≤ k ≤ n− 6, then Z(G) ≥ (3k + 7)Fn−k−3 + 6Fn−k−4, with the equality holding if

and only if G ∼= S1(4, n− k − 3, Sk
k+1).

(2) If k = n − 5, then Z(G) ≥ 4n − 8, with the equality holding if and only if G ∼=
S1(3, 3, Sn−5

n−4).

Proof Let p, q be positive integers with p, q ≥ 3 and G ∈ G1(p, q, k) on n vertices. Suppose
the two cycles in G are connected by a common vertex v1. Then there exist i ∈ {1, 2, 3} and
some tree T k

m where 2 ≤ k ≤ m− 1 and m = n− p− q + 2 such that Z(G) ≥ Z(Si(p, q, T k
m)) by

Transformation A.
Thus by Corollary 4.4 and Lemma 4.5,

Z(G) ≥ Z(Si(p, q, T k
m) ≥ Z(Si(p, q, Sk

m) ≥ Z(S1(p, q, Sk
m).

Case 1 p + q ≥ 7. Then by Lemmas 4.6–4.8,

Z(S1(p, q, Sk
m)) ≥ Z(S1(4, p + q − 4, Sk

m)) ≥ Z(S1(4, n− k − 3, Sk
k+1))

= (3k + 7)Fn−k−3 + 6Fn−k−4.

Case 2 p = q = 3.
By Lemmas 4.6 and 4.8, Z(S1(3, 3, Sk

m)) ≥ Z(S1(3, n− k − 2, Sk
k+1)).

Combining the above arguments and Lemma 4.7, we have Z(G) ≥ Z(S1(4, n−k− 3, Sk
k+1))

when 2 ≤ k ≤ n− 6 and Z(G) ≥ Z(S1(3, 3, Sn−5
n−4)) = 4n− 8 when k = n− 5.

Let m be a positive integer, Pm be a path on m vertices, v ∈ V (Pm) and d(v) = 1. Take
Si(p, q, Pm) = (S(p, q), vi)4 (Pm, v) (i = 1, 2, 3), then Si(p, q, Pm) ∈ G1(p, q, 1).

It is obvious that Lemmas 4.5−4.6 and Lemma 4.8 hold for S1(p, q, Pm), and

Z(S1(p, q, P2)) = 2FpFq + 2Fp−1Fq + 2FpFq−1.

Similarly to the proof of Lemma 4.7, we can show Z(S1(p, q, P2)) = Z(S1(3, p + q − 3, P2)).
Then we have the following remark.

Remark 4.10 For k = 1, S1(p, n− p, P2) is the graph on n vertices with the smallest Hosoya
index in G(1, 1) when p, q ≥ 3 and Z(S1(p, n− p, P2)) = Z(S1(4, n− 4, P2)) = 4Fn−4 + 6Fn−3.

By Theorem 4.9 and Remark 4.10, we have

Lemma 4.11 Let n, k be positive integers. Then
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(1) Z(S1(4, n− 4, P2)) > Z(S1(4, n− 5, S2
3)).

(2) Z(S1(4, n− k − 3, Sk
k+1)) > Z(S1(4, n− k − 4, Sk+1

k+2)) for 2 ≤ k ≤ n− 7.

(3) Z(S1(4, 3, Sn−6
n−5)) > Z(S1(3, 3, Sn−5

n−4)).

Theorem 4.12 Let G be a bicyclic graph on n vertices with the two cycles having common

vertices. Then Z(G) ≥ 4n− 8, with the equality holding if and only if G ∼= S1(3, 3, Sn−5
n−4).

5. The graph with the smallest Hosoya index in G(l, k)

In this section, we will characterize the graph on n vertices with the smallest Hosoya index
in G(l, k) for l ≥ 2. Since the proofs of the following results are similar to those of the above
results in Section 3 or 4, so we ignore them.

Let p(≥ 3), q(≥ 3) be positive integers, and S(p, q, l) a graph on p + q − l vertices, with the
two cycles Cp and Cq having l common vertices (see Figure 9). For convenience, we let w1 = z1,
w2 ∈ {x1, x2, . . . , xp−l}, w3 ∈ {y1, y2, . . . , yq−l}, and w4 ∈ {z2, . . . , zl−1} if l ≥ 3.
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Figure 9 S(p, q, l)

Lemma 5.1 For 1 ≤ i ≤ 4, we have Z(S(p, q, l)−wi) < 3
2

∑
x∈NS(p,q,l)(wi)

Z(S(p, q, l)−{x,wi}).

By Lemmas 2.9 and 5.1, the following corollary holds:

Corollary 5.2 Let n(≥ 3), t, k be positive integers with 1 ≤ t ≤ n − 1, P (n, 1,H, v, t, k),
S(p, q, l) be defined as before. Then for any i (1 ≤ i ≤ 4),

Z(P (n, 1, S(p, q, l), wi, 1, k)) ≤ Z(P (n, 1, S(p, q, l), wi, t, k))

with the equality holding if and only if t = 1.

Let m, k be positive integers with 2 ≤ k ≤ m − 1, v ∈ V (T k
m) and d(v) ≥ 2. Take

θi(p, q, l, T k
m) = (S(p, q, l), wi) 4 (T k

m, v) (i = 1, 2, 3, 4) (see Figure 10), then θi(p, q, l, T k
m) ∈

Gl(p, q, k).
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Figure 10 θi(p, q, l, T k
m) (i = 1, 2, 3, 4)

θ4(p, q, l, T k
m)

Lemma 5.3 Let m, k, p, q, t be positive integers with p, q ≥ 3 and 2 ≤ k ≤ m− 1, S(p, q, l), wi,

θi(p, q, l, T k
m), P (m− k + 1, 1, S(p, q, l), wi, t, k − 1) be defined as before for 1 ≤ i ≤ 4. Then for

any i (1 ≤ i ≤ 4), there exists some integer t with 1 ≤ t ≤ m− k such that

Z(θi(p, q, l, T k
m)) ≥ Z(P (m− k + 1, 1, S(p, q, l), wi, t, k − 1)).

