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Abstract A graph G is called quasi-claw-free if it satisfies the property: d(x, y) = 2 ⇒ there

exists a vertex u ∈ N(x) ∩ N(y) such that N [u] ⊆ N [x] ∪ N [y]. In this paper, we show that

every 2-connected quasi-claw-free graph of order n with G /∈ F contains a cycle of length at

least min{3δ + 2, n}, where F is a family of graphs.
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1. Introduction

Graphs considered in this paper are simple and finite. We use [2] for notation and termi-
nology not defined here. We denote by δ(G) (or δ) the minimum degree of a graph G. For a
subgraph H of a graph G and a subset S of V (G), we denote by G −H and G[S] the induced
subgraphs of G by V (G)− V (H) and S, respectively. Let N(u) denote the set of the neighbors
of u and N [u] = N(u)∪ {u}. Let NH(S) =

⋃
x∈S NH(x) and dH(S) = |NH(S)|. For A and B in

V (G), let E(A,B) = {uv ∈ E(G) : u ∈ A and v ∈ B}. For a cycle C with a fixed orientation,
and two vertices x and y on C, we define the segment C[x, y] = xCy to be the set of vertices
on C from x to y (including x and y) and C−[y, x] = yC−x to be a traversal of C[x, y] in the
opposite sense according to the orientation of C. Let x+ and x− denote the successor and the
predecessor of x according to the orientation of C, respectively, and x++ and x−− denote the
successor and the predecessor of x+ and x−, respectively. We define C(x, y) = C[x, y]− {x, y}.

In this paper, F denotes the family of graphs as follows: if G ∈ F , then G can be decomposed
into three subgraphs G1, G2, and G3 such that V (Gi) ∩ V (Gj) = ∅ and E(V (Gi), V (Gj)) =
{uiuj , vivj}, where 1 ≤ i 6= j ≤ 3, ui, vi ∈ V (Gi), uj , vj ∈ V (Gj) and ui 6= vi, uj 6= vj .

A graph is called claw-free if it does not contain a copy of K1,3 as an induced subgraph.
Define J(x, y) = {u ∈ N(x) ∩ N(y) : N [u] ⊆ N [x] ∪ N [y]}. A graph G is quasi-claw-free if it
satisfies the property: d(x, y) = 2 ⇒ J(x, y) 6= ∅. Clearly, a claw-free graph is quasi-claw-free,
but not every quasi-claw-free graph is claw-free.
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Ainouche [1], Li [9, 10], Zhan [14] and Qu and Wang [13] gave some properties of Hamil-
tonicity and vertex pancyclicity of quasi-claw-free graphs, but there are few results on the cir-
cumference of quasi-claw-free graphs.

Theorem 1.1 ([9]) Let G be a 2-connected quasi-claw-free graph of order n. If δ ≥ n/4, then

G is hamiltonian or G ∈ F .

In this paper, we mainly consider the circumferences of 2-connected quasi-claw-free graphs
not in F .

Theorem 1.2 Every 2-connected quasi-claw-free graph of order n with G /∈ F contains a cycle

of length at least min{3δ + 2, n}.

2. Some lemmas

By the proof of Lemma 2.1 in Zhan [14], we can get the following lemma.

Lemma 2.1 Let G be a connected quasi-claw-free graph and C a longest cycle of G. Suppose

that H is a component of G−C and ci ∈ NC(H), 1 ≤ i ≤ dC(H). Then the following facts hold,

(1) J(yi, c
+
i ) = J(yi, c

−
i ) = {ci} and c−i c+

i ∈ E(G), where yi ∈ NH(ci).

(2) NH(ci) is a complete subgraphs of G, and c−i x, c+
i x ∈ E(G), x ∈ NC(ci)−NC(H).

For a pair of vertices x and y in a connected graph G, let LG(x, y) be the length of a longest
(x, y)-path P in G. If G is connected with |V (G)| ≥ 2, then we set L(G) = min{LG(x, y) : x, y ∈
V (G), x 6= y}.

Lemma 2.2 ([4]) Let G be a 2-connected graph. Then there exist two distinct vertices v1, v2 ∈
V (G) such that L(G) ≥ d(vi), for i ∈ {1, 2}.

Lemma 2.3 ([11]) Let G be a 2-connected graph on at least 2δ vertices. Then G has a cycle of

length at least 2δ containing x and y for any two vertices x and y in G.

Lemma 2.4 ([3]) Let G be a 2-connected graph. If every longest path P in G has the property

that the sum of the degrees of the two end-vertices of P is at least |V (P )|+1, then G is hamilton-

connected.

Given a subgraph H of a connected graph G such that d(v) < |V (G)| − 1 for some vertex
v in V (H), let kH = min{|NG−S(S)| : ∅ ⊆ S ⊆ V (H) and NG−S(S) ∪ S 6= V (G)}. Clearly,
kH ≥ kG.

A pair of distinct vertices x, y in NG−H(H) is a useful pair if |NH(x, y)| ≥ 2. H is strongly
linked in G if for each useful pair x and y, there exists a hamiltonian path P = P [x′, y′] in H

such that x ∈ N(x′) and y ∈ N(y′), otherwise H is weakly linked in G.

Lemma 2.5 ([5]) Let G be a 2-connected graph, C a longest cycle of G and H a component of

G− C. Suppose that H is not hamilton-connected and kH ≥ 3.

(1) If H is 2-connected nonhamiltonian, then there exist nonadjacent vertices v and w in

H such that |V (C)| ≥ 2d(v) + 2d(w);
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(2) If H is hamiltonian and weakly linked in G, then there exist nonadjacent vertices v and

w in H such that |V (C)| ≥ 2d(v) + 2d(w) + min{(1/2)|V (H)|, 6}.
By Lemma 2.1 and the proof of Li [7], we can obtain Lemmas 2.6 and 2.7.

