Journal of Mathematical Research with Applications Jan., 2014, Vol. 34, No. 1, pp. 33–42 DOI:10.3770/j.issn:2095-2651.2014.01.003 Http://jmre.dlut.edu.cn

Longest Cycles in 2-Connected Quasi-Claw-Free Graphs

Xiaodong CHEN^{1,*}, Mingchu LI², Xin MA³

1. College of Science, Liaoning University of Technology, Liaoning 121001, P. R. China;

2. School of Softsware, Dalian University of Technology, Liaoning 116024, P. R. China;

3. Basic Science Department, Shenyang Urban Construction University,

Liaoning 110167, P. R. China

Abstract A graph G is called quasi-claw-free if it satisfies the property: $d(x, y) = 2 \Rightarrow$ there exists a vertex $u \in N(x) \cap N(y)$ such that $N[u] \subseteq N[x] \cup N[y]$. In this paper, we show that every 2-connected quasi-claw-free graph of order n with $G \notin \mathcal{F}$ contains a cycle of length at least min $\{3\delta + 2, n\}$, where \mathcal{F} is a family of graphs.

Keywords quasi-claw-free graph; claw-free graph.

MR(2010) Subject Classification 68R10

1. Introduction

Graphs considered in this paper are simple and finite. We use [2] for notation and terminology not defined here. We denote by $\delta(G)$ (or δ) the minimum degree of a graph G. For a subgraph H of a graph G and a subset S of V(G), we denote by G - H and G[S] the induced subgraphs of G by V(G) - V(H) and S, respectively. Let N(u) denote the set of the neighbors of u and $N[u] = N(u) \cup \{u\}$. Let $N_H(S) = \bigcup_{x \in S} N_H(x)$ and $d_H(S) = |N_H(S)|$. For A and B in V(G), let $E(A, B) = \{uv \in E(G) : u \in A \text{ and } v \in B\}$. For a cycle C with a fixed orientation, and two vertices x and y on C, we define the segment C[x, y] = xCy to be the set of vertices on C from x to y (including x and y) and $C^-[y, x] = yC^-x$ to be a traversal of C[x, y] in the opposite sense according to the orientation of C. Let x^+ and x^- denote the successor and the predecessor of x according to the orientation of C, respectively, and x^{++} and x^{--} denote the successor and the predecessor of x^+ and x^- , respectively. We define $C(x, y) = C[x, y] - \{x, y\}$.

In this paper, \mathcal{F} denotes the family of graphs as follows: if $G \in \mathcal{F}$, then G can be decomposed into three subgraphs G_1, G_2 , and G_3 such that $V(G_i) \cap V(G_j) = \emptyset$ and $E(V(G_i), V(G_j)) = \{u_i u_j, v_i v_j\}$, where $1 \leq i \neq j \leq 3, u_i, v_i \in V(G_i), u_j, v_j \in V(G_j)$ and $u_i \neq v_i, u_j \neq v_j$.

A graph is called claw-free if it does not contain a copy of $K_{1,3}$ as an induced subgraph. Define $J(x,y) = \{u \in N(x) \cap N(y) : N[u] \subseteq N[x] \cup N[y]\}$. A graph G is quasi-claw-free if it satisfies the property: $d(x,y) = 2 \Rightarrow J(x,y) \neq \emptyset$. Clearly, a claw-free graph is quasi-claw-free, but not every quasi-claw-free graph is claw-free.

Received June 4, 2012; Accepted July 7, 2013

* Corresponding author

Supported by the National Natural Science Foundation of China (Grant No. 60673046).

E-mail address: xiaodongchen74@126.com (Xiaodong CHEN)

Ainouche [1], Li [9, 10], Zhan [14] and Qu and Wang [13] gave some properties of Hamiltonicity and vertex pancyclicity of quasi-claw-free graphs, but there are few results on the circumference of quasi-claw-free graphs.

Theorem 1.1 ([9]) Let G be a 2-connected quasi-claw-free graph of order n. If $\delta \ge n/4$, then G is hamiltonian or $G \in \mathcal{F}$.

In this paper, we mainly consider the circumferences of 2-connected quasi-claw-free graphs not in \mathcal{F} .

