Journal of Mathematical Research with Applications Jan., 2014, Vol. 34, No. 1, pp. 12–32 DOI:10.3770/j.issn:2095-2651.2014.01.002 Http://jmre.dlut.edu.cn

# The Smallest Hosoya Index of Bicyclic Graphs with Given Pendent Vertices

Lihua YOU<sup>1,\*</sup>, Chaoxia WEI<sup>1</sup>, Zhifu YOU<sup>2</sup>

1. School of Mathematical Sciences, South China Normal University, Guangdong 510631, P. R. China;

2. School of Computer Science, Guangdong Polytechnic Normal University,

Guangdong 510665, P. R. China

**Abstract** Let G be a graph. The Hosoya index Z(G) of a graph G is defined to be the total number of its matchings. In this paper, we characterize the graph with the smallest Hosoya index of bicyclic graphs with given pendent vertices. Finally, we present a new proof about the smallest Hosoya index of bicyclic graphs.

Keywords Hosoya index; bicyclic graph; pendent vertex; matching.

MR(2010) Subject Classification 05C35; 05C70; 92E10

### 1. Introduction

The Hosoya index of G, denoted by Z(G), is defined to be the total number of its matchings (independent edge subsets), namely,  $Z(G) = \sum_{s=0}^{\lfloor \frac{n}{2} \rfloor} m(G,s)$ , where m(G,s) denotes the number of *s*-matchings of G, and m(G,0) = 1. It was introduced by Hosoya in 1971 (see [1]), and was applied to correlations with boiling points, entropies, calculated bond orders, as well as for coding of chemical structures.

Many results have been obtained on the Hosoya index of graphs, for example, a survey [2], trees [3–7], quasi-tree graphs [8], unicyclic graphs [9–12], bicyclic graphs [13], cacti [14]. In [2], Wanger and Gutman pointed out that since the aforementioned questions can be answered for trees with fixed diameter [3], trees with given pendent vertices [5,7], unicyclic graphs with given pendent vertices [10], and graphs with given clique number [15], it is also natural to consider the analogous questions for other treelike graphs.

In this paper we investigate the bicyclic graphs with given pendent vertices, and characterize the graph with the smallest Hosoya index of bicyclic graphs with given pendent vertices. Moreover, we present a new proof of the result in [13].

#### 2. Some preliminaries

Received July 3, 2012; Accepted October 12, 2013

Supported by National Natural Science Foundation of China (Grant No. 11301093), the Zhujiang Technology New Star Foundation of Guangzhou (Grant No. 2011J2200090) and Program on International Cooperation and Innovation, Department of Education, Guangdong Province (Grant No. 2012gjhz0007).

<sup>\*</sup> Corresponding author

E-mail address: ylhua@scnu.edu.cn (Lihua YOU); 970535930@qq.com (Chaoxia WEI); youzhf@hotmail.com (Zhifu YOU)

In this section, we introduce some definitions, notations and basic properties which we need to use in the proofs of our main results. Other undefined notations may refer to [16].

Let G = (V, E) be a simple connected graph with the vertex set V(G) and the edge set E(G). For any  $v \in V$ ,  $N_G(v) = \{u | uv \in E\}$  denotes the neighbors of v, and  $d_G(v) = |N_G(v)|$  is the degree of v in G. A pendent vertex is a vertex of degree one. For  $E' \subseteq E$  and  $V' \subseteq V$ , we denote by G - E' and G - V', the subgraphs of G obtained by deleting the edges of E', the vertices of V' and the edges incident with them, respectively.

Let  $P_n$  be the path on *n* vertices,  $C_n$  be the cycle on *n* vertices, and  $S_n$  be the star on *n* vertices. Let  $T_n^k$  be a tree with *n* vertices and *k* pendent vertices, and  $S_n^k$  be a tree obtained from a star  $S_{k+1}$  by attaching a path  $P_{n-k}$  to a pendent vertex of  $S_{k+1}$ .

The following basic results will be used and can be found in the references cited.

**Lemma 2.1** (1) If e = uv is an edge of a graph G, then  $Z(G) = Z(G - e) + Z(G - \{u, v\})$ .

- (2) If v is a vertex of a graph G, then  $Z(G) = Z(G-v) + \sum_{u \in N_G(v)} Z(G \{v, u\}).$
- (3) If G is a graph with components  $G_1, G_2, \ldots, G_t$ , then  $Z(G) = \prod_{i=1}^t Z(G_i)$ .

(4) For paths, stars and cycles, we have  $Z(P_1) = 1, Z(P_n) = F_{n+1}$  for  $n \ge 2, Z(S_n) = n, Z(C_n) = F_{n-1} + F_{n+1}$ , where  $F_n$  denotes the n-th Fibonacci number such that  $F_0 = 0, F_1 = 1$  and  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2, F_n = F_k F_{n-k+1} + F_{k-1} F_{n-k}$  for  $1 \le k \le n$ .

For convenience, let  $Z(P_0) = 1$ . Thus  $Z(P_n) = F_{n+1}$  for  $n \ge 0$ .

**Transformation A** ([14]) Let H, X, Y be three connected disjoint graphs. Suppose that u, v are two vertices of H,  $u_1$  is a vertex of X,  $v_1$  is a vertex of Y. Let  $G^*$  be the graph resulting from H, X, Y by identifying u with  $u_1$ , and v with  $v_1$ , respectively. Let  $G_u^*$  be the graph obtained from H, X, Y by identifying vertices  $u, u_1, v_1$ , and  $G_v^*$  be the graph obtained from H, X, Y by identifying vertices  $v, u_1, v_1$ , and  $G_v^*$  be the graph obtained from H, X, Y by identifying vertices  $v, u_1, v_1$  (see Figure 1).



Figure 1 Graphs  $G^*, G^*_u, G^*_v$  from H, X, Y by Transformation A

**Lemma 2.2** ([14]) Let  $G^*, G^*_u, G^*_v$  be graphs obtained from H, X, Y by Transformation A. Then  $Z(G^*) \ge Z(G^*_u)$  or  $Z(G^*) \ge Z(G^*_v)$ .

**Transformation B** ([6]) Let t, n be integers with  $1 \le t \le n$ , H be a connected graph. Choose  $v \in V(H)$ . Let P(n, t, H, v) (see Figure 2) be the graph resulting from H and a path  $P_n = v_1 v_2 \cdots v_t \cdots v_n$  by identifying v with the vertex  $v_t$ .



Figure 2 Graph P(n, t, H, v) from H and  $P_n$  by Transformation B

**Lemma 2.3** ([6]) Let t, n, l, m, i be integers with  $1 \le t \le n = 4m+i$  where  $m \ge 0, i \in \{1, 2, 3, 4\}$ ,  $l = \lfloor \frac{i-1}{2} \rfloor$ , H be a connected graph but not a path and  $v \in V(H)$ , P(n, t, H, v) be the graph obtained from H and  $P_n$  by Transformation B. Then

$$Z(P(n, 2, H, v)) < Z(P(n, 4, H, v)) < \dots < Z(P(n, 2m + 2l, H, v))$$
  
$$< Z(P(n, 2m + 1, H, v)) < \dots < Z(P(n, 3, H, v)) < Z(P(n, 1, H, v)).$$

**Lemma 2.4** Let t, n, k be nonnegative integers with  $1 \le t \le n-1$ , H be a connected graph but not a path and  $v \in V(H)$ , P(n, 1, H, v, t, k) (see Figure 3) be the graph obtained from H and a path  $P_n = v_1 v_2 \cdots v_t \cdots v_n$  by identifying v with the vertex  $v_1$ , and adding k pendent edges to  $v_t \in V(P_n)$ . Then we have

(1)  $Z(P(n, 1, H, v, 1, k)) = Z(H)F_n + Z(H - v)F_{n-1} + kZ(H - v)F_n$ .

(2) If  $t \ge 2$ , then  $Z(P(n, 1, H, v, t, k)) = Z(H)F_n + Z(H - v)F_{n-1} + k(Z(H - v)F_{t-2} + Z(H)F_{t-1})F_{n-t+1}$ .





Graph P(n, 1, H, v, 1, k)

Figure 3 Graph P(n, 1, H, v, t, k)

**Proof** We only prove (2) since the proof of (1) is similar.

#### **Case 1** k = 0.

Note that P(n, 1, H, v, t, 0) = P(n, 1, H, v), and let  $e = v_1 v_2$ . By (1), (3), (4) of Lemma 2.1, we have  $Z(P(n, 1, H, v)) = Z(H)Z(P_{n-1}) + Z(H - v)Z(P_{n-2}) = Z(H)F_n + Z(H - v)F_{n-1}$ .

### Case 2 $k \ge 1$ .

Let e be one of the k pendent edges added to  $v_t$ . By (1), (3), (4) of Lemma 2.1, we have

$$Z(P(n, 1, H, v, t, k)) = Z(P(n, 1, H, v, t, k - 1)) + Z(P(t - 1, 1, H, v))Z(P_{n-t})$$
  
=  $Z(P(n, 1, H, v, t, k - 2)) + 2Z(P(t - 1, 1, H, v))Z(P_{n-t})$   
=  $\cdots$   
=  $Z(P(n, 1, H, v, t, 0)) + kZ(P(t - 1, 1, H, v))Z(P_{n-t}).$ 

Case 2.1 t = 2. It is clear.