Lemma 2.6 Let C be a longest cycle in an m-connected (m ≥ 2) quasi-claw-free graph G,

and H be a component of G− C such that |V (H)| ≥ 3. If H is hamilton-connected, then there

exists some vertex v in H such that |V (C)| ≥ s(d(v) − s + 4) + (kH − s)(|V (H)| − s + 3) ≥
s(d(v)− s + 4) + (m− s)(|V (H)| − s + 3), where 0 ≤ s ≤ |V (H)|+ 3.

Lemma 2.7 Let C be a longest cycle of a 2-connected quasi-claw-free graph G and H be a

component of G− C.

(1) If H is strongly linked in G but not hamilton-connected, then there exist non-adjacent

vertices v and w in H such that |V (C)| ≥ 2(d(v) + d(w))− 2 and |V (G)| ≥ 3(d(v) + d(w))− 6;

(2) If H is not 2-connected, then there exist nonadjacent vertices v and w such that

|V (C)| ≥ 2(d(v) + d(w)) + 4.

3. Proof of Theorem 1.2

Proof of Theorem 1.2 Let G be a 2-connected non-hamiltonian quasi-claw-free graph of
order n satisfying the conditions of Theorem 1.3 and C a longest cycle of G with a chosen
orientation. Assume that H is a component of G − C and NC(H) = {c1, c2, . . . , cm}, where
ci is labeled in the order of the direction of C and i modulo m. Then by Lemma 2.1(1),
c−i c+

i ∈ E(G) (i ∈ {1, . . . , m}). Suppose that Theorem 1.3 is not true. Then |V (C)| ≤ 3δ + 1.
Let X = {i : |NH(ci, ci+1)| ≥ 2} and Si = C(c+

i , c−i+1). If |V (H)|=1, then by the maximality
of C and c−i c+

i ∈ E(G) (i ∈ {1, . . . , m}), |V (C)| ≥ 4δ, a contradiction. Since G is 2-connected
and |V (H)| ≥ 2, |X| ≥ 2. By Lemma 2.7(2), any component of G−C is 2-connected, otherwise
|V (C)| ≥ 4δ + 4, a contradiction. Without loss of generality, assume M = {vici ∈ E(G) : vi ∈
V (H), ci ∈ NC(H)} is a maximum matching in E(V (H), V (C)). Then |M | ≥ 2. Since H is
2-connected and G is a simple graph, there exist at least two internally-disjoint (v1, v2)-paths in
H and |V (H)| ≥ 3. Obviously, there is a (v1, v2)-path of order at least 3 in H and then by the
maximality of C, |V (C)| ≥ 12. It follows that 3δ + 1 ≥ |V (C)| ≥ 12, which implies δ ≥ 4. Next
we consider three cases to complete the proof of Theorem 1.2.

Case 1 H is not hamiltonian.

By Lemma 2.5(1), kH = 2. Again by the proof of Lemma 2.5(1) (in [5], Corollary 6.2),
|X| = |M | = 2. Since M = {v1c1, v2c2}, NC(H) = {v1, v2}. Let P be a longest (v1, v2)-path in
H. We can get the following claims.

Proposition 1.1 If dC(H) = 2, then NC(c1)− {c2, c
−
1 , c+

1 } = NC(c2)− {c1, c
−
2 , c+

2 } = ∅.

Proof Suppose dC(H) = 2. Then for any vertex x ∈ V (H), dH(x) ≥ δ − 2. By Lemma 2.2,
|V (P )| ≥ δ−1. Without loss of generality, assume y ∈ N(c1)∩S1. Suppose N(y−)∩V (H ′) 6= ∅,
where H ′ is a component of G − C − H. By Lemma 2.1(2), yc−1 , yc+

1 ∈ E(G). We obtain
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|C(y, c−2 )| ≥ |V (P )|, otherwise there exists a longer cycle C ′ = c1P [v1, v2]c2c
−
2 C[c+

2 , c−1 ]C−[y, c1]
than C, a contradiction. If y−c+

2 ∈ E(G), then there is a longer cycle C ′ = c1P [v1, v2]C−[c2, y]
C[c+

1 , y−]C[c+
2 , c1] than C, a contradiction. Thus y−c+

2 /∈ E(G), similarly y−c−2 /∈ E(G). If
y−c2 ∈ E(G), then by Lemma 2.1(2), y−c+

2 , y−c−2 ∈ E(G), a contradiction. Let y1 and y2 be the
neighbors of y− closest to c−2 and c+

2 on S1 and S2, respectively. Then a = |C(y1, c
−
2 )| ≥ |V (P )|,

otherwise there is a longer cycle C ′ = c1P [v1, v2]c2c
−
2 C[c+

2 , c−1 ]C[y, y1] C−[y−, c1] than C, a
contradiction. Similarly, b = |C(c+

2 , y2)| ≥ |V (P )|. Obviously, dC(H ′) ≥ 2 and H ′ is 2-connected,
then there exist three vertices u1, y

′, u2 such that y′ ∈ V (C), u1 ∈ NH′(y−), u2 ∈ NH′(y′). Let
P ′ be the longest (u1, u2)-path in H ′ with an orientation from u1 to u2. By Lemma 2.1(2),
G[NH′(y−)] and G[NH′(y′)] are two complete graphs and NG−C−H′(y−)= NG−C−H′(y′)= ∅.
Thus |V (P ′)| ≥ dH′(y−) and y′ /∈ NC(H). By Lemma 2.1(1), y−−y, y′−y′+ ∈ E(G). If y′ = c−1 ,
then we can obtain a longer cycle C ′ = y′P ′−[u2, u1]C−[y−, c1]C[y, y′] than C, a contradiction.
Similarly, y′ /∈ {c+

1 , c−2 , c+
2 }. Now we consider the location of y′.