Theorem 1.2 Every 2-connected quasi-claw-free graph of order n with $G \notin \mathcal{F}$ contains a cycle of length at least min $\{3\delta + 2, n\}$.

2. Some lemmas

By the proof of Lemma 2.1 in Zhan [14], we can get the following lemma.

Lemma 2.1 Let G be a connected quasi-claw-free graph and C a longest cycle of G. Suppose that H is a component of G - C and $c_i \in N_C(H)$, $1 \le i \le d_C(H)$. Then the following facts hold,

- (1) $J(y_i, c_i^+) = J(y_i, c_i^-) = \{c_i\}$ and $c_i^- c_i^+ \in E(G)$, where $y_i \in N_H(c_i)$.
- (2) $N_H(c_i)$ is a complete subgraphs of G, and $c_i^- x, c_i^+ x \in E(G), x \in N_C(c_i) N_C(H)$.

For a pair of vertices x and y in a connected graph G, let $L_G(x, y)$ be the length of a longest (x, y)-path P in G. If G is connected with $|V(G)| \ge 2$, then we set $L(G) = \min\{L_G(x, y) : x, y \in V(G), x \ne y\}$.

Lemma 2.2 ([4]) Let G be a 2-connected graph. Then there exist two distinct vertices $v_1, v_2 \in V(G)$ such that $L(G) \ge d(v_i)$, for $i \in \{1, 2\}$.

Lemma 2.3 ([11]) Let G be a 2-connected graph on at least 2δ vertices. Then G has a cycle of length at least 2δ containing x and y for any two vertices x and y in G.

Lemma 2.4 ([3]) Let G be a 2-connected graph. If every longest path P in G has the property that the sum of the degrees of the two end-vertices of P is at least |V(P)|+1, then G is hamilton-connected.

Given a subgraph H of a connected graph G such that d(v) < |V(G)| - 1 for some vertex v in V(H), let $k_H = \min\{|N_{G-S}(S)| : \emptyset \subseteq S \subseteq V(H) \text{ and } N_{G-S}(S) \cup S \neq V(G)\}$. Clearly, $k_H \ge k_G$.

A pair of distinct vertices x, y in $N_{G-H}(H)$ is a useful pair if $|N_H(x, y)| \ge 2$. *H* is strongly linked in *G* if for each useful pair *x* and *y*, there exists a hamiltonian path P = P[x', y'] in *H* such that $x \in N(x')$ and $y \in N(y')$, otherwise *H* is weakly linked in *G*.

Lemma 2.5 ([5]) Let G be a 2-connected graph, C a longest cycle of G and H a component of G - C. Suppose that H is not hamilton-connected and $k_H \ge 3$.

(1) If H is 2-connected nonhamiltonian, then there exist nonadjacent vertices v and w in H such that $|V(C)| \ge 2d(v) + 2d(w)$;

Longest cycles in 2-connected quasi-claw-free graphs

(2) If H is hamiltonian and weakly linked in G, then there exist nonadjacent vertices v and w in H such that $|V(C)| \ge 2d(v) + 2d(w) + \min\{(1/2)|V(H)|, 6\}$.

By Lemma 2.1 and the proof of Li [7], we can obtain Lemmas 2.6 and 2.7.

Lemma 2.6 Let C be a longest cycle in an m-connected $(m \ge 2)$ quasi-claw-free graph G, and H be a component of G - C such that $|V(H)| \ge 3$. If H is hamilton-connected, then there exists some vertex v in H such that $|V(C)| \ge s(d(v) - s + 4) + (k_H - s)(|V(H)| - s + 3) \ge$ s(d(v) - s + 4) + (m - s)(|V(H)| - s + 3), where $0 \le s \le |V(H)| + 3$.

Lemma 2.7 Let C be a longest cycle of a 2-connected quasi-claw-free graph G and H be a component of G - C.