#### **Case 2.2** $t \ge 3$ .

$$\begin{split} Z(P(n,1,H,v,t,k)) = & Z(H)Z(P_{n-1}) + Z(H-v)Z(P_{n-2}) + \\ & k[Z(H)Z(P_{t-2}) + Z(H-v)Z(P_{t-3})]Z(P_{n-t}) \\ = & Z(H)F_n + Z(H-v)F_{n-1} + k(Z(H-v)F_{t-2} + Z(H)F_{t-1})F_{n-t+1}. \end{split}$$

Hence (2) follows.

**Remark 2.5** In Lemma 2.4, if H is a cycle on r vertices and k = 0, we have

$$\begin{split} Z(P(n,1,C_r,v,t,0)) =& Z(P(n,1,C_r,v)) \\ =& Z(C_r)Z(P_{n-1}) + Z(C_r-v)Z(P_{n-2}) \\ =& 2F_{r-1}F_n + F_rF_{n+1}. \end{split}$$

For nonnegative integers  $n, r(\geq 3)$ , let  $f(n, r) = 2F_{r-1}F_n + F_rF_{n+1}$ . Then  $f(n, r) = Z(P(n, 1, C_r, v))$  for  $n \geq 1$ . Note that  $f(0, r) = F_r = Z(P_{r-1})$ , for convenience, we can define  $f(0, r) = Z(P(0, 1, C_r, v))$ . Therefore,  $f(n, r) = Z(P(n, 1, C_r, v))$  for  $n \geq 0$ .

It is easy to prove the following proposition.

**Proposition 2.6** Let  $n, r(\geq 3)$  be positive integers. Then

- (1) f(n,r) = f(n-1,r) + f(n-2,r) for  $n \ge 2$ .
- (2) f(n,r) < 3f(n-1,r) for  $n \ge 1$ .

The following Lemmas 2.7–2.10 will play an important role in Sections 3–5.

**Lemma 2.7** Let  $n \ge 4$ ,  $F_n$  be the *n*-th Fibonacci number. Then  $\frac{3}{5} \le \frac{F_{n-1}}{F_n} \le \frac{2}{3}$ .

**Proof** By induction on n.

It is obvious that  $\frac{F_3}{F_4} = \frac{2}{3}$ ,  $\frac{F_4}{F_5} = \frac{3}{5}$ . Then for n = 4, 5, the result holds. Suppose the result holds for n = s  $(s \ge 4)$ . For n = s + 1,

$$\frac{8}{5}F_s = F_s + \frac{3}{5}F_s \le F_{s+1} = F_s + F_{s-1} \le F_s + \frac{2}{3}F_s = \frac{5}{3}F_s,$$

thus  $\frac{3}{5} = \frac{F_s}{\frac{5}{3}F_s} \le \frac{F_s}{F_{s+1}} = \frac{F_s}{F_s + F_{s-1}} \le \frac{F_s}{\frac{5}{5}F_s} = \frac{5}{8} < \frac{2}{3}$ . The result follows.

**Remark 2.8** Note that  $\frac{F_2}{F_3} = \frac{1}{2} < \frac{2}{3}$ , then  $\frac{F_{n-1}}{F_n} \le \frac{2}{3}$  holds for all  $n \ge 3$ .

**Lemma 2.9** Let  $n(\geq 3), t, k$  be positive integers with  $1 \leq t \leq n-1$ , and P(n, 1, H, v, t, k) be defined as before. If  $Z(H-v) < \frac{3}{2} \sum_{u \in N_H(v)} Z(H-\{v,u\})$ , then

$$Z(P(n, 1, H, v, 1, k)) \le Z(P(n, 1, H, v, t, k)),$$

with the equality holding if and only if t = 1.

**Proof** We only need to show Z(P(n, 1, H, v, 1, k)) < Z(P(n, 1, H, v, t, k)) when  $t \ge 2$ . Suppose  $t \ge 2$ , by Lemmas 2.4, 2.7, and (2), (4) of Lemma 2.1, we have

$$Z(P(n, 1, H, v, 1, k)) - Z(P(n, 1, H, v, t, k))$$

$$\begin{split} &= kZ(H-v)F_n - kZ(H-v)F_{t-2}F_{n-t+1} - kZ(H)F_{t-1}F_{n-t+1} \\ &= kZ(H-v)F_n - kZ(H-v)F_{t-2}F_{n-t+1} - k(Z(H-v) + \sum_{u \in N_H(v)} Z(H-\{v,u\}))F_{t-1}F_{n-t+1} \\ &= kZ(H-v)[F_n - (F_{t-2} + F_{t-1})F_{n-t+1}] - k\sum_{u \in N_H(v)} Z(H-\{v,u\})F_{t-1}F_{n-t+1} \\ &= kZ(H-v)(F_n - F_tF_{n-t+1}) - k\sum_{u \in N_H(v)} Z(H-\{v,u\})F_{t-1}F_{n-t+1} \\ &= kZ(H-v)F_{t-1}F_{n-t} - k\sum_{u \in N_H(v)} Z(H-\{v,u\})F_{t-1}F_{n-t+1} \\ &= kF_{t-1}[Z(H-v)F_{n-t} - \sum_{u \in N_H(v)} Z(H-\{v,u\})F_{n-t+1}] \\ &\leq kF_{t-1}F_{n-t}[Z(H-v) - \frac{3}{2}\sum_{u \in N_H(v)} Z(H-\{v,u\})]. \end{split}$$

Then Z(P(n, 1, H, v, 1, k)) < Z(P(n, 1, H, v, t, k)) by  $Z(H - v) < \frac{3}{2} \sum_{u \in N_G(v)} Z(H - \{v, u\})$ . The result holds.  $\Box$ 

**Lemma 2.10** Let n,k be nonnegative integers, H be a connected graph and  $x \in V(H)$ , P(n, 1, H, x, 1, k) be defined as above. If Z(H - u) < Z(H - v) for  $u, v \in V(H)$ , then we have Z(P(n, 1, H, u, 1, k)) < Z(P(n, 1, H, v, 1, k)).

**Proof** By (1) of Lemma 2.4,

 $Z(P(n,1,H,u,1,k)) - Z(P(n,1,H,v,1,k)) = [Z(H-u) - Z(H-v)][kF_n + F_{n-1}] < 0. \quad \Box$ 

Let  $\mathcal{G}(n, n+1, k)$  be the set of bicyclic graphs on n vertices and k pendent vertices. For any graph  $G \in \mathcal{G}(n, n+1, k)$ , there are two cycles of  $C_p$ ,  $C_q$  and k pendent vertices in G.

Let  $G^0(p,q,k)$  be the set of  $G \in \mathcal{G}(n, n+1, k)$  in which the cycles  $C_p$  and  $C_q$  do not have common vertices, and  $G^l(p,q,k)(l \ge 1)$  be the set of  $G \in \mathcal{G}(n, n+1, k)$  in which the cycles  $C_p$ and  $C_q$  have l common vertices. Let G(0,k) be the set of  $G \in \mathcal{G}(n, n+1, k)$  in which the two cycles do not have common vertices, and  $G(l,k)(l \ge 1)$  be the set of  $G \in \mathcal{G}(n, n+1, k)$  in which the two cycles have l common vertices. Clearly,  $G^0(p,q,k) \subseteq G(0,k)$  and  $G^l(p,q,k) \subseteq G(l,k)$ for  $l \ge 1$ .

In Sections 3–5, we will characterize the graph on n vertices with the smallest Hosoya index in G(0, k), G(1, k), and G(l, k)  $(l \ge 2)$ , respectively.

## **3.** The graph with the smallest Hosoya index in G(0, k)

In this section, we will characterize the graph on n vertices with the smallest Hosoya index in G(0, k).

Let  $s, p(\geq 3), q(\geq 3), l(\geq 2)$  be positive integers with s = p + q + l - 2,  $S_l(p,q)$  be the graph on s vertices, obtained by connecting  $C_p$  and  $C_q$  by a path  $P_l$  (see Figure 4). For convenience, we let  $u_1(u_4)$  be the common vertex of  $P_l$  and  $C_p(C_q), u_2 \in V(C_p) \setminus \{u_1\}, u_3 \in V(P_l) \setminus \{u_1, u_4\}$ 

(if 
$$l \ge 3$$
),  $u_5 \in V(C_q) \setminus \{u_4\}$ .  

$$\underbrace{C_p}_{u_2} \underbrace{u_1}_{\text{Figure 4 Graph } S_l(p,q)} \underbrace{\dots}_{u_5} \underbrace{u_4}_{u_5}$$

**Lemma 3.1** For  $1 \le i \le 5$ , we have  $Z(S_l(p,q) - u_i) < \frac{3}{2} \sum_{x \in N_{S_l(p,q)}(u_i)} Z(S_l(p,q) - \{x, u_i\}).$ 

 ${\bf Proof} \quad {\rm There \ are \ five \ cases}.$ 

## **Case 1** i = 1.

By Lemma 2.1, Remark 2.5 and  $F_p \leq 2F_{p-1},$ 

$$\begin{split} &Z(S_l(p,q)-u_1) - \frac{3}{2} \sum_{x \in N_{S_l(p,q)}(u_1)} Z(S_l(p,q) - \{x,u_1\}) \\ &< Z(S_l(p,q)-u_1) - \sum_{x \in N_{S_l(p,q)}(u_1)} Z(S_l(p,q) - \{x,u_1\}) \\ &= Z(P(l-1,1,C_q,u_4))Z(P_{p-1}) - \\ & [2Z(P_{p-2})Z(P(l-1,1,C_q,u_4)) + Z(P_{p-1})Z(P(l-2,1,C_q,u_4))] \\ &= f(l-1,q)(F_p - 2F_{p-1}) - f(l-2,q)F_p < 0. \end{split}$$