(a) Suppose y′ ∈ C(y1, c
−
2 ). Then we obtain d = |C(y′+, c−2 )| ≥ |V (P )|+ |V (P ′)|, otherwise

there is a longer cycle C ′ = c1P [v1, v2]c2c
−
2 C[c+

2 , c−1 ]C[y, y′−]y′+y′P ′−[u2, u1]C−[y−, c1] than C.
Recall that b = |C(c+

2 , y2)| ≥ |V (P )|, |V (P ′)| ≥ dH′(y−), |V (P )| ≥ δ−1 and y−c2, y
−c+

2 , y−c−2 /∈
E(G). It follows that |V (C)| ≥ |C[y2, y1]| + b + d + |{c2, c

−
2 , c+

2 , y−}| ≥ 2|V (P )| + dH′(y−) +
dC(y−) + 4 ≥ 3δ + 2, a contradiction. Thus y′ /∈ C(y1, c

−
2 ), a contradiction. Similarly, we have

(b) as follows.
(b) y′ /∈ C(c+

2 , y2).
(c) Suppose y′ ∈ C[y, y1]. Then without loss of generality, assume NC(H ′) ∩ C(y, y′) = ∅.

By the maximality of C, obviously y′−, y′+ /∈ N(y−). Let y3 be the neighbor of y− closest to y′

on C(y, y′). Then NC(y−) is contained in A = C[y2, y3]∪C[y′, y1]. We obtain e = |C(y3, y
′−)| ≥

|V (P ′)|, otherwise there is a longer cycle C ′ = y−P ′[u1, u2]y′y′−C[y′+, y−−]C[y, y3]y− than C,
a contradiction. Recall that a = |C(y1, c

−
2 )| ≥ |V (P )|, b = |C(c+

2 , y2)| ≥ |V (P )|, |V (P )| ≥ δ − 1
and y−c2, y

−c+
2 , y−c−2 /∈ E(G). Thus |V (C)| ≥ e + |A| + a + b + |{y−, c−2 , c2, c

+
2 }| ≥ dH′(y−) +

dC(y−)+2|V (P )|+4 ≥ 3δ +2, a contradiction. Thus y′ /∈ C[y, y1]. Similarly, we can obtain (d).
(d) y′ /∈ C[y2, y

−].
From (a)-(d), we obtain N(y−) ∩ V (H ′) = ∅. It follows that N(y−) ∩ V (G − C) = ∅. If

c2y
− ∈ E(G), then there is a longer cycle C ′ = c1P [v1, v2]c2C

−[y−, c+
1 ] C−[c−1 , c+

2 ]C−[c−2 , y]c1

than C, a contradiction. Similarly, c−2 , c+
2 /∈ N(y−). Thus N [y−] is contained in C[y2, y1]. Recall

that a = |C(y1, c
−
2 )| ≥ |V (P )|, b = |C(c+

2 , y2)| ≥ |V (P )| and |V (P )| ≥ δ − 1. It follows that
|V (C)| ≥ |C[y2, y1]|+ a + b + |{y−, c−2 , c+

2 , c2}| ≥ d(y−) + 2|V (P )|+ 4 ≥ 3δ + 2, a contradiction.
Thus Proposition 1.1 is true. ¤

Suppose that W1 is a complete graph, W = W1 ∪ {z1, z2} and zi is adjacent to all the
vertices of W1 (i ∈ {1, 2}). Let z1[W1]z2 denote a hamiltonian (z1, z2)-path of W .

Proposition 1.2 If H is not hamiltonian, then dC(H) ≥ 3.

Proof Suppose dC(H) = 2. Then dH(x) ≥ δ − 2 for any vertex x ∈ V (H). By Lemma 2.4,
|V (H)| ≥ 2(δ − 2). By Lemma 2.3, there is a cycle in H of length at least 2(δ − 2) containing
v1 and v2. Without loss of generality, assume that C ′ is a longest cycle in H containing v1
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and v2 with a chosen orientation. Then |V (C ′)| ≥ 2(δ − 2). Let C ′ = w1w2 . . . wtw1 and wi

(i ∈ {1, 2, . . . , t}) be labeled in the order of the direction of C ′. Then t ≥ 2δ − 4. Moreover
let w1 = v1, wi = v2 (2 ≤ i ≤ t). If wtc2 ∈ E(G), then |V (P )| ≥ |C[w1, wt]| ≥ 2δ − 4.
It follows that |V (C)| ≥ 2|V (P )| + 6 ≥ 4δ − 2, a contradiction. Thus wtc2 /∈ E(G). Similarly,
w2c2, wi−1c1, wi+1c1 /∈ E(G). If i ≤ δ/2, then t−i ≥ (3δ/2)−4, |V (P )| ≥ |C[wi, w1]| ≥ (3δ/2)−2
and |V (C)| ≥ 2|V (P )|+ 6 ≥ 3δ + 2, a contradiction. Thus i ≥ (δ/2) + 1.

Without loss of generality, assume wj /∈ N(c2) for 2 ≤ j ≤ i − 1 and c1c2 ∈ E(G). Then
by Proposition 1.1, dH(c2) ≥ δ − 3. Obviously, c−1 c2 /∈ E(G), i.e., d(c−1 , c2) = 2. Suppose
w ∈ J(c−1 , c2)∩V (G−C). By Lemma 2.1(2), w ∈ V (H) and then c−1 w ∈ E(G), i.e., c−1 ∈ NC(H),
a contradiction. Thus J(c−1 , c2) ⊆ V (C) and by Proposition 1.1, J(c−1 , c2) = {c1}. For any vertex
x1 ∈ NH(c1), obviously, x1c

−
1 /∈ E(G) and then x1c2 ∈ E(G). Similarly, x2 ∈ NH(c1) for any

vertex x2 ∈ NH(c2). Thus NH(c1) = NH(c2). Recall that w1 ∈ NH(c1), wi ∈ NH(c2). Let
T = NH(c1). By Lemma 2.1(2), T is a complete graph and then w1wi ∈ E(G).