(1) If H is strongly linked in G but not hamilton-connected, then there exist non-adjacent vertices v and w in H such that $|V(C)| \ge 2(d(v) + d(w)) - 2$ and $|V(G)| \ge 3(d(v) + d(w)) - 6$;

(2) If H is not 2-connected, then there exist nonadjacent vertices v and w such that $|V(C)| \ge 2(d(v) + d(w)) + 4.$

3. Proof of Theorem 1.2

Proof of Theorem 1.2 Let G be a 2-connected non-hamiltonian quasi-claw-free graph of order n satisfying the conditions of Theorem 1.3 and C a longest cycle of G with a chosen orientation. Assume that H is a component of G - C and $N_C(H) = \{c_1, c_2, \ldots, c_m\}$, where c_i is labeled in the order of the direction of C and i modulo m. Then by Lemma 2.1(1), $c_i^-c_i^+ \in E(G)$ $(i \in \{1, \ldots, m\})$. Suppose that Theorem 1.3 is not true. Then $|V(C)| \leq 3\delta + 1$. Let $X = \{i : |N_H(c_i, c_{i+1})| \geq 2\}$ and $S_i = C(c_i^+, c_{i+1}^-)$. If |V(H)|=1, then by the maximality of C and $c_i^-c_i^+ \in E(G)$ $(i \in \{1, \ldots, m\})$, $|V(C)| \geq 4\delta$, a contradiction. Since G is 2-connected and $|V(H)| \geq 2$, $|X| \geq 2$. By Lemma 2.7(2), any component of G - C is 2-connected, otherwise $|V(C)| \geq 4\delta + 4$, a contradiction. Without loss of generality, assume $M = \{v_i c_i \in E(G) : v_i \in V(H), c_i \in N_C(H)\}$ is a maximum matching in E(V(H), V(C)). Then $|M| \geq 2$. Since H is 2-connected and $|V(H)| \geq 3$. Obviously, there is a (v_1, v_2) -path of order at least 3 in H and then by the maximality of C, $|V(C)| \geq 12$. It follows that $3\delta + 1 \geq |V(C)| \geq 12$, which implies $\delta \geq 4$. Next we consider three cases to complete the proof of Theorem 1.2.

Case 1 H is not hamiltonian.

By Lemma 2.5(1), $k_H = 2$. Again by the proof of Lemma 2.5(1) (in [5], Corollary 6.2), |X| = |M| = 2. Since $M = \{v_1c_1, v_2c_2\}, N_C(H) = \{v_1, v_2\}$. Let P be a longest (v_1, v_2) -path in H. We can get the following claims.

Proposition 1.1 If $d_C(H) = 2$, then $N_C(c_1) - \{c_2, c_1^-, c_1^+\} = N_C(c_2) - \{c_1, c_2^-, c_2^+\} = \emptyset$.

Proof Suppose $d_C(H) = 2$. Then for any vertex $x \in V(H)$, $d_H(x) \ge \delta - 2$. By Lemma 2.2, $|V(P)| \ge \delta - 1$. Without loss of generality, assume $y \in N(c_1) \cap S_1$. Suppose $N(y^-) \cap V(H') \ne \emptyset$, where H' is a component of G - C - H. By Lemma 2.1(2), $yc_1^-, yc_1^+ \in E(G)$. We obtain