## **Case 2** i = 2.

Let  $d(u_1, u_2) = t - 1, u_1^* (\in P_l)$  be adjacent to  $u_1$  and  $e = u_1 u_1^*$ . Then  $t \ge 2$ . By Lemma 2.1, Remark 2.5 and  $F_p \le 2F_{p-1} < 3F_{p-1}$ , we have

## Subcase 2.1 $t \ge 3$ .

$$\begin{split} &2Z(S_l(p,q)-u_2)-3\sum_{x\in N_{S_l(p,q)}(u_2)}Z(S_l(p,q)-\{x,u_2\})\\ &=2(Z(S_l(p,q)-u_2-e)+Z(S_l(p,q)-\{u_1,u_1^*,u_2\}))-\\ &3\sum_{x\in N_{S_l(p,q)}(u_2)}[Z(S_l(p,q)-\{x,u_2\}-e)+Z(S_l(p,q)-\{x,u_2,u_1,u_1^*\})]\\ &=2Z(P(l-1,1,C_q,u_4))Z(P_{p-1})+2Z(P(l-2,1,C_q,u_4))Z(P_{t-2})Z(P_{p-t})-\\ & [6Z(P(l-1,1,C_q,u_4))Z(P_{p-2})+3Z(P(l-2,1,C_q,u_4))(Z(P_{t-3})Z(P_{p-t})+\\ & Z(P_{t-2})Z(P_{p-t-1}))]\\ &=2f(l-1,q)(F_p-3F_{p-1})+f(l-2,q)[(F_{t-1}-3F_{t-2})F_{p-t+1}+F_{t-1}(F_{p-t+1}-3F_{p-t})]<0. \end{split}$$

## **Subcase 2.2** t = 2.

$$Z(S_l(p,q) - u_2) - \frac{3}{2} \sum_{x \in N_{S_l(p,q)}(u_2)} Z(S_l(p,q) - \{x, u_2\})$$
  
$$< Z(S_l(p,q) - u_2) - \sum_{x \in N_{S_l(p,q)}(u_2)} Z(S_l(p,q) - \{x, u_2\})$$
  
$$= (Z(S_l(p,q) - u_2 - e) + Z(S_l(p,q) - \{u_1, u_1^*, u_2\})) -$$

$$\begin{split} &\sum_{x \in N_{S_l(p,q)}(u_2)} [Z(S_l(p,q) - \{x,u_2\} - e) + Z(S_l(p,q) - \{x,u_2,u_1,u_1^*\})] \\ &= Z(P(l-1,1,C_q,u_4))Z(P_{p-1}) + Z(P(l-2,1,C_q,u_4))Z(P_{p-2}) - \\ & [2Z(P(l-1,1,C_q,u_4))Z(P_{p-2}) + Z(P(l-2,1,C_q,u_4))(Z(P_{p-2}) + Z(P_{p-3}))] \\ &= f(l-1,q)(F_p - 2F_{p-1}) - f(l-2,q)F_{p-2} < 0. \end{split}$$

#### **Case 3** i = 3.

Let  $d(u_1, u_3) = h_1 - 1$ . Then  $h_1 \ge 2$  and  $l \ge h_1 + 1 \ge 3$ . By Lemma 2.1, Remark 2.5 and Proposition 2.6, we have

$$2Z(S_l(p,q) - u_3) - 3 \sum_{x \in N_{S_l(p,q)}(u_3)} Z(S_l(p,q) - \{x, u_3\})$$

$$= 2Z(P(h_1 - 1, 1, C_p, u_1))Z(P(l - h_1, 1, C_q, u_4)) - 3Z(P(h_1 - 2, 1, C_p, u_1))Z(P(l - h_1, 1, C_q, u_4)) - 3Z(P(h_1 - 1, 1, C_p, u_1))Z(P(l - h_1 - 1, 1, C_q, u_4))$$

$$= (f(h_1 - 1, p) - 3f(h_1 - 2, p))f(l - h_1, q) + f(h_1 - 1, p)(f(l - h_1, q) - 3f(l - h_1 - 1, q)) < 0.$$

**Case 4** i = 4. It is similar to Case 1.

Case 5 i = 5. It is similar to Case 2.

Combining the above arguments, we prove the result.

By Lemmas 2.9 and 3.1, we have

**Corollary 3.2** Let  $n(\geq 3), t, k$  be positive integers with  $1 \leq t \leq n-1$ , P(n, 1, H, v, t, k) and  $S_l(p,q)$  be defined as before. Then for any  $i(1 \leq i \leq 5)$ ,

$$Z(P(n, 1, S_l(p, q), u_i, 1, k)) \le Z(P(n, 1, S_l(p, q), u_i, t, k))$$

with the equality holding if and only if t = 1.

Let  $G_1$  and  $G_2$  be two graphs,  $v_1 \in V(G_1)$ ,  $v_2 \in V(G_2)$ .  $G = (G_1, v_1) \triangle (G_2, v_2)$  denotes the graph resulting from identifying  $v_1$  with  $v_2$  as one common vertex.

Let m, k be positive integers with  $2 \leq k \leq m-1$ ,  $v \in V(T_m^k)$  and  $d(v) \geq 2$ . Take  $R_l^i(p,q,T_m^k) = (S_l(p,q),u_i) \bigtriangleup (T_m^k,v)$  (i = 1, 2, 3, 4, 5) (see Figure 5), then  $R_l^i(p,q,T_m^k) \in G^0(p,q,k)$ .





Figure 5  $R_l^i(p,q,T_m^k)$  (i = 1, 2, 3, 4, 5)

**Lemma 3.3** Let m, k, p, q, l, t be positive integers with  $p, q \ge 3$ ,  $l \ge 2$  and  $2 \le k \le m - 1$ ,  $S_l(p,q), u_i, R_l^i(p,q,T_m^k), P(m-k+1,1,S_l(p,q),u_i,t,k-1)$  be defined as before for  $1 \le i \le 5$ . Then for any  $i(1 \le i \le 5)$ , there exists some integer t with  $1 \le t \le m-k$  such that

$$Z(R_l^i(p,q,T_m^k)) \ge Z(P(m-k+1,1,S_l(p,q),u_i,t,k-1)).$$

**Proof** For any  $i(1 \le i \le 5)$ , repeating Transformations A and B on  $R_l^i(p,q,T_m^k)$ , we get a graph  $P(m-k+1,1,S_l(p,q),u_i,t,k-1)$ . By Lemmas 2.2 and 2.3,  $Z(R_l^i(p,q,T_m^k)) \ge Z(P(m-k+1,1,S_l(p,q),u_i,t,k-1))$ .



Figure 6  $R_2^1(4, 4, T_9^4)$  is transformed to  $Z(P(6, 1, S_2(4, 4), u_1, 3, 3))$  by Transformations A and B

Note that  $R_l^i(p,q,S_m^k) = P(m-k+1,1,S_l(p,q),u_i,1,k-1)$ , by Corollary 3.2 and Lemma 3.3, we can get the following corollary immediately.

**Corollary 3.4** Let  $1 \le i \le 5$ . We have  $Z(R_l^i(p,q,T_m^k)) \ge Z(R_l^i(p,q,S_m^k))$ , with the equality holding if and only if  $T_m^k = S_m^k$ .

**Lemma 3.5** Suppose  $G \in G^0(p,q,k)$  on n vertices, and  $P_l$  is the path connecting  $C_p$  and  $C_q$  with length l-1. Then  $Z(G) \ge Z(R_l^1(p,q,S_m^k))$  or  $Z(G) \ge Z(R_l^4(p,q,S_m^k))$ .

**Proof** It is obvious that there exists some i  $(1 \le i \le 5)$  and some tree  $T_m^k$  such that  $Z(G) \ge Z(R_l^i(p,q,T_m^k))$  by Transformation A. Then we only need to show  $Z(R_l^i(p,q,S_m^k)) > Z(R_l^1(p,q,S_m^k))$  for i = 2,3 and  $Z(R_l^j(p,q,S_m^k)) > Z(R_l^4(p,q,S_m^k))$  for j = 3,5 by Corollary 3.4.

Note that  $R_l^i(p,q,S_m^k) = P(m-k+1,1,S_l(p,q),u_i,1,k-1)$ , we only need to show the following inequalities by Lemma 2.10:

$$Z(S_l(p,q) - u_1) < Z(S_l(p,q) - u_2)$$
(3.1)

$$Z(S_l(p,q) - u_1) < Z(S_l(p,q) - u_3)$$
(3.2)

$$Z(S_l(p,q) - u_4) < Z(S_l(p,q) - u_5)$$
(3.3)

$$Z(S_l(p,q) - u_4) < Z(S_l(p,q) - u_3)$$
(3.4)

Now we show (3.1). Let  $d(u_1, u_2) = t - 1$ . Then  $t \ge 2$ .