Suppose T − V (C ′) 6= ∅. Since T is a complete graph, w1, wi ∈ NC′(T − C ′). By the
maximality of C ′ and the proof of Lemma 2.1 in [4], we obtain that Lemma 2.1 also holds for C ′.
Thus wtw2, wi−1wi+1 ∈ E(G). Let T ′ = T − {w1, wi}. Obviously, T ′ is also a complete graph.
Recall that wi+1c1 /∈ E(G), i.e., wi+1 /∈ V (T ). Let P ′ = w1wtC[w2, wi−1]wi+1wi[T ′ \ {w}]w,
where w ∈ V (T ′). Obviously, wc2 ∈ E(G). Recall that i ≥ (δ/2) + 1. Then |V (P ′)| ≥
i + |{wt, wi+1}| + dH(c2) − 2 ≥ (3δ/2) − 2. Replacing the path P by P ′, we obtain |V (C)| ≥
2|V (P ′)|+ 6 ≥ 3δ + 2, a contradiction.

Suppose T ⊆ V (C ′). Obviously, w1c2 ∈ E(G). Recall that w2c2 /∈ E(G). Then d(w2, c2) =
2. Moreover, recall that wj /∈ N(c2) for 2 ≤ j ≤ i− 1 and wtc2 /∈ E(G). Then z ∈ C ′[wi, wt) ∪
{w1} for any vertex z ∈ J(w2, c2). Without loss of generality, assume wj ∈ J(w2, c2) (i+1 ≤ j ≤
t− 1). Then wj+1c2 ∈ E(G) or wj+1w2 ∈ E(G). Similarly, wj−1c2 ∈ E(G) or wj−1w2 ∈ E(G).
If wj+1w2 ∈ E(G), then there is a (w1, wj)-path P ′ = C ′−[w1, wj+1]C[w2, wj ] of order at least
2δ − 4. Replacing P by P ′, we obtain |V (C)| ≥ 2|V (P ′)| + 6 ≥ 4δ − 2, a contradiction. Thus
wj+1w2 /∈ E(G) and then wj+1c2 ∈ E(G). Similarly, wj−1c2 /∈ E(G) and wj−1w2 ∈ E(G). By
Lemma 2.1(2), wj+1wi ∈ E(G). We obtain wj−1 6= wi+1, otherwise there is a (w1, wj)-path
P ′ = C ′−[w1, wj+1]C ′−[wi, w2]wj−1wj of order at least 2δ − 4, and we can get a contradiction
as above. Let T1 = T − C ′[wi, wj ]. Then we can get a path P ′ = C ′[w1, wj−1]wj [T1 \ {w}]w,
where w ∈ T1. Obviously, A = {wi+1, wj−1} is contained in V (P ′) and A ∩ T = ∅. Thus
|V (P ′)| ≥ i + dH(c2) − |{w1, wi}| + |A| ≥ (3δ/2) − 2, and then replacing P by P ′, we obtain
|V (C)| ≥ 2|V (P ′)|+ 6 ≥ 3δ + 2, a contradiction. It follows that Propositon 1.2 is true. ¤

Proposition 1.3 If H is not hamiltonian, then NH(c1)− {v1, v2} = NH(c2)− {v1, v2} = ∅.

Proof Suppose NH(c1) − {v1, v2} 6= ∅. Recall that |M | = 2 and dC(H) ≥ 3. Then NH(x) =
{v2} for any vertex x ∈ NC(H) − {c1} and dH(z) ≥ δ − 1 for any vertex z ∈ V (H) − {v2}.
Thus dC(c2) ≥ δ − 1 and by Lemma 2.2, |V (P )| ≥ δ. Let y1 and y2 be the neighbors of
c2 closest to c−1 and c+

1 on C(c+
2 , c−1 ) and C(c+

1 , c−2 ), respectively. Then we can obtain a =
|C(y1, c

−
1 )| ≥ |V (P )| and b = |C(c+

1 , y2)| ≥ |V (P )|. Obviously, c−1 c2, c
+
1 c2 /∈ E(G). It follows

that |V (C)| ≥ |C[y2, y1]| + a + b ≥ dC(c2) + |{c−1 , c+
1 , c2}| + 2|V (P )| = 3δ + 2, a contradiction.
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Thus NH(c1)− {v1, v2} = ∅. By symmetry, NH(c2)− {v1, v2} = ∅. ¤
Since |M | = 2 and by Proposition 1.3, we can obtain the following result.

Proposition 1.4 For any vertex w ∈ V (H)− {v1, v2}, NC(w) = ∅.

Proposition 1.5 If H is not hamiltonian, then NH(v1) ∩NH(v2) 6= ∅.

Proof Suppose NH(v1)∩NH(v2) = ∅. By Proposition 3, d(c1, x) = 2 for any vertex x ∈ NH(v1)−
{v2}. By Propositions 1.3 and 1.4, J(x, c1) ⊆ {v1, v2}, If v2 ∈ J(x, c1), then x ∈ NH(v1)∩NH(v2),
a contradiction. Thus J(x, c1) = {v1} and by Proposition 1.3, for any two distinct vertices
x1, x2 ∈ NH(v1) − {v2}, x1x2 ∈ E(G). Thus NH(v1) − {v2} is a complete graph. Similarly,
NH(v2) − {v1} is a complete graph. It follows that |V (P )| ≥ dH(v1) + dH(v2). Since |X| = 2,
|V (C)| ≥ 3dC(v1)+3dC(v2)−3+2|V (P )| > 2(dC(v1)+dH(v1))+2(dC(v2)+dH(v2))−1 ≥ 4δ−1,
a contradiction. ¤

We call T a string of a graph G if for two distant subgraphs Wi, Wj of T , there is a sequence
i, i + 1, . . . , j − 1, j such that E(Wi,Wi+1) 6= ∅, E(Wi+1,Wi+2) 6= ∅, . . . , E(Wj−1,Wj) 6= ∅.