 $|C(y, c_2^-)| \ge |V(P)|$, otherwise there exists a longer cycle $C' = c_1 P[v_1, v_2] c_2 c_2^- C[c_2^+, c_1^-] C^-[y, c_1]$ than C, a contradiction. If $y^-c_2^+ \in E(G)$, then there is a longer cycle $C' = c_1 P[v_1, v_2] C^-[c_2, y]$ $C[c_1^+, y^-]C[c_2^+, c_1]$ than C, a contradiction. Thus $y^-c_2^+ \notin E(G)$, similarly $y^-c_2^- \notin E(G)$. If $y^-c_2 \in E(G)$, then by Lemma 2.1(2), $y^-c_2^+, y^-c_2^- \in E(G)$, a contradiction. Let y_1 and y_2 be the neighbors of y^- closest to c_2^- and c_2^+ on S_1 and S_2 , respectively. Then $a = |C(y_1, c_2^-)| \ge |V(P)|$, otherwise there is a longer cycle $C' = c_1 P[v_1, v_2] c_2 c_2^- C[c_2^+, c_1^-] C[y, y_1] C^-[y^-, c_1]$ than C, a contradiction. Similarly, $b = |C(c_2^+, y_2)| \ge |V(P)|$. Obviously, $d_C(H') \ge 2$ and H' is 2-connected, then there exist three vertices u_1, y', u_2 such that $y' \in V(C), u_1 \in N_{H'}(y^-), u_2 \in N_{H'}(y')$. Let P' be the longest (u_1, u_2) -path in H' with an orientation from u_1 to u_2 . By Lemma 2.1(2), $G[N_{H'}(y^-)]$ and $G[N_{H'}(y')]$ are two complete graphs and $N_{G-C-H'}(y^-) = N_{G-C-H'}(y') = \emptyset$. Thus $|V(P')| \ge d_{H'}(y^-)$ and $y' \notin N_C(H)$. By Lemma 2.1(1), $y^{--}y, y'^{--}y'^{++} \in E(G)$. If $y' = c_1^-$, then we can obtain a longer cycle $C' = y'P'^{-}[u_2, u_1]C^{-}[y^{-}, c_1]C[y, y']$ than C, a contradiction. Similarly, $y' \notin \{c_1^+, c_2^-, c_2^+\}$. Now we consider the location of y'.

(a) Suppose $y' \in C(y_1, c_2^-)$. Then we obtain $d = |C(y'^+, c_2^-)| \ge |V(P)| + |V(P')|$, otherwise there is a longer cycle $C' = c_1 P[v_1, v_2] c_2 c_2^- C[c_2^+, c_1^-] C[y, y'^-] y'^+ y' P'^-[u_2, u_1] C^-[y^-, c_1]$ than C. Recall that $b = |C(c_2^+, y_2)| \ge |V(P)|, |V(P')| \ge d_{H'}(y^-), |V(P)| \ge \delta - 1$ and $y^-c_2, y^-c_2^+, y^-c_2^- \notin C_2^+$ E(G). It follows that $|V(C)| \ge |C[y_2, y_1]| + b + d + |\{c_2, c_2^-, c_2^+, y^-\}| \ge 2|V(P)| + d_{H'}(y^-) + d_{H'}(y^-) + d_{H'}(y^-)|$ $d_C(y^-) + 4 \ge 3\delta + 2$, a contradiction. Thus $y' \notin C(y_1, c_2^-)$, a contradiction. Similarly, we have (b) as follows.

(b) $y' \notin C(c_2^+, y_2)$.

(c) Suppose $y' \in C[y, y_1]$. Then without loss of generality, assume $N_C(H') \cap C(y, y') = \emptyset$. By the maximality of C, obviously $y'^-, y'^+ \notin N(y^-)$. Let y_3 be the neighbor of y^- closest to y'on C(y, y'). Then $N_C(y^-)$ is contained in $A = C[y_2, y_3] \cup C[y', y_1]$. We obtain $e = |C(y_3, y'^-)| \ge C[y', y_1]$. |V(P')|, otherwise there is a longer cycle $C' = y^{-}P'[u_1, u_2]y'y'^{-}C[y'^+, y^{--}]C[y, y_3]y^{-}$ than C, a contradiction. Recall that $a = |C(y_1, c_2^-)| \ge |V(P)|, \ b = |C(c_2^+, y_2)| \ge |V(P)|, \ |V(P)| \ge \delta - 1$ and $y^{-}c_{2}, y^{-}c_{2}^{+}, y^{-}c_{2}^{-} \notin E(G)$. Thus $|V(C)| \ge e + |A| + a + b + |\{y^{-}, c_{2}^{-}, c_{2}, c_{2}^{+}\}| \ge d_{H'}(y^{-}) + b_{H'}(y^{-}) + b_{H'}(y^{$ $d_C(y^-) + 2|V(P)| + 4 \ge 3\delta + 2$, a contradiction. Thus $y' \notin C[y, y_1]$. Similarly, we can obtain (d). (d) $y' \notin C[y_2, y^-].$