## **Case 1** t = 2.

$$Z(S_l(p,q) - u_1) - Z(S_l(p,q) - u_2) = f(l-1,q)Z(P_{p-1}) - f(l-1,q)Z(P_{p-1}) - f(l-2,q)Z(P_{p-2})$$
  
=  $-f(l-2,q)Z(P_{p-2}) < 0.$ 

Case 2  $t \geq 3$ .

$$Z(S_l(p,q) - u_1) - Z(S_l(p,q) - u_2)$$
  
=  $f(l-1,q)Z(P_{p-1}) - f(l-1,q)Z(P_{p-1}) - f(l-2,q)Z(P_{p-t})Z(P_{t-2})$   
=  $-f(l-2,q)Z(P_{p-t})Z(P_{t-2}) < 0.$ 

Now we show (3.2). Let  $d(u_1, u_3) = h_1 - 1$ . Then  $h_1 \ge 2$  and  $l \ge h_1 + 1 \ge 3$ .

$$\begin{split} &Z(S_l(p,q)-u_1)-Z(S_l(p,q)-u_3)\\ &=Z(P_{p-1})f(l-1,q)-f(h_1-1,p)f(l-h_1,q)\\ &=F_p(2F_{q-1}F_{l-1}+F_qF_l)-(2F_{p-1}F_{h_1-1}+F_pF_{h_1})(2F_{q-1}F_{l-h_1}+F_qF_{l-h_1+1})\\ &=F_{q-1}F_{h_1-1}(F_pF_{l-h_1-1}-2F_{p-1}F_{l-h_1})+F_qF_{h_1-1}(F_pF_{l-h_1}-2F_{p-1}F_{l-h_1+1})\\ &<0. \end{split}$$

Since the proof of (3.3) (or (3.4)) is similar to that of (3.1) (or (3.2)) by the symmetry of  $C_p$  and  $C_q$ , we ignore it. The result follows.

**Lemma 3.6** Let l, m, k, p, q be positive integers with  $l \ge 2$ ,  $p, q \ge 3$  and  $2 \le k \le m-1$ ,  $R_l^1(p,q,T_m^k)$  and  $u_i$   $(1 \le i \le 5)$  be defined as above. Then

$$Z(R_l^1(p,q,S_m^k)) = [kF_pF_{m-k+1} + F_pF_{m-k} + 2F_{p-1}F_{m-k+1}]f(l-1,q) + F_pF_{m-k+1}f(l-2,q).$$

**Proof** By Lemma 2.1,

$$\begin{split} Z(R_l^1(p,q,S_m^k)) &= Z(R_l^1(p,q,S_m^k) - u_1) + \sum_{x \in N_{R_l^1(p,q,S_m^k)}(u_1)} Z(R_l^1(p,q,S_m^k) - \{u_1,x\}) \\ &= Z(P(l-1,1,C_q,u_4))Z(P_{p-1})Z(P_{m-k}) + \sum_{x \in N_{S_l(p,q)}(u_1)} Z(S_l(p,q) - \{u_1,x\})Z(P_{m-k}) + \\ &\sum_{x \in N_{S_m^k}(u_1)} Z(S_m^k - \{u_1,x\})Z(P(l-1,1,C_q,u_4))Z(P_{p-1}) \\ &= [kF_pF_{m-k+1} + F_pF_{m-k} + 2F_{p-1}F_{m-k+1}]f(l-1,q) + F_pF_{m-k+1}f(l-2,q). \end{split}$$

**Lemma 3.7** Let l, m, k, p, q be positive integers with  $l \ge 2$ ,  $p, q \ge 3$ ,  $l + q - 3 \ge 3$  and  $2 \le k \le m - 1$ . Then  $Z(R_l^1(p, q, S_m^k)) \ge Z(R_3^1(p, l + q - 3, S_m^k))$ , with the equality holding if and only if  $R_l^1(p, q, S_m^k) \cong R_3^1(p, l + q - 3, S_m^k)$ .

**Proof** There are two cases.

### Case 1 $l \geq 3$ .

Firstly, by Remark 2.5, we have

$$\begin{split} f(2,l+q-3) - f(l-1,q) &= (2F_{l+q-4}F_2 + F_{l+q-3}F_3) - (2F_{q-1}F_{l-1} + F_qF_l) \\ &= 2F_{l+q-2} - 2F_{q-1}F_{l-1} - F_qF_l \\ &= 2F_{l-1}F_q + 2F_{l-2}F_{q-1} - 2F_{q-1}F_{l-1} - F_qF_l \\ &= (2F_{l-1} - F_l)F_q + 2F_{q-1}(F_{l-2} - F_{l-1}) \\ &= -F_{l-3}F_{q-3} \leq 0. \\ f(1,l+q-3) - f(l-2,q) &= (2F_{l+q-4}F_1 + F_{l+q-3}F_2) - (2F_{q-1}F_{l-2} + F_qF_{l-1}) \\ &= F_{l+q-4} + F_{l+q-2} - 2F_{q-1}F_{l-2} - F_qF_{l-1} \\ &= (F_{l-1}F_{q-2} + F_{l-2}F_{q-3}) + (F_{l-1}F_q + F_{l-2}F_{q-1}) - 2F_{q-1}F_{l-2} - F_qF_{l-1} \\ &= F_{l-1}F_{q-2} + F_{l-2}(F_{q-3} - F_{q-1}) \\ &= F_{l-3}F_{q-2} \geq 0. \end{split}$$

Then by Lemma 3.6 and  $F_{q-2} - kF_{q-3} \leq 0$  for  $k \geq 2$ ,

$$\begin{split} &Z(R_3^1(p,l+q-3,S_m^k)) - Z(R_l^1(p,q,S_m^k)) \\ &= [kF_pF_{m-k+1} + F_pF_{m-k} + 2F_{p-1}F_{m-k+1}][f(2,l+q-3) - f(l-1,q)] + \\ &F_pF_{m-k+1}[f(1,l+q-3) - f(l-2,q)] \\ &= [kF_pF_{m-k+1} + F_pF_{m-k} + 2F_{p-1}F_{m-k+1}][-F_{l-3}F_{q-3}] + \\ &F_pF_{m-k+1}F_{l-3}F_{q-2} \\ &= [F_{q-2} - kF_{q-3}]F_pF_{m-k+1}F_{l-3} - [F_pF_{m-k} + 2F_{p-1}F_{m-k+1}]F_{l-3}F_{q-3} \leq 0. \end{split}$$

It is obvious that the equality holds if and only if l = 3.  $\Box$ 

## **Case 2** l = 2.

Note that  $q \ge 4$  by  $l + p - 3 \ge 3$ . Then by Lemma 3.6 and  $F_{q-2} - kF_{q-3} \le 0$  for  $k \ge 2$ ,

$$\begin{split} &Z(R_3^1(p,q-1,S_m^k)) - Z(R_2^1(p,q,S_m^k)) \\ &= [kF_pF_{m-k+1} + F_pF_{m-k} + 2F_{p-1}F_{m-k+1}][f(2,q-1) - f(1,q)] + F_pF_{m-k+1}[f(1,q-1) - f(0,q)] \\ &= [kF_pF_{m-k+1} + F_pF_{m-k} + 2F_{p-1}F_{m-k+1}][-F_{q-3}] + F_pF_{m-k+1}F_{q-2} \\ &= [F_{q-2} - kF_{q-3}]F_pF_{m-k+1} - [F_pF_{m-k} + 2F_{p-1}F_{m-k+1}]F_{q-3} < 0. \end{split}$$

**Lemma 3.8** Let l, m, k, p, q be positive integers with  $l \ge 2$ ,  $p, q \ge 3$  and  $2 \le k \le m - 1$ . Then  $Z(R_l^1(p, q, S_m^k)) \ge Z(R_l^1(p + m - k - 1, q, S_{k+1}^k))$ , with the equality holding if and only if m = k + 1.

**Proof** By  $F_n = F_k F_{n-k+1} + F_{k-1} F_{n-k}$ ,

$$F_p F_{m-k+1} - F_{p+m-k-1} = F_p F_{m-k+1} - (F_{p-1}F_{m-k+1} + F_{p-2}F_{m-k}) = F_{p-2}F_{m-k-1}.$$
 (3.5)

$$F_{p-1}F_{m-k+1} - F_{p+m-k-2} = F_{p-3}F_{m-k-1}.$$
(3.6)

$$F_p F_{m-k} - F_{p+m-k-1} = F_p F_{m-k} - (F_p F_{m-k} + F_{p-1} F_{m-k-1}) = -F_{p-1} F_{m-k-1}.$$
 (3.7)

Then by Lemma 3.6 and (3.5), (3.6), (3.7),

$$\begin{split} &Z(R_l^1(p,q,S_m^k)) - Z(R_l^1(p+m-k-1,q,S_{k+1}^k)) \\ &= [k(F_pF_{m-k+1} - F_{p+m-k-1}) + (F_pF_{m-k} - F_{p+m-k-1}) + \\ &\quad 2(F_{p-1}F_{m-k+1} - F_{p+m-k-2})]f(l-1,q) + (F_pF_{m-k+1} - F_{p+m-k-1})f(l-2,q) \\ &= (kF_{p-2}F_{m-k-1} - F_{p-1}F_{m-k-1} + 2F_{p-3}F_{m-k-1})f(l-1,q) + F_{p-2}F_{m-k-1}f(l-2,q) \\ &= [(k-1)F_{p-2} + F_{p-3}]F_{m-k-1}f(l-1,q) + F_{p-2}F_{m-k-1}f(l-2,q) \ge 0. \end{split}$$

It is obvious that the equality holds if and only if m = k + 1.  $\Box$ 

**Lemma 3.9** Let m, k, p, q be positive integers with  $p, q \ge 3$  and  $2 \le k \le m-1$ . Then  $Z(R_3^1(p, q, S_{k+1}^k)) \ge Z(R_3^1(p+q-3, 3, S_{k+1}^k))$ , with the equality holding if and only if q = 3.