Proposition 1.6 There exists some vertex x ∈ NH(v1) ∪NH(v2) and a (v1, v2)-path P ′ in H

such that N [x] ⊆ V (P ′).

Proof Since |X| = 2 and dC(H) ≥ 3, v1c2 ∈ E(G) and v2c1 ∈ E(G) cannot hold at the
same time. Without loss of generality, suppose v1c2 ∈ E(G). Then c1v2 /∈ E(G) and for any
vertex z ∈ NH(v1) − {v2}, by Propositions 1.3 and 1.4, J(c1, z) = {v1}. For any two vertices
z1, z2 ∈ NH(v1)− {v2}, since J(c1, zi) = {v1} and zic1 /∈ E(G) (i ∈ {1, 2}), z1z2 ∈ E(G). Thus
H1 = G[NH(v1)−{v2}] is a complete graph. By Proposition 1.3, for any vertex z ∈ NH(v2)−{v1},
d(z, c2) = 2, and moreover by Proposition 1.4, J(c2, z) ∈ {v1, v2}. If v1 ∈ J(c2, z), then c1c2 ∈
E(G) or c1z ∈ E(G). By Propositon 1.4, c1z /∈ E(G) and then c1c2 ∈ E(G). By Lemma 2.1(1),
J(c+

2 , v2) = {c2}, then c+
2 c1 ∈ E(G) or v2c1 ∈ E(G). Recall that v2c1 /∈ E(G) and by the

maximality of C, c+
2 c1 /∈ E(G). It follows that v1 /∈ J(c2, z) and then J(c2, z) = {v2} for any

vertex z ∈ NH(v2) − {v1}. Thus similarly to v1, G[NH(v2) − {v1}] is a complete graph. Let
H2 = G[NH(v2)− {v1}]−H1. Then H2 is a complete graph. By Proposition 1.5, if there exists
some vertex x ∈ NH(v1) ∩ NH(v2) such that N(x) ⊆ (H1 ∪ H2), then we can easily obtain a
(v1, v2)-path P ′ containing all the vertices of N [x].

Suppose x ∈ NH(v1)∩NH(v2) and N(x)−(H1∪H2) 6= ∅. Let W = N(x)−(H1∪H2). Then
for any vertex y ∈ W , d(y, v2) = 2. By Propositon 1.4, J(v2, y) ∈ NH(v2). Suppose z ∈ W, x1 ∈
J(v2, z) and x1 ∈ H2. Then W ′ = {z : z ∈ W,x1 ∈ J(z, v2)} is a complete graph. Without loss of
generality, assume |J(v2, y)| = 1 for any vertex y ∈ W . Let T = {a : a ∈ H1∪H2, {a} = J(y′, v2)
for some vertex y′ ∈ W}. Assume T = {a1, a2, . . . , am}, W1 = {y : y ∈ W, {a1} = J(y, v2)},
W2 = {y : y ∈ W, {a2} = J(y, v2)}, . . . , Wm = {y : y ∈ W, {am} = J(y, v2)}. Obviously,
W = W1 ∪W2 ∪ · · · ∪Wm. We divide W1,W2, . . . , Wm into k maximal strings A1,A2, . . . ,Ak.
Without loss of generality, assume A1 = {W1,W2, . . . , Wp}. Now we use induction to prove if p

is odd, then for any vertex wp ∈ Wp, there is a path (w1, wp)-path P1 containing all the vertices
of W1 ∪ · · · ∪ Wp such that w1 ∈ W1, and V (P1) ∩ V (Wi) 6= ∅, i ∈ {2, 3, . . . , m}, and if p is
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even, then there is a (w1, wp)-path P1 containing all the vertices of W1 ∪ · · · ∪ Wp such that
w1 ∈ W1, wp = ap, and V (P1) ∩ V (Wi) 6= ∅, i ∈ {2, 3, . . . , m}. Assume that the induction is
true for any integer l ≤ p, and wp−1wp ∈ E(Wp−1,Wp). If p is odd, then by induction there
is a (w1, wp−1)-path P ′1 containing all the vertices of W1 ∪W2 · · · ∪Wp−1. Then we can get a
(w1, ap)-path w1P

′
1wp−1wp[Wp \ {wp, w}]wap containing all the vertices of W1 ∪W2 · · · ∪Wp. If

p is even, then there is a (w1, ap−1)-path P ′1 containing all the vertices of W1 ∪W2 ∪ · · ·Wp−1.
Then for any vertex w ∈ Wp, there is a (w1, w)-path w1P

′
1ap−1ap[Wp \ {w}]w containing all

the vertices of W1 ∪ W2 · · · ∪ Wp. Let (wq, wt) be a path P2 containing all the vertices of A2.
Obviously, d(wp, wq) = 2. Assume a ∈ J(wp, wq). Then by the maximal division of strings,
a /∈ Wp+1 ∪ · · · ∪ Wm. If a ∈ Wi (i ∈ {1, 2, . . . , p}, then aiwp ∈ E(G) or aiwq ∈ E(G). If
aiwp ∈ E(G), then wp ∈ Wi by the definition of Wi, a contradiction. Similarly, aiwq /∈ E(G).
It follows that a /∈ W and then there is a path w1P1wpawqP2wt containing all the vertices of
A1 ∪ A2. Then we can easily get a path P ′′ containing all the vertices of W . It follows that we
can get a (v1, v2)-path P ′ containing all the vertices of N [x].