From (a)-(d), we obtain $N(y^-) \cap V(H') = \emptyset$. It follows that $N(y^-) \cap V(G - C) = \emptyset$. If $c_2y^- \in E(G)$, then there is a longer cycle $C' = c_1P[v_1, v_2]c_2C^-[y^-, c_1^+] C^-[c_1^-, c_2^+]C^-[c_2^-, y]c_1$ than C, a contradiction. Similarly, $c_2^-, c_2^+ \notin N(y^-)$. Thus $N[y^-]$ is contained in $C[y_2, y_1]$. Recall that $a = |C(y_1, c_2)| \ge |V(P)|, b = |C(c_2^+, y_2)| \ge |V(P)|$ and $|V(P)| \ge \delta - 1$. It follows that $|V(C)| \ge |C[y_2, y_1]| + a + b + |\{y^-, c_2^-, c_2^+, c_2\}| \ge d(y^-) + 2|V(P)| + 4 \ge 3\delta + 2$, a contradiction. Thus Proposition 1.1 is true. \Box

Suppose that W_1 is a complete graph, $W = W_1 \cup \{z_1, z_2\}$ and z_i is adjacent to all the vertices of W_1 $(i \in \{1, 2\})$. Let $z_1[W_1]z_2$ denote a hamiltonian (z_1, z_2) -path of W.

Proposition 1.2 If H is not hamiltonian, then $d_C(H) \ge 3$.

Proof Suppose $d_C(H) = 2$. Then $d_H(x) \ge \delta - 2$ for any vertex $x \in V(H)$. By Lemma 2.4, $|V(H)| \geq 2(\delta - 2)$. By Lemma 2.3, there is a cycle in H of length at least $2(\delta - 2)$ containing v_1 and v_2 . Without loss of generality, assume that C' is a longest cycle in H containing v_1

and v_2 with a chosen orientation. Then $|V(C')| \ge 2(\delta - 2)$. Let $C' = w_1 w_2 \dots w_t w_1$ and w_i $(i \in \{1, 2, \dots, t\})$ be labeled in the order of the direction of C'. Then $t \ge 2\delta - 4$. Moreover let $w_1 = v_1, w_i = v_2$ $(2 \le i \le t)$. If $w_t c_2 \in E(G)$, then $|V(P)| \ge |C[w_1, w_t]| \ge 2\delta - 4$. It follows that $|V(C)| \ge 2|V(P)| + 6 \ge 4\delta - 2$, a contradiction. Thus $w_t c_2 \notin E(G)$. Similarly, $w_2 c_2, w_{i-1}c_1, w_{i+1}c_1 \notin E(G)$. If $i \le \delta/2$, then $t-i \ge (3\delta/2)-4$, $|V(P)| \ge |C[w_i, w_1]| \ge (3\delta/2)-2$ and $|V(C)| \ge 2|V(P)| + 6 \ge 3\delta + 2$, a contradiction. Thus $i \ge (\delta/2) + 1$.

Without loss of generality, assume $w_j \notin N(c_2)$ for $2 \leq j \leq i-1$ and $c_1c_2 \in E(G)$. Then by Proposition 1.1, $d_H(c_2) \geq \delta - 3$. Obviously, $c_1^-c_2 \notin E(G)$, i.e., $d(c_1^-, c_2) = 2$. Suppose $w \in J(c_1^-, c_2) \cap V(G-C)$. By Lemma 2.1(2), $w \in V(H)$ and then $c_1^-w \in E(G)$, i.e., $c_1^- \in N_C(H)$, a contradiction. Thus $J(c_1^-, c_2) \subseteq V(C)$ and by Proposition 1.1, $J(c_1^-, c_2) = \{c_1\}$. For any vertex $x_1 \in N_H(c_1)$, obviously, $x_1c_1^- \notin E(G)$ and then $x_1c_2 \in E(G)$. Similarly, $x_2 \in N_H(c_1)$ for any vertex $x_2 \in N_H(c_2)$. Thus $N_H(c_1) = N_H(c_2)$. Recall that $w_1 \in N_H(c_1)$, $w_i \in N_H(c_2)$. Let $T = N_H(c_1)$. By Lemma 2.1(2), T is a complete graph and then $w_1w_i \in E(G)$.