**Proof** Suppose q > 3. By  $F_n = F_k F_{n-k+1} + F_{k-1} F_{n-k}$ ,

$$\begin{split} (F_pF_{q-1}+F_pF_q) &-3F_{p+q-3} \\ &= (F_{p-1}F_{q-1}+F_{p-2}F_{q-1}) + (F_{p-1}F_q+F_{p-2}F_q) - 3(F_{p-1}F_{q-1}+F_{p-2}F_{q-2}) \\ &= (F_{p-2}F_{q-1}-F_{p-2}F_{q-2}) + (F_{p-1}F_q-2F_{p-1}F_{q-1}) + (F_{p-2}F_q-2F_{p-2}F_{q-2}) \\ &= (2F_{p-2}-F_{p-1})F_{q-3} \geq 0, \\ (F_{p-1}F_{q-1}+F_{p-1}F_q) - 3F_{p+q-4} = (2F_{p-3}-F_{p-2})F_{q-3}, \end{split}$$

and

$$\begin{split} F_p(F_{q-1}+F_{q+1}) &- 4F_{p+q-3} = 3F_pF_{q-1} + F_pF_{q-2} - 4F_{p+q-3} \\ &= 3(F_{p-1}F_{q-1} + F_{p-2}F_{q-1}) + (F_{p-1}F_{q-2} + F_{p-2}F_{q-2}) - 4(F_{p-1}F_{q-1} + F_{p-2}F_{q-2}) \\ &= (3F_{p-2} - F_{p-1})F_{q-3} > 0. \end{split}$$

Then by Lemma 3.6,

$$\begin{split} &Z(R_3^1(p,q,S_{k+1}^k)) - Z(R_3^1(p+q-3,3,S_{k+1}^k)) \\ &= [(k+1)F_p + 2F_{p-1}]f(2,q) + F_pf(1,q) - [(k+1)F_{p+q-3} + 2F_{p+q-4}]f(2,3) - F_{p+q-3}f(1,3) \\ &= 2(k+1)[(F_pF_{q-1} + F_pF_q) - 3F_{p+q-3}] + 4[(F_{p-1}F_{q-1} + F_{p-1}F_q) - 3F_{p+q-4}] + \\ & [F_p(F_{q-1} + F_{q+1}) - 4F_{p+q-3}] \\ &= 2(k+1)(2F_{p-2} - F_{p-1})F_{q-3} + 4(2F_{p-3} - F_{p-2})F_{q-3} + (3F_{p-2} - F_{p-1})F_{q-3} \\ &= [2kF_{p-2} - (2k-5)F_{p-3}]F_{q-3} > 0. \end{split}$$

Combining the above arguments, we have the following theorem.

**Theorem 3.10** Let n, k be positive integers with  $2 \le k \le n-6$  and  $G \in \mathcal{G}(n, n+1, k)$  be a bicyclic graph on n vertices and k pendent vertices with the two cycles having no common vertices. Then we have

(1) If  $2 \le k \le n-7$ , then  $Z(G) \ge 6kF_{n-k-4} + 10F_{n-k-3} + 2F_{n-k-5}$ , with the equality holding if and only if  $G \cong R_3^1(n-k-4,3,S_{k+1}^k)$ .

(2) If k = n - 6, then  $Z(G) \ge 8n - 28$ , with the equality holding if and only if  $G \cong R_2^1(3,3,S_{n-5}^{n-6})$ .

**Proof** Let p, q be positive integers with  $p, q \ge 3$  and  $G \in G^0(p, q, k)$  on n vertices. Suppose the two cycles in G are connected by a path  $P_l$  with  $l \ge 2$ . Then there exist  $i \in \{1, 2, 3, 4, 5\}$  and some tree  $T_m^k$  where  $2 \le k \le m-1$  and m = n-p-q-l+3 such that  $Z(G) \ge Z(R_l^i(p, q, T_m^k))$  by Transformation A.

Thus by Corollary 3.4 and Lemma 3.5,

$$Z(G) \ge Z(R_l^i(p,q,T_m^k) \ge Z(R_l^i(p,q,S_m^k) \ge \min\{Z(R_l^1(p,q,S_m^k)), Z(R_l^4(p,q,S_m^k))\}.$$

Noticing the similarity of  $R_l^1(p,q,S_m^k)$  and  $R_l^4(p,q,S_m^k)$ , we only need to consider  $Z(R_l^1(p,q,S_m^k))$ .

### Case 1 $l \geq 3$ .

By Lemmas 3.7–3.9,

$$Z(R_l^1(p,q,S_m^k)) \ge Z(R_3^1(p,l+q-3,S_m^k)) \ge Z(R_3^1(p+m-k-1,l+q-3,S_{k+1}^k))$$
$$\ge Z(R_3^1(n-k-4,3,S_{k+1}^k)).$$

**Case 2** l = 2 and q > 3.

The result is the same as in Case 1.

#### **Case 3** l = 2 and q = 3.

Then by Lemma 3.8,  $Z(R_2^1(p,3,S_m^k)) \ge Z(R_2^1(n-k-3,3,S_{k+1}^k)).$ 

Combining the above arguments, we have  $Z(G) \ge \min\{Z(R_3^1(n-k-4,3,S_{k+1}^k)), Z(R_2^1(n-k-3,3,S_{k+1}^k))\}$  for any  $G \in G(0,k)$  when  $2 \le k \le n-6$ .

Suppose k = n - 6. Then by  $p, q \ge 3$ ,  $l \ge 2$  and n = p + q + l + k - 2, we have l = 2, p = q = 3. Thus  $Z(G) \ge Z(R_2^1(3, 3, S_{n-5}^{n-6})) = 20n - 28$ .

Suppose  $2 \le k \le n-7$ . By Lemma 3.6, we have  $Z(R_3^1(n-k-4,3,S_{k+1}^k)) - Z(R_2^1(n-k-3,3,S_{k+1}^k)) = (2k-3)(F_{n-k-4}-2F_{n-k-5}) - F_{n-k-4} < 0$ . Thus  $Z(G) \ge Z(R_3^1(n-k-4,3,S_{k+1}^k)) = 6kF_{n-k-4} + 10F_{n-k-3} + 2F_{n-k-5}$ .

Let *m* be positive integers,  $P_m$  be a path on *m* vertices,  $v \in V(P_m)$  and d(v) = 1. Take  $R_l^i(p,q,P_m) = (S_l(p,q),u_i) \bigtriangleup (P_m,v) \ (i=1,2,3,4,5)$ , then  $R_l^i(p,q,P_m) \in G^0(p,q,1)$ .

Similarly to the proof of Lemmas 3.5 and 3.6, by (1) of Proposition 2.6, we have

**Lemma 3.11** Suppose  $G \in G^0(p, q, 1)$  on n vertices, and  $P_l$  is the path connecting  $C_p$  and  $C_q$  with length l-1. Then  $Z(G) \ge Z(R_l^1(p, q, P_m))$  or  $Z(G) \ge Z(R_l^4(p, q, P_m))$ .

**Lemma 3.12** Let l, m, p, q be positive integers with  $l \ge 2, p, q \ge 3, R_l^1(p, q, P_m)$  and  $u_i(1 \le i \le 5)$  be defined as above. Then

$$Z(R_l^1(p,q,P_m)) = F_p F_m f(l,q) + [F_p F_{m-1} + 2F_{p-1}F_m]f(l-1,q)$$

**Remark 3.13** For k = 1, similarly to the proof of Lemmas 3.7–3.9 and Theorem 3.10, we can show that  $R_3^1(n-5,3,P_2)$  is the graph with the smallest Hosoya index in G(0,1).

By Theorem 3.10 and Remark 3.13, we have

**Lemma 3.14** Let n, k be positive integers. Then

- (1)  $Z(R_3^1(n-5,3,P_2)) > Z(R_3^1(n-6,3,S_3^2)).$
- (2)  $Z(R_3^1(n-k-4,3,S_{k+1}^k)) > Z(R_3^1(n-k-5,3,S_{k+2}^{k+1}))$  for  $2 \le k \le n-8$ .
- $(3) \ Z(R_3^1(3,3,S_{n-6}^{n-7})) > Z(R_2^1(3,3,S_{n-5}^{n-6})).$

**Theorem 3.15** Let G be a bicyclic graph on n vertices with the two cycles having no common vertices. Then  $Z(G) \ge 8n - 28$ , with the equality holding if and only if  $G \cong R_2^1(3,3, S_{n-5}^{n-6})$ .

## 4. The graph with the smallest Hosoya index in G(1,k)

In this section, we will characterize the graph on n vertices with the smallest Hosoya index in G(1, k).

Let  $p(\geq 3), q(\geq 3)$  be positive integers, S(p,q) be the graph on p + q - 1 vertices, obtained by connecting  $C_p$  and  $C_q$  with a common vertex  $v_1$  (see Figure 7). That is,  $S(p,q) = (C_p, x) \triangle (C_q, y)$ , where  $x \in V(C_p)$  and  $y \in V(C_q)$ , denote x and y by  $v_1$ . For convenience, we let  $v_2 \in V(S(p,q)) \setminus V(C_q), v_3 \in V(S(p,q)) \setminus V(C_p), v_1^* \neq v_2$  and  $v_1^* (\in V(C_p) \setminus V(P_{v_1v_2}))$  be adjacent to  $v_1$ , where  $P_{v_1v_2}$  is the shortest path from  $v_1$  to  $v_2$  of  $C_p$ .



**Lemma 4.1** For  $1 \le i \le 3$ , we have  $Z(S(p,q) - v_i) < \frac{3}{2} \sum_{x \in N_{S(p,q)}(v_i)} Z(S(p,q) - \{x, v_i\})$ .