Similarly, if v1c2, v2c1 /∈ E(G), then Proposition 1.6 also holds. ¤
Now we complete the proof of Case 1. Since |X| = 2 and dC(H) ≥ 3, v1c2 ∈ E(G) and v2c1 ∈

E(G) cannot hold at the same time. Without loss of generality, assume v1c2 /∈ E(G). Then by
Proposition 1.3, dC(c2) ≥ δ−1. Let y1 and y2 be the neighbors of c2 closest to c+

1 and c−1 on S1 and
C(c+

2 , c−1 ), respectively. Then by Propositon 1.6, there is some vertex x ∈ NH(v1)∪NH(v2) and a
(v1, v2)-path P ′ such that N [x] ⊆ V (P ′). Then |C(c+

1 , y1)| ≥ d(x)+1 and |C(y2, c
−
1 )| ≥ d(x)+1.

It follows that |V (C)| ≥ |C(c+
1 , y1)|+|C(y2, c

−
1 )|+|C[y1, y2]|+|{c−1 , c+

1 , c2}| ≥ dC(c2)+2d(x)+5 ≥
3δ + 4, a contradiction. It follows that =Case 1 of Theorem 1.2 cannot hold. ¤

Case 2 H is hamiltonian but not hamilton-connected.

Recall that M is a maximum matching in E(V (H), V (C)) and X = {i : |NH(ci, ci+1)| ≥ 2}.
If |X| = 2, then obviously, |M | = 2, and using a similar proof to Case 1, we obtain a contradiction.
Thus |X| ≥ 3. It follows that dC(H) ≥ 3. By Lemmas 2.5(2) and 2.7(1), kH = 2. By the definition
of kH , there is a vertex set S in V (H) such that |NG−S(S)| = 2. Thus |S| ≥ δ− 1. If S = V (H),
then by dC(H) ≥ 3, we obtain kH ≥ 3, a contradiction. Let NG−S(S) = {u1, u2}. Suppose
{u1, u2} ⊆ V (C). Then NH−S(C) 6= ∅ since dC(H) ≥ 3. Obviously, E(H − S, S) 6= ∅ and then
kH ≥ 3, a contradiction. Suppose u1 ∈ V (C), u2 /∈ V (C). Then u2 ∈ V (H − S). It follows that
u2 is a cut vertex of H, a contradiction with the connectedness of H. From above, we obtain
{u1, u2} ∩ V (C) = ∅. Let C ′ be a hamiltonian cycle of H. Without loss of generality, assume
that i ∈ X, vi ∈ NH(ci), vj ∈ NH(ci+1)(i 6= j), and Pij is a longest (vi, vj)-path in H. Obviously,
vi, vj ∈ V (H − S). Since H is hamiltonian, S and H − S are two segments of a hamiltonian
cycle C ′ of H. Since |NG−S(S)| = 2 and NG−S(S) ⊆ H − S, S ⊆ C ′(vi, vj) or S ⊆ C ′(vj , vi).
Without loss of generality, assume S ⊆ C ′(vi, vj). Then |V (Pij)| ≥ |C ′(vi, vj)| ≥ |S| ≥ δ − 1.

Since |X| ≥ 3, suppose i1, i2 ∈ X − {i} (i1 6= i2), vi1 ∈ NH(ci1), vi2 ∈ NH(ci2). Then similarly
to the above i and j, there is a (vi1 , vj1)-path Pi1j1 and a (vi2 , vj2)-path Pi2j2 in H such that
vj1 ∈ NH(ci1+1), vj2 ∈ NH(ci2+1), |V (Pi1j1)| ≥ δ − 1, |V (Pi2j2)| ≥ δ − 1. Since |X| ≥ 3, we
obtain |V (C)| ≥ |V (Pij)|+ |V (Pi1j1)|+ |V (Pi2j2)|+ |{ci, c

−
i , c+

i , ci1 , c
−
i1

, c+
i1

, ci2 , c
−
i2

, c+
i2
}| ≥ 3δ +6,
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a contradiction. It follows that Case 2 of Theorem 1.2 cannot hold. ¤

Case 3 H is hamilton-connected.

Obviously, H is 3-connected. Suppose dC(H) ≥ 3. If kH ≥ 3, then taking s = 3 in Lemma
2.6, we obtain |V (C)| ≥ 3δ +3, a contradiction. If kH = 2, then there is a vertex set S in H such
that |NG−S(S)| = 2 and by the proof of Case 2, NG−S(S) ⊆ H−S. It follows that |NH−S(S)| = 2,

a contradiction with the connectedness of H. Thus dC(H) = 2, i.e., NC(H) = {c1, c2}, and then
for any vertex x ∈ V (H), d(x) ≥ δ−2. It follows that |V (H)| ≥ δ−1. Let |V (H)| = h. Recall that
v1 ∈ NH(c1), v2 ∈ NH(c2), S1 = C(c+

1 , c−2 ), S2 = C(c+
2 , c−1 ), and P is a hamiltonian (v1, v2)-path

of H. Obviously, |V (P )| = h. By a similar argument to the proof of Proposition 1.1 of Case 1,
we obtain the following result.

Proposition 3.1 The following properties hold,

(a) NC(c1)− {c−1 , c+
1 , c2} = NC(c2)− {c−2 , c+

2 , c1} = ∅.
(b) N(c+

1 )− {c−1 , c1} ⊆ S1.

(c) N(c−2 )− {c+
2 , c2} ⊆ S1.

(d) N(c−1 )− {c+
1 , c1} ⊆ S2.

(e) N(c+
2 )− {c−2 , c2} ⊆ S2.