Suppose $T - V(C') \neq \emptyset$. Since T is a complete graph, $w_1, w_i \in N_{C'}(T - C')$. By the maximality of C' and the proof of Lemma 2.1 in [4], we obtain that Lemma 2.1 also holds for C'. Thus $w_t w_2, w_{i-1}w_{i+1} \in E(G)$. Let $T' = T - \{w_1, w_i\}$. Obviously, T' is also a complete graph. Recall that $w_{i+1}c_1 \notin E(G)$, i.e., $w_{i+1} \notin V(T)$. Let $P' = w_1w_tC[w_2, w_{i-1}]w_{i+1}w_i[T' \setminus \{w\}]w$, where $w \in V(T')$. Obviously, $wc_2 \in E(G)$. Recall that $i \geq (\delta/2) + 1$. Then $|V(P')| \geq i + |\{w_t, w_{i+1}\}| + d_H(c_2) - 2 \geq (3\delta/2) - 2$. Replacing the path P by P', we obtain $|V(C)| \geq 2|V(P')| + 6 \geq 3\delta + 2$, a contradiction.

Suppose $T \subseteq V(C')$. Obviously, $w_1c_2 \in E(G)$. Recall that $w_2c_2 \notin E(G)$. Then $d(w_2, c_2) = 2$. Moreover, recall that $w_j \notin N(c_2)$ for $2 \leq j \leq i-1$ and $w_tc_2 \notin E(G)$. Then $z \in C'[w_i, w_t) \cup \{w_1\}$ for any vertex $z \in J(w_2, c_2)$. Without loss of generality, assume $w_j \in J(w_2, c_2)$ $(i+1 \leq j \leq t-1)$. Then $w_{j+1}c_2 \in E(G)$ or $w_{j+1}w_2 \in E(G)$. Similarly, $w_{j-1}c_2 \in E(G)$ or $w_{j-1}w_2 \in E(G)$. If $w_{j+1}w_2 \in E(G)$, then there is a (w_1, w_j) -path $P' = C'^-[w_1, w_{j+1}]C[w_2, w_j]$ of order at least $2\delta - 4$. Replacing P by P', we obtain $|V(C)| \geq 2|V(P')| + 6 \geq 4\delta - 2$, a contradiction. Thus $w_{j+1}w_2 \notin E(G)$ and then $w_{j+1}c_2 \in E(G)$. Similarly, $w_{j-1}c_2 \notin E(G)$ and $w_{j-1}w_2 \in E(G)$. By Lemma 2.1(2), $w_{j+1}w_i \in E(G)$. We obtain $w_{j-1} \neq w_{i+1}$, otherwise there is a (w_1, w_j) -path $P' = C'^-[w_1, w_{j+1}]C'^-[w_i, w_2]w_{j-1}w_j$ of order at least $2\delta - 4$, and we can get a contradiction as above. Let $T_1 = T - C'[w_i, w_j]$. Then we can get a path $P' = C'[w_1, w_{j-1}]w_j[T_1 \setminus \{w\}]w$, where $w \in T_1$. Obviously, $A = \{w_{i+1}, w_{j-1}\}$ is contained in V(P') and $A \cap T = \emptyset$. Thus $|V(P')| \geq i + d_H(c_2) - |\{w_1, w_i\}| + |A| \geq (3\delta/2) - 2$, and then replacing P by P', we obtain $|V(C)| \geq 2|V(P')| + 6 \geq 3\delta + 2$, a contradiction. It follows that Propositon 1.2 is true. \Box

Proposition 1.3 If *H* is not hamiltonian, then $N_H(c_1) - \{v_1, v_2\} = N_H(c_2) - \{v_1, v_2\} = \emptyset$.