Note that θi(p, q, l, Sk
m) = P (m−k+1, 1, S(p, q, l), wi, 1, k−1), by Corollary 5.2 and Lemma

5.3, we can get the following corollary immediately.

Corollary 5.4 Let 1 ≤ i ≤ 4. We have Z(θi(p, q, l, T k
m) ≥ Z(θi(p, q, l, Sk

m), with the equality

holding if and only if T k
m = Sk

m.

Lemma 5.5 Suppose G ∈ Gl(p, q, k) on n vertices, and Pl is the common path of Cp and Cq.

Then Z(G) ≥ Z(θ1(p, q, l, Sk
m)).

Lemma 5.6 Let m, k, p, q, l be positive integers with 2 ≤ k ≤ m − 1, p, q ≥ 3 and l ≥ 2,

θ1(p, q, l, Sk
m) and w1 be defined as above. Take F−1 = 1, then

Z(θ1(p, q, l, Sk
m)) = rkFm−k+1 + rFm−k + sFm−k+1,

where

r = Fp+q−2l+2Fl−1 + Fp−l+1Fl−2Fq−l+1,

s = 2Fp+q−2l+1Fl−1 + [Fp−lFq−l+1 + Fp−l+1Fq−l + Fp+q−2l+2]Fl−2 + Fp−l+1Fq−l+1Fl−3.

Lemma 5.7 Let m, k, p, q, l be positive integers with 2 ≤ k ≤ m − 1, p, q ≥ 3 and l ≥ 2.

Then Z(θ1(p, q, l, Sk
m)) ≥ Z(θ1(l + 1, q + p − l − 1, l, Sk

m)), with equality holding if and only if

θ1(p, q, l, Sk
m)) ∼= θ1(l + 1, q + p− l − 1, l, Sk

m).

For the symmetry of Pp−l, Pq−l and Pl, the following lemma holds:

Lemma 5.8 Let m, k, p, q, l be positive integers with 2 ≤ k ≤ m− 1, 2 ≤ l. Then

Z(θ1(l + 1, q, l, Sk
m)) ≥ Z(θ1(q, q, q − 1, Sk

m)).

Lemma 5.9 Let m, k, p, q, l be positive integers with 2 ≤ k ≤ m− 1, p, q ≥ 3 and l ≥ 2. Then

Z(θ1(l + 1, l + 1, l, Sk
m)) ≥ Z(θ1(l + m− k + 2, l + m− k + 2, l + m− k + 1, Sk

k+1)).
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Theorem 5.10 Let n, k be positive integers with 2 ≤ k ≤ n − 4, G ∈ G(n, n + 1, k) be a

bicyclic graph on n vertices and k pendent vertices with the two cycles having exactly at least

two common vertices. Then Z(G) ≥ 2Fn−k +(k+1)Fn−k−1+kFn−k−3, with the equality holding

if and only if G ∼= θ1(n− k − 1, n− k − 1, n− k − 2, Sk
k+1).

Remark 5.11 For k = 1, similarly to the proofs of Lemmas 5.7–5.9 and Theorem 5.10, we can
show that θ1(n − 2, n − 2, n − 3, P2) is the graph with the the smallest Hosoya index in G(l, 1)
and Z(θ1(n− 2, n− 2, n− 3, P2)) = 2Fn + Fn−4.

By Theorem 5.10 and Remark 5.11, we have

Lemma 5.12 Let n, k be positive integers. Then

(1) Z(θ1(n− 2, n− 2, n− 3, P2)) > Z(θ1(n− 3, n− 3, n− 4, S2
3)).

(2) Z(θ1(n− k− 1, n− k− 1, n− k− 2, Sk
k+1)) > Z(θ1(n− k− 2, n− k− 2, n− k− 3, Sk+1

k+2))
for 2 ≤ k ≤ n− 4.

Theorem 5.13 Let G be a bicyclic graph on n vertices with the two cycles having at least

two common vertices. Then Z(G) ≥ 3n − 4, with the equality holding if and only if G ∼=
θ1(3, 3, 2, Sn−4

n−3).

6. The graph with the smallest Hosoya index in G(n, n+1, k) and G(n, n+1)

Let G(n, n+1) be the set of bicyclic graphs on n vertices. By Theorems 3.10, 3.15, 4.9, 4.12,
5.10 and 5.13, we obtain the extremal graphs with the smallest Hosoya index in G(n, n + 1, k)
and G(n, n + 1).

Theorem 6.1 Let G be a connected graph on n vertices in G(n, n + 1, k). Then

(1) For k = 1, Z(G) ≥ 4Fn−2 + 2Fn−3, with the equality holding if and only if G ∼=
S1(4, n− 4, P2).

(2) For 2 ≤ k ≤ n− 6, Z(G) ≥ (3k +7)Fn−3−k +6Fn−4−k, with the equality holding if and

only if G ∼= S1(4, n− k − 3, Sk
k+1).

(3) For k = n−5, Z(G) ≥ 4n−8, with the equality holding if and only if G ∼= S1(3, 3, Sn−5
n−4).

(4) For k = n − 4, Z(G) ≥ 3n − 4, with the equality holding if and only if G ∼=
θ1(3, 3, 2, Sn−4

n−3).

Theorem 6.2 ([13]) Let G be a connected graph in G(n, n + 1). Then Z(G) ≥ 3n − 4, with

the equality holding if and only if G ∼= θ1(3, 3, 2, Sn−4
n−3).
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