 $\label{eq:proof} {\bf Proof} \quad {\rm There \ are \ three \ cases}.$ 

**Case 1** i = 1.

By Lemma 2.1 and  $F_p \leq 2F_{p-1}$  for  $p \geq 3$ ,

$$Z(S(p,q) - v_1) - \frac{3}{2} \sum_{x \in N_{S(p,q)}(v_1)} Z(S(p,q) - \{x, v_1\})$$
  
$$< Z(S(p,q) - v_1) - \sum_{x \in N_{S(p,q)}(v_1)} Z(S(p,q) - \{x, v_1\})$$
  
$$= Z(P_{p-1})Z(P_{q-1}) - [2Z(P_{p-2})Z(P_{q-1}) + 2Z(P_{p-1})Z(P_{q-2})]$$
  
$$= (F_p - 2F_{p-1})F_q - 2F_pF_{q-1} < 0.$$

**Case 2** i = 2.

Let  $d(v_1, v_2) = s - 1$ . Then  $s \ge 2$ .

#### **Subcase 2.1** s = 2.

$$\begin{split} &2Z(S(p,q)-v_2)-3\sum_{x\in N_{S(p,q)}(v_2)}Z(S(p,q)-\{x,v_2\})\\ &=2Z(P(p-1,1,C_q,v_1))-3Z(P(p-2,1,C_q,v_1))-3Z(P_{q-1})Z(P_{p-2})\\ &=2f(p-1,q)-3f(p-2,q)-3F_qF_{p-1}\\ &=[f(p-3,q)-f(p-2,q)]+[2F_{q-1}F_{p-3}+F_qF_{p-2}-3F_qF_{p-1}]<0. \end{split}$$

#### Subcase 2.2 $s \ge 3$ .

Let  $e = v_1 v_1^*$ . By Lemma 2.1 and Propsition 2.6,

$$\begin{split} &Z(S(p,q)-v_2) - \frac{3}{2} \sum_{x \in N_{S(p,q)}(v_2)} Z(S(p,q) - \{x,v_2\}) \\ &< Z(S(p,q)-v_2) - \sum_{x \in N_{S(p,q)}(v_2)} Z(S(p,q) - \{x,v_2\}) \\ &= [Z(S(p,q)-v_2-e) + Z(S(p,q) - \{v_2,v_1,v_1^*\})] - \\ &[\sum_{x \in N_{S(p,q)}(v_2)} Z(S(p,q) - \{x,v_2\} - e) + \sum_{x \in N_{S(p,q)}(v_2)} Z(S(p,q) - \{x,v_2,v_1,v_1^*\})] \\ &= Z(P(s-1,1,C_q,v_1))Z(P_{p-s}) + Z(P_{s-2})Z(P_{p-s-1})Z(P_{q-1}) - \\ &[Z(P(s-2,1,C_q,v_1))Z(P_{p-s}) + Z(P_{q-1})Z(P_{s-3})Z(P_{p-s-1})] - \\ &[Z(P(s-1,1,C_q,v_1))Z(P_{p-s-1}) + Z(P_{q-1})Z(P_{s-2})Z(P_{p-s-2})] \\ &= [F_{p-s-1}f(s-3,q) - F_{p-s}f(s-2,q)] + [F_{p-s-2}F_{s-3} - F_{p-s-1}F_{s-2}]F_q < 0. \end{split}$$

**Case 3** i = 3. It is similar to Case 2.

Combining the above arguments, we prove the result.

By Lemmas 2.9 and 4.1, the following corollary holds:

**Corollary 4.2** Let  $s(\geq 3), t, k, p(\geq 3), q(\geq 3)$  be positive integers with  $1 \leq t \leq s - 1$ , P(n, 1, H, v, t, k), S(p, q) be defined as before. Then for  $1 \leq i \leq 3$ ,

$$Z(P(s, 1, S(p, q), v_i, 1, k)) \le Z(P(s, 1, S(p, q), v_i, t, k))$$

with the equality holding if and only if t = 1.

Let  $n, m, k, p(\geq 3), q(\geq 3)$  be positive integers with  $2 \leq k \leq m-1$  and n = p+q+m-2,  $v \in V(T_m^k)$  and  $d(v) \geq 2$ . Take  $S_i(p,q,T_m^k) = (S(p,q), v_i) \bigtriangleup (T_m^k, v)$  (i = 1, 2, 3) (see Figure 8), then  $S_i(p,q,T_m^k) \in G^1(p,q,k)$ .



**Lemma 4.3** Let m, k, p, q, t be positive integers with  $p, q \ge 3$ ,  $2 \le k \le m - 1$ , S(p,q),  $v_i$ ,  $S_i(p,q,T_m^k)$ ,  $P(m-k+1,1,S(p,q),v_i,t,k-1)$  be defined as before for  $1 \le i \le 3$ . Then for any  $i \ (1 \le i \le 3)$ , there exists some integer t with  $1 \le t \le m-k$  such that

$$Z(S_i(p,q,T_m^k)) \ge Z(P(m-k+1,1,S(p,q),v_i,t,k-1)).$$

**Proof** For any i  $(1 \le i \le 3)$ , repeating Transformations A and B on  $S_i(p,q,T_m^k)$ , we can get a graph  $P(m-k+1,1,S(p,q),v_i,t,k-1)$ . By Lemmas 2.2 and 2.3,  $Z(S_i(p,q,T_m^k)) \ge Z(P(m-k+1,1,S(p,q),v_i,t,k-1))$ .

Note that  $S_i(p,q, S_m^k) = P(m-k+1, 1, S(p,q), v_i, 1, k-1)$ , by Corollary 4.2 and Lemma 4.3, we can get the following corollary immediately.

**Corollary 4.4** Let  $1 \le i \le 3$ . We have  $Z(S_i(p,q,T_m^k)) \ge Z(S_i(p,q,S_m^k))$ , with the equality holding if and only if  $T_m^k = S_m^k$ .

**Lemma 4.5** Suppose  $G \in G^1(p,q,k)$  on *n* vertices. Then  $Z(G) \ge Z(S_1(p,q,S_m^k))$ .

**Proof** It is obvious that there exist some i  $(1 \le i \le 3)$  and some tree  $T_m^k$  such that  $Z(G) \ge Z(S_i(p,q,T_m^k))$  by Transformation A on G. Then we only need to show  $Z(S_i(p,q,S_m^k)) > Z(S_1(p,q,S_m^k))$  for i = 2, 3 by Corollary 4.4.

Note that  $S_i(p,q,S_m^k) = P(m-k+1,1,S(p,q),v_i,1,k-1)$ , we only need to show the following inequalities by Lemma 2.10:

$$Z(S(p,q) - v_1) < Z(S_l(p,q) - v_2),$$
(4.1)

$$Z(S_l(p,q) - v_1) < Z(S_l(p,q) - v_3).$$
(4.2)

Since the proof of (4.2) is similar to that of (4.1) by the symmetry of  $C_p$  and  $C_q$ , we only show (4.1). Let  $d(v_1, v_2) = s - 1$ . Then  $s \ge 2$ .

### **Case 1** s = 2.

$$Z(S(p,q) - v_1) - Z(S(p,q) - v_2) = Z(P_{p-1})Z(P_{q-1}) - Z(P(p-1,1,C_q,v_1))$$
  
=  $-2F_{p-1}F_{q-1} < 0.$ 

#### Case 2 $s \ge 3$ .

Let  $e = v_1 v_1^*$ . By Lemma 2.1 and  $F_n = F_k F_{n-k+1} + F_{k-1} F_{n-k}$  for  $1 \le k \le n$ , we have

$$Z(S(p,q) - v_1) - Z(S(p,q) - v_2)$$
  
=  $Z(S(p,q) - v_1) - [Z(S(p,q) - v_2 - e) + Z(S(p,q) - \{v_2, v_1, v_1^*\})]$   
=  $Z(P_{p-1})Z(P_{q-1}) - Z(P_{p-s})Z(P(s-1, 1, C_q, v_1)) - Z(P_{p-s-1})Z(P_{s-2})Z(P_{q-1})$   
=  $-2F_{p-s+1}F_{s-1}F_{q-1} < 0.$ 

The proof of the following Lemma 4.6 is similar to the proof of Lemma 3.6.

**Lemma 4.6** Let m, k, p, q be positive integers with  $p, q \ge 3$  and  $2 \le k \le m - 1$ ,  $S_1(p, q, T_m^k)$ 

and  $v_i (1 \le i \le 3)$  be defined as above. Then

 $Z(S_1(p,q,S_m^k)) = kF_pF_qF_{m-k+1} + 2F_{p-1}F_qF_{m-k+1} + 2F_pF_{q-1}F_{m-k+1} + F_pF_qF_{m-k}.$ 

**Lemma 4.7** Let m, k, p, q be positive integers with  $p, q \ge 3$ ,  $p + q - 4 \ge 3$  and  $2 \le k \le m - 1$ . Then  $Z(S_1(p, q, S_m^k)) \ge Z(S_1(4, p + q - 4, S_m^k))$ , with the equality holding if and only if  $S_1(p, q, S_m^k) \cong S_1(4, p + q - 4, S_m^k)$ .

**Proof** We will complete the proof by the following two cases.

Case 1  $p \ge 4$ . By  $F_n = F_k F_{n-k+1} + F_{k-1} F_{n-k}$  for  $1 \le k \le n$ ,  $F_p F_q - F_4 F_{p+q-4} = [F_{p-1} + F_{p-2}][2F_{q-2} + F_{q-3}] - 3[F_{p-1}F_{q-2} + F_{p-2}F_{q-3}] = F_{p-4}[F_{q-2} - F_{q-3}];$ 

$$F_{p-1}F_q - F_3F_{p+q-4} = F_{p-1}[2F_{q-2} + F_{q-3}] - 2[F_{p-1}F_{q-2} + F_{p-2}F_{q-3}] = -F_{p-4}F_{q-3}.$$

Thus by Lemma 4.6,

$$\begin{split} &Z(S_1(p,q,S_m^k)) - Z(S_1(4,p+q-4,S_m^k)) \\ &= [k(F_pF_q - F_4F_{p+q-4}) + 2(F_{p-1}F_q - F_3F_{p+q-4}) + 2(F_pF_{q-1} - F_4F_{p+q-5})]F_{m-k+1} + \\ & [F_pF_q - F_4F_{p+q-4}]F_{m-k} \\ &= F_{p-4}[F_{q-2} - F_{q-3}][(k-2)F_{m-k+1} + F_{m-k}] \geq 0. \end{split}$$

The equality holds if and only if p = 4 or q = 4.