Proposition 3.2 If H is hamilton-connected, then G[N(c+
i )−{c−i , ci}] and G[N(c−i )−{c+

i , ci}]
are complete graphs, i ∈ {1, 2}.

Proof By Proposition 3.1(a) and (b), d(ci, x) = 2 and J(ci, x) = c+
i for any vertex x ∈

N(c+
i )−{ci, c

−
i }. By Proposition 3.1(a), y1, y2 /∈ N(ci), and then y1y2 ∈ E(G) since J(ci, x) = c+

i

for any two distinct vertices y1, y2 ∈ N(c+
i ) − {c−i , ci}. Thus G[N(c+

i ) − {c−i , ci}] is a complete
graph. Similarly, G[N(c−i )− {c+

i , ci}] is a complete graph. ¤

Proposition 3.3 If H is hamilton-connected, then |Si| ≤ 2δ − 4, i ∈ {1, 2}.

Proof Otherwise, without loss of generality, suppose |S1| ≥ 2δ − 3. Obviously, |S2| ≥ |V (P )|.
Thus |V (C)| ≥ 2δ − 3 + δ − 1 + 6 ≥ 3δ + 2, a contradiction. ¤

Let u and v be the neighbors of c+
1 and c−2 closest to c−2 and c+

1 on S1, respectively. Moreover
let w and f be the neighbors of c+

2 and c−1 closest to c−1 and c+
2 on S2, respectively.

Proposition 3.4 For any vertex x ∈ C(c+
1 , u) and any vertex y ∈ S2, xy /∈ E(G).

Proof Otherwise, suppose xy ∈ E(G) and y ∈ C(f, c−1 ). Let x1 and x2 be the neighbors of
c+
1 closest to x on C(c+

1 , x) and C(x, u), respectively. Moreover, let y1 and y2 be the neigh-
bors of c−1 closest to y on C(f, y) and C(y, c−1 ), respectively. By Proposition 3.2, x1u ∈
E(G). Then a = |C(y1, y)| + |C(x1, x)| + |C(u, c−2 )| ≥ h, otherwise there is a longer cycle
C ′ = c1P [v1, v2]c2c

−
2 C[c+

2 , y1] C−[c−1 , y]C[x, u]C−[x1, c1] than C, a contradiction. Similarly,
b = |C(y, y2)|+|C(c+

2 , f)|+|C(x, x2)| ≥ h. Thus |V (C)| ≥ d(c−1 )+d(c+
1 )−|{c1}|+a+b+|{c2}| ≥

4δ − 2, a contradiction. It follows that y /∈ C(f, c−1 ). By Proposition 3.1(e), y 6= c+
2 . Suppose

y ∈ C(c+
2 , f). Then f 6= c+

2 and by the maximality of C, d = |C(c+
2 , y)| + |C(x, x2)| ≥ h.
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Suppose xc+
1 ∈ E(G). Then by Proposition 3.1(b), d(c+

1 , y) = 2 and J(c+
1 , y) ⊆ C(c+

1 , u).
Let x′ ∈ J(c+

1 , y). Then x′+c+
1 ∈ E(G) or x′+y ∈ E(G). If x′+c+

1 ∈ E(G), then by the
maximality of C, |C(c+

2 , y)| ≥ h. It follows that |S2| ≥ |C(c+
2 , y)| + |C[f, c−1 )| ≥ 2δ − 3, a

contradiction with Proposition 3.3. Thus x′+y ∈ E(G). Then let x′2 be the neighbor closet
to C(x′, u). By the maximality of C, d′ = |C(c+

2 , y)| + |C(x′, x′2)| ≥ h + 1. Thus |V (C)| ≥
d(c−1 ) + d(c+

1 ) − |{c1}| + d′ + |{c−2 , c2, y}| ≥ 3δ + 2, a contradiction. It follows that x /∈ N(c+
1 ).

Thus |V (C)| ≥ d(c−1 ) + d(c+
1 ) − |{c1}| + d + |{c−2 , c2, x, y}| ≥ 3δ + 2, a contradiction. Thus

y /∈ C(c+
2 , f). Suppose y = f. Then by Proposition 3.1(d), d(c−1 , x) = 2 and J(c−1 , x) ⊆ S2.

Let z ∈ J(c−1 , x). From above, z /∈ C(f, c−1 ) ∪ C(c+
2 , f) since zx ∈ E(G). Thus z = f and then

f+x ∈ E(G) or f+c− ∈ E(G). From above, f+x /∈ E(G), and by the choice of f, f+c−1 /∈ E(G).
Thus Proposition 3.4 is true. ¤

Using a similar proof to Proposition 3.4, we can get the following result.

Proposition 3.5 If H is hamilton-connected, then E(A,S2) = E(B,S1) = ∅, where A =
C(v, c−2 ), B = C(f, c−1 ) ∪ C(c+

2 , w).

Proposition 3.6 If H is hamilton-connected, then wu, wv, uf, vf /∈ E(G).

Proof Suppose wu ∈ E(G). Then by Proposition 3.1(b) and the choice of u, d(c+
1 , w) = 2 and

J(c+
1 , w) ⊆ C(c+

1 , u]. Let x ∈ J(c+
1 , w). If x ∈ C(c+

1 , u), then we obtain a contradiction with
Proposition 3.4. Thus J(c+

1 , w) = {u} and then u+c+
1 ∈ E(G) or u+w ∈ E(G). By the choice

of u, u+c+
1 /∈ E(G) and then u+w ∈ E(G), d(c+

2 , u+) = 2. Similarly, J(c+
2 , u+) = {w} and

w+u+ ∈ E(G). We obtain a = |C(w+, c−1 )| + |C(u+, c−2 )| ≥ h, otherwise there is a longer cycle
C ′ = c1P [v1, v2]c2c

−
2 C[c+

2 , w+]C[u+, c1] than C, a contradiction. Thus |V (C)| ≥ a+ |C[c−2 , w]|+
|C[c−1 , u]|+ |{w+, u+}| ≥ a + d(c+

2 ) + d(c+
1 ) + |{c+

2 , c+
1 , u+, w+}| ≥ 3δ + 3, a contradiction. Thus

wu /∈ E(G). Similarly, wv, uf, vf /∈ E(G). ¤

Proposition 3.7 If H is hamilton-connected, then E(S1, S2) = ∅.