Case 2 
$$p = 3$$
.  
Then  $q \ge 4$  by  $p + q - 4 \ge 3$ . By Lemma 4.6,  
 $Z(S_1(p,q, S_m^k)) - Z(S_1(4, p + q - 4, S_m^k))$   
 $= [k(F_3F_q - F_4F_{q-1}) + 2(F_2F_q - F_3F_{q-1}) + 2(F_3F_{q-1} - F_4F_{q-2})]F_{m-k+1} + [F_3F_q - F_4F_{q-1}]F_{m-k}$   
 $= F_{q-4}[(k-2)F_{m-k+1} + F_{m-k}] \ge 0.$ 

The equality holds if and only if q = 4.

Combining the two cases, we obtain the equality holds if and only if  $S_1(p,q,S_m^k) \cong S_1(4,p+q-4,S_m^k)$ .

**Lemma 4.8** Let m, k, p, q be positive integers with  $p, q \ge 3$  and  $2 \le k \le m-1$ . Then  $Z(S_1(p, q, S_m^k)) \ge Z(S_1(p, q+m-k-1, S_{k+1}^k))$ , with the equality holding if and only if m = k+1.

**Proof** By  $F_n = F_k F_{n-k+1} + F_{k-1} F_{n-k}$  for  $1 \le k \le n$ ,

 $F_{q+m-k-1} = F_{q-1}F_{m-k+1} + F_{q-2}F_{m-k}; \quad F_{q+m-k-2} = F_{q-2}F_{m-k+1} + F_{q-3}F_{m-k}.$   $F_{q}F_{m-k+1} - F_{q+m-k-1} = F_{q}F_{m-k+1} - [F_{q-1}F_{m-k+1} + F_{q-2}F_{m-k}] = F_{q-2}F_{m-k-1}.$ 

Then by Lemma 4.6,

$$Z(S_1(p,q,S_m^k)) - Z(S_1(p,q+m-k-1,S_{k+1}^k))$$

$$= (kF_p + 2F_{p-1})[F_qF_{m-k+1} - F_{q+m-k-1}] + 2F_p[F_{q-1}F_{m-k+1} - F_{q+m-k-2}] + F_p[F_qF_{m-k} - F_{q+m-k-1}]$$
  
= [(kF\_{q-2} + 2F\_{q-3} - F\_{q-1})F\_p + 2F\_{p-1}F\_{q-2}]F\_{m-k-1} \ge 0.

The equality holds if and only if m = k + 1.

By Lemmas 4.1–4.6, we have the following theorem.

**Theorem 4.9** Let n, k be positive integers with  $2 \le k \le n-6$ ,  $G \in \mathcal{G}(n, n+1, k)$  be a bicyclic graph on n vertices and k pendent vertices with the two cycles having exactly one common vertices. Then we have

(1) If  $2 \le k \le n-6$ , then  $Z(G) \ge (3k+7)F_{n-k-3} + 6F_{n-k-4}$ , with the equality holding if and only if  $G \cong S_1(4, n-k-3, S_{k+1}^k)$ .

(2) If k = n - 5, then  $Z(G) \ge 4n - 8$ , with the equality holding if and only if  $G \cong S_1(3,3,S_{n-4}^{n-5})$ .

**Proof** Let p, q be positive integers with  $p, q \ge 3$  and  $G \in G^1(p, q, k)$  on n vertices. Suppose the two cycles in G are connected by a common vertex  $v_1$ . Then there exist  $i \in \{1, 2, 3\}$  and some tree  $T_m^k$  where  $2 \le k \le m - 1$  and m = n - p - q + 2 such that  $Z(G) \ge Z(S_i(p, q, T_m^k))$  by Transformation A.

Thus by Corollary 4.4 and Lemma 4.5,

$$Z(G) \ge Z(S_i(p, q, T_m^k)) \ge Z(S_i(p, q, S_m^k)) \ge Z(S_1(p, q, S_m^k)).$$

Case 1  $p+q \ge 7$ . Then by Lemmas 4.6–4.8,

$$Z(S_1(p,q,S_m^k)) \ge Z(S_1(4,p+q-4,S_m^k)) \ge Z(S_1(4,n-k-3,S_{k+1}^k))$$
  
=  $(3k+7)F_{n-k-3} + 6F_{n-k-4}.$ 

**Case 2** p = q = 3.

By Lemmas 4.6 and 4.8,  $Z(S_1(3,3,S_m^k)) \ge Z(S_1(3,n-k-2,S_{k+1}^k)).$ 

Combining the above arguments and Lemma 4.7, we have  $Z(G) \ge Z(S_1(4, n-k-3, S_{k+1}^k))$ when  $2 \le k \le n-6$  and  $Z(G) \ge Z(S_1(3, 3, S_{n-4}^{n-5})) = 4n-8$  when k = n-5.

Let *m* be a positive integer,  $P_m$  be a path on *m* vertices,  $v \in V(P_m)$  and d(v) = 1. Take  $S_i(p,q,P_m) = (S(p,q),v_i) \bigtriangleup (P_m,v)$  (i = 1,2,3), then  $S_i(p,q,P_m) \in G^1(p,q,1)$ .

It is obvious that Lemmas 4.5–4.6 and Lemma 4.8 hold for  $S_1(p, q, P_m)$ , and

$$Z(S_1(p,q,P_2)) = 2F_pF_q + 2F_{p-1}F_q + 2F_pF_{q-1}.$$

Similarly to the proof of Lemma 4.7, we can show  $Z(S_1(p,q,P_2)) = Z(S_1(3, p+q-3,P_2))$ . Then we have the following remark.

**Remark 4.10** For k = 1,  $S_1(p, n - p, P_2)$  is the graph on n vertices with the smallest Hosoya index in G(1,1) when  $p,q \ge 3$  and  $Z(S_1(p, n - p, P_2)) = Z(S_1(4, n - 4, P_2)) = 4F_{n-4} + 6F_{n-3}$ .

By Theorem 4.9 and Remark 4.10, we have

**Lemma 4.11** Let n, k be positive integers. Then

- (1)  $Z(S_1(4, n-4, P_2)) > Z(S_1(4, n-5, S_3^2)).$
- (2)  $Z(S_1(4, n-k-3, S_{k+1}^k)) > Z(S_1(4, n-k-4, S_{k+2}^{k+1}))$  for  $2 \le k \le n-7$ .
- (3)  $Z(S_1(4,3,S_{n-5}^{n-6})) > Z(S_1(3,3,S_{n-4}^{n-5})).$

**Theorem 4.12** Let G be a bicyclic graph on n vertices with the two cycles having common vertices. Then  $Z(G) \ge 4n - 8$ , with the equality holding if and only if  $G \cong S_1(3,3,S_{n-4}^{n-5})$ .

## 5. The graph with the smallest Hosoya index in G(l,k)

In this section, we will characterize the graph on n vertices with the smallest Hosoya index in G(l, k) for  $l \ge 2$ . Since the proofs of the following results are similar to those of the above results in Section 3 or 4, so we ignore them.

Let  $p(\geq 3), q(\geq 3)$  be positive integers, and S(p,q,l) a graph on p+q-l vertices, with the two cycles  $C_p$  and  $C_q$  having l common vertices (see Figure 9). For convenience, we let  $w_1 = z_1$ ,  $w_2 \in \{x_1, x_2, \ldots, x_{p-l}\}, w_3 \in \{y_1, y_2, \ldots, y_{q-l}\}, \text{ and } w_4 \in \{z_2, \ldots, z_{l-1}\} \text{ if } l \geq 3.$ 



**Lemma 5.1** For  $1 \le i \le 4$ , we have  $Z(S(p,q,l)-w_i) < \frac{3}{2} \sum_{x \in N_{S(p,q,l)}(w_i)} Z(S(p,q,l)-\{x,w_i\}).$ 

By Lemmas 2.9 and 5.1, the following corollary holds:

**Corollary 5.2** Let  $n \geq 3$ , t, k be positive integers with  $1 \leq t \leq n-1$ , P(n, 1, H, v, t, k), S(p, q, l) be defined as before. Then for any  $i \ (1 \leq i \leq 4)$ ,

$$Z(P(n, 1, S(p, q, l), w_i, 1, k)) \le Z(P(n, 1, S(p, q, l), w_i, t, k))$$

with the equality holding if and only if t = 1.

Let m, k be positive integers with  $2 \leq k \leq m-1$ ,  $v \in V(T_m^k)$  and  $d(v) \geq 2$ . Take  $\theta^i(p,q,l,T_m^k) = (S(p,q,l), w_i) \bigtriangleup (T_m^k, v)$  (i = 1, 2, 3, 4) (see Figure 10), then  $\theta^i(p,q,l,T_m^k) \in G^l(p,q,k)$ .



**Lemma 5.3** Let m, k, p, q, t be positive integers with  $p, q \ge 3$  and  $2 \le k \le m-1$ ,  $S(p, q, l), w_i$ ,  $\theta^i(p, q, l, T_m^k)$ ,  $P(m - k + 1, 1, S(p, q, l), w_i, t, k - 1)$  be defined as before for  $1 \le i \le 4$ . Then for any i  $(1 \le i \le 4)$ , there exists some integer t with  $1 \le t \le m-k$  such that

$$Z(\theta^{i}(p,q,l,T_{m}^{k})) \geq Z(P(m-k+1,1,S(p,q,l),w_{i},t,k-1)).$$

Note that  $\theta^i(p, q, l, S_m^k) = P(m-k+1, 1, S(p, q, l), w_i, 1, k-1)$ , by Corollary 5.2 and Lemma 5.3, we can get the following corollary immediately.

**Corollary 5.4** Let  $1 \le i \le 4$ . We have  $Z(\theta^i(p,q,l,T_m^k) \ge Z(\theta^i(p,q,l,S_m^k))$ , with the equality holding if and only if  $T_m^k = S_m^k$ .

**Lemma 5.5** Suppose  $G \in G^l(p, q, k)$  on n vertices, and  $P_l$  is the common path of  $C_p$  and  $C_q$ . Then  $Z(G) \ge Z(\theta^1(p, q, l, S_m^k))$ .

**Lemma 5.6** Let m, k, p, q, l be positive integers with  $2 \le k \le m-1$ ,  $p, q \ge 3$  and  $l \ge 2$ ,  $\theta^1(p, q, l, S_m^k)$  and  $w_1$  be defined as above. Take  $F_{-1} = 1$ , then

$$Z(\theta^{1}(p,q,l,S_{m}^{k})) = rkF_{m-k+1} + rF_{m-k} + sF_{m-k+1},$$

where

$$r = F_{p+q-2l+2}F_{l-1} + F_{p-l+1}F_{l-2}F_{q-l+1}$$

$$s = 2F_{p+q-2l+1}F_{l-1} + [F_{p-l}F_{q-l+1} + F_{p-l+1}F_{q-l} + F_{p+q-2l+2}]F_{l-2} + F_{p-l+1}F_{q-l+1}F_{l-3}.$$

**Lemma 5.7** Let m, k, p, q, l be positive integers with  $2 \le k \le m-1$ ,  $p, q \ge 3$  and  $l \ge 2$ . Then  $Z(\theta^1(p, q, l, S_m^k)) \ge Z(\theta^1(l+1, q+p-l-1, l, S_m^k))$ , with equality holding if and only if  $\theta^1(p, q, l, S_m^k)) \cong \theta^1(l+1, q+p-l-1, l, S_m^k)$ .

For the symmetry of  $P_{p-l}$ ,  $P_{q-l}$  and  $P_l$ , the following lemma holds:

**Lemma 5.8** Let m, k, p, q, l be positive integers with  $2 \le k \le m - 1, 2 \le l$ . Then

$$Z(\theta^1(l+1, q, l, S_m^k)) \ge Z(\theta^1(q, q, q-1, S_m^k)).$$

**Lemma 5.9** Let m, k, p, q, l be positive integers with  $2 \le k \le m-1$ ,  $p, q \ge 3$  and  $l \ge 2$ . Then  $Z(\theta^1(l+1, l+1, l, S_m^k)) \ge Z(\theta^1(l+m-k+2, l+m-k+2, l+m-k+1, S_{k+1}^k)).$ 

**Theorem 5.10** Let n, k be positive integers with  $2 \le k \le n-4$ ,  $G \in \mathcal{G}(n, n+1, k)$  be a bicyclic graph on n vertices and k pendent vertices with the two cycles having exactly at least two common vertices. Then  $Z(G) \ge 2F_{n-k} + (k+1)F_{n-k-1} + kF_{n-k-3}$ , with the equality holding if and only if  $G \cong \theta^1(n-k-1, n-k-1, n-k-2, S_{k+1}^k)$ .

**Remark 5.11** For k = 1, similarly to the proofs of Lemmas 5.7–5.9 and Theorem 5.10, we can show that  $\theta^1(n-2, n-2, n-3, P_2)$  is the graph with the smallest Hosoya index in G(l, 1) and  $Z(\theta^1(n-2, n-2, n-3, P_2)) = 2F_n + F_{n-4}$ .

By Theorem 5.10 and Remark 5.11, we have

**Lemma 5.12** Let n, k be positive integers. Then

(1)  $Z(\theta^1(n-2, n-2, n-3, P_2)) > Z(\theta^1(n-3, n-3, n-4, S_3^2)).$ 

 $(2) \quad Z(\theta^1(n-k-1,n-k-1,n-k-2,S^k_{k+1})) > Z(\theta^1(n-k-2,n-k-2,n-k-3,S^{k+1}_{k+2})) \text{ for } 2 \le k \le n-4.$ 

**Theorem 5.13** Let G be a bicyclic graph on n vertices with the two cycles having at least two common vertices. Then  $Z(G) \geq 3n - 4$ , with the equality holding if and only if  $G \cong \theta^1(3,3,2,S_{n-3}^{n-4})$ .

## 6. The graph with the smallest Hosoya index in $\mathcal{G}(n, n+1, k)$ and $\mathcal{G}(n, n+1)$

Let  $\mathcal{G}(n, n+1)$  be the set of bicyclic graphs on *n* vertices. By Theorems 3.10, 3.15, 4.9, 4.12, 5.10 and 5.13, we obtain the extremal graphs with the smallest Hosoya index in  $\mathcal{G}(n, n+1, k)$  and  $\mathcal{G}(n, n+1)$ .

**Theorem 6.1** Let G be a connected graph on n vertices in  $\mathcal{G}(n, n+1, k)$ . Then

(1) For k = 1,  $Z(G) \ge 4F_{n-2} + 2F_{n-3}$ , with the equality holding if and only if  $G \cong S_1(4, n-4, P_2)$ .

(2) For  $2 \le k \le n-6$ ,  $Z(G) \ge (3k+7)F_{n-3-k} + 6F_{n-4-k}$ , with the equality holding if and only if  $G \cong S_1(4, n-k-3, S_{k+1}^k)$ .

(3) For k = n-5,  $Z(G) \ge 4n-8$ , with the equality holding if and only if  $G \cong S_1(3,3,S_{n-4}^{n-5})$ .

(4) For k = n - 4,  $Z(G) \ge 3n - 4$ , with the equality holding if and only if  $G \cong \theta^1(3,3,2,S_{n-3}^{n-4})$ .

**Theorem 6.2** ([13]) Let G be a connected graph in  $\mathcal{G}(n, n+1)$ . Then  $Z(G) \ge 3n-4$ , with the equality holding if and only if  $G \cong \theta^1(3, 3, 2, S_{n-3}^{n-4})$ .

Acknowledgements We thank the referees for their time and comments.

#### References

- H. HOSOYA. Topological index: A newly proposed quantity characterizing the topoligical nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn., 1971, 44: 2332–2339.
- [2] S. WANGER, I. GUTMAN. Maxima and minima of the Hosoya index and the Merrifield-Simmons index: a survey of results and techniques. Acta Appl. Math., 2010, 112(3): 323–346.

- [3] Yuwen CHEN, Shu WEN. On the total number of matchings of trees with prescribed diameter. Int. J. Nonlinear Sci., 2007, 4(1): 37–43.
- [4] Hongbo HUA. On maximal energy and Hosoya index of trees without perfect matching. Bull. Aust. Math. Soc., 2010, 81(1): 47–57.
- [5] Xuezheng LV, Yan YAN, Aimei YU, et al. Ordering trees with given pendent vertices with respect to Merrifield-Simmons indices and Hosoya indices. J. Math. Chem., 2010, 47(1): 11–20.
- S. G. WAGNER. Extremal trees with respect to Hosoya index and Merrifield-Simmons index. MATCH Commun. Math. Comput. Chem., 2007, 57(1): 221–233.
- [7] Aimei YU, Xuezheng LV. The Merrifield-Simmons indices and Hosoya indices of trees with k pendant vertices.
   J. Math. Chem., 2007, 41(1): 33–43.
- [8] Shuchao LI, Xuechao LI, Jing WEI. On the extremal Merrifield-Simmons index and Hosoya index of quasitree graphs. Discrete Appl. Math., 2009, 157(13): 2877–2885.
- Hongbo HUA. Minimizing a class of unicyclic graphs by means of Hosoya index. Math. Comput. Modelling, 2008, 48(5-6): 940–948.
- [10] Hongbo HUA. Hosoya index of unicyclic graphs with prescribed pendent vertices. J. Math. Chem., 2008, 43(2): 831–844.
- [11] Jianping OU. On extremal unicyclic molecular graphs with maximal Hosoya index. Discrete Appl. Math., 2009, 157(2): 391–397.
- [12] Zheng YAN, Huiqingg LIU, Heguo LIU. The maximal Merrifield-Simmons indices and minimal Hosoya indices of unicyclic graphs. MATCH Commun. Math. Comput. Chem., 2008, 59(1): 157–170.
- [13] Hanyuan DENG. The smallest Hosoya index in (n, n + 1)-graphs. J. Math. Chem., 2008, 43(1): 119–133.
- [14] Huiqing LIU, Mei LU. A unified approach to extremal cacti for different indices. MATCH Commun. Math. Comput. Chem., 2007, 58(1): 193–204.
- [15] Kexiang XU. On the Hosoya index and the Merrifield-Simmons index of graphs with a given clique number. Appl. Math. Lett., 2010, 23(4): 395–398.
- [16] J. A. BONDY, U. S. R. MURTY. Graph Theory with Applications. American Elsevier Publishing Co., Inc., New York, 1976.