Proof By Proposition 3.3, v = u+, u = v or u ∈ C(v, c−2 ). Similarly, f = w+, f = w or
w ∈ C(f, c−1 ). Suppose xy ∈ E(G), x ∈ S1, y ∈ S2. Then x ∈ C(f, c−1 ) ∪ C(c+

2 , w) ∪ {w, f}, and
by Propositions 3.4-3.6, we obtain a contradiction. ¤

Proposition 3.8 For any vertex x ∈ S1 and y ∈ S2, there is no (x, y)-path in G[H ′ ∪ {x, y}],
where H ′ is a component of G− C.

Proof Suppose that there is an (x, y)-path P with internal vertices in H ′. Since NC(H) =
{c1, c2}, H ∩ H ′ = ∅. Similar to H, H ′ is hamilton-connected and h′ = |V (H ′)| ≥ δ − 1. Let
P ′ be a hamiltonian (v′1, v

′
2)-path in H ′ such that v′1 ∈ NH′(x), v′2 ∈ NH′(y). By Lemma 2.1(1),

x−x+, y−y+ ∈ E(G). Let S′1 = C(x+, y−) and S′2 = C(y+, x−). By the previous proof of Case
3, we obtain that Propositions 3.1–3.7 also hold for S′1, S

′
2, x and y. Obviously, c2 ∈ S′1, c1 ∈ S′2.

Suppose u = x+. Then by Proposition 3.1(b), c+
1 = x−. We obtain a = |C(c+

2 , y−)| ≥ h + h′,
otherwise there exists a cycle C ′ = xP ′[v′1, v

′
2]yy−C[y+, c−1 ]c+

1 c1P [v1, v2]c2c
+
2 C−[c−2 , x] longer

than C, a contradiction. Then |S′1| > a ≥ 2δ − 2, a contradiction with Proposition 3.3. Thus
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u 6= x+. Suppose u = x−. Then by Proposition 3.3, v ∈ C(c+
1 , u), v = u = x− or v = u+ = x.

If v ∈ C(c+
1 , u), then v ∈ S1, c+

2 ∈ S′1, E(S′1, S
′
2) 6= ∅, a contradiction with Proposition 3.7.

Similarly, by Proposition 3.1(c) and Proposition 3.1(a), respectively, we obtain a contradiction
if v = u = x− or v = u+ = x. Thus u 6= x−. Similarly, if u ∈ C(c+

1 , x−) ∪ C(x+, c−2 ) ∪ {x}, we
obtain a contradiction. Thus Proposition 3.8 holds. ¤

Proposition 3.9 If H is hamilton-connected, then N(x) ∩ V (G− C) = N(y) ∩ V (G− C) = ∅
for any vertex x ∈ S1 and any vertex y ∈ S2.

Proof Suppose z1 ∈ N(x) ∩ V (G− C). Then obviously, z1 /∈ V (H). Let H ′ be a component of
G − C −H containing z1. Similar to H, H ′ is hamilton-connected, dC(H ′) = 2 and |V (H ′)| =
h′ ≥ δ − 1. Let NC(H ′) = {c′1, c′2}, z2 ∈ NH(c′2), x = c′1 and P ′ be a hamiltonian (z1, z2)-path
in H ′. By Lemma 2.1(1), c′−1 c′+1 , c′−2 c′+2 ∈ E(G). By Proposition 3.8, c′2 ∈ S1. Without loss of
generality, assume c′1 ∈ C(c+

1 , c′−2 ). By the maximality of C, |C(c′+1 , c′−2 )| ≥ h′. By Proposition
3.3, c′1 ∈ C(c+

1 , u) and c′2 ∈ C(v, c−2 ). Without loss of generality, assume c′2 ∈ C(c′1, u]. Let y1

and y2 be the neighbors of c+
1 closest to c′1 and c′2 on C(c+

1 , c′1) and C(c′1, c
′
2), respectively. Then

by Proposition 3.2, y1y2 ∈ E(G). Let A = C(y1, c
′−
1 ) ∪ C(y2, c

′−
2 ). Then |A| ≥ h′, otherwise

there is a longer cycle C ′ = c′1P
′[z1, z2]c′2c

′−
2 C[c′+2 , y1]C−[y2, c

′+
1 ]c′−1 c′1 than C, a contradiction.

Obviously, N(c+
1 )−{c1, c

−
1 } is contained in S1−A. Thus |S1| ≥ |A|+d(c+

1 )−|{c1, c
−
1 }| ≥ 2δ−3,

a contradiction with Proposition 3.3. It follows that N(x)∩V (G−C) = ∅ for any vertex x ∈ S1.

Similarly, N(y) ∩ V (G− C) = ∅ for any vertex y ∈ S2. ¤
By Propositions 3.8 and 3.9, we obtain that G − C has only one component H which is

hamilton-connected. Let G1 = G[H ∪ {c1, c2}], G2 = G[C[c+
1 , c−2 ]] and G3 = G[C[c+

2 , c−1 ]]. Then
by Propositions 3.7–3.9, we obtain G1 ∪ G2 ∪ G3 ∈ F . It follows that Case 3 of Theorem 1.2
cannot hold. By Cases 1–3, Theorem 1.2 is true. ¤
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