Proof Suppose $N_H(c_1) - \{v_1, v_2\} \neq \emptyset$. Recall that |M| = 2 and $d_C(H) \geq 3$. Then $N_H(x) = \{v_2\}$ for any vertex $x \in N_C(H) - \{c_1\}$ and $d_H(z) \geq \delta - 1$ for any vertex $z \in V(H) - \{v_2\}$. Thus $d_C(c_2) \geq \delta - 1$ and by Lemma 2.2, $|V(P)| \geq \delta$. Let y_1 and y_2 be the neighbors of c_2 closest to c_1^- and c_1^+ on $C(c_2^+, c_1^-)$ and $C(c_1^+, c_2^-)$, respectively. Then we can obtain $a = |C(y_1, c_1^-)| \geq |V(P)|$ and $b = |C(c_1^+, y_2)| \geq |V(P)|$. Obviously, $c_1^-c_2, c_1^+c_2 \notin E(G)$. It follows that $|V(C)| \geq |C[y_2, y_1]| + a + b \geq d_C(c_2) + |\{c_1^-, c_1^+, c_2\}| + 2|V(P)| = 3\delta + 2$, a contradiction. Thus $N_H(c_1) - \{v_1, v_2\} = \emptyset$. By symmetry, $N_H(c_2) - \{v_1, v_2\} = \emptyset$. \Box

Since |M| = 2 and by Proposition 1.3, we can obtain the following result.

Proposition 1.4 For any vertex $w \in V(H) - \{v_1, v_2\}, N_C(w) = \emptyset$.

Proposition 1.5 If H is not hamiltonian, then $N_H(v_1) \cap N_H(v_2) \neq \emptyset$.

Proof Suppose $N_H(v_1) \cap N_H(v_2) = \emptyset$. By Proposition 3, $d(c_1, x) = 2$ for any vertex $x \in N_H(v_1) - \{v_2\}$. By Propositions 1.3 and 1.4, $J(x, c_1) \subseteq \{v_1, v_2\}$, If $v_2 \in J(x, c_1)$, then $x \in N_H(v_1) \cap N_H(v_2)$, a contradiction. Thus $J(x, c_1) = \{v_1\}$ and by Proposition 1.3, for any two distinct vertices $x_1, x_2 \in N_H(v_1) - \{v_2\}, x_1x_2 \in E(G)$. Thus $N_H(v_1) - \{v_2\}$ is a complete graph. Similarly, $N_H(v_2) - \{v_1\}$ is a complete graph. It follows that $|V(P)| \ge d_H(v_1) + d_H(v_2)$. Since |X| = 2, $|V(C)| \ge 3d_C(v_1) + 3d_C(v_2) - 3 + 2|V(P)| > 2(d_C(v_1) + d_H(v_1)) + 2(d_C(v_2) + d_H(v_2)) - 1 \ge 4\delta - 1$, a contradiction. \Box

We call \mathcal{T} a string of a graph G if for two distant subgraphs W_i , W_j of \mathcal{T} , there is a sequence $i, i + 1, \ldots, j - 1, j$ such that $E(W_i, W_{i+1}) \neq \emptyset$, $E(W_{i+1}, W_{i+2}) \neq \emptyset, \ldots, E(W_{j-1}, W_j) \neq \emptyset$.

Proposition 1.6 There exists some vertex $x \in N_H(v_1) \cup N_H(v_2)$ and a (v_1, v_2) -path P' in H such that $N[x] \subseteq V(P')$.

Proof Since |X| = 2 and $d_C(H) \ge 3$, $v_1c_2 \in E(G)$ and $v_2c_1 \in E(G)$ cannot hold at the same time. Without loss of generality, suppose $v_1c_2 \in E(G)$. Then $c_1v_2 \notin E(G)$ and for any vertex $z \in N_H(v_1) - \{v_2\}$, by Propositions 1.3 and 1.4, $J(c_1, z) = \{v_1\}$. For any two vertices $z_1, z_2 \in N_H(v_1) - \{v_2\}$, since $J(c_1, z_i) = \{v_1\}$ and $z_ic_1 \notin E(G)$ $(i \in \{1, 2\})$, $z_1z_2 \in E(G)$. Thus $H_1 = G[N_H(v_1) - \{v_2\}]$ is a complete graph. By Proposition 1.3, for any vertex $z \in N_H(v_2) - \{v_1\}$, $d(z, c_2) = 2$, and moreover by Proposition 1.4, $J(c_2, z) \in \{v_1, v_2\}$. If $v_1 \in J(c_2, z)$, then $c_1c_2 \in E(G)$ or $c_1z \in E(G)$. By Propositon 1.4, $c_1z \notin E(G)$ and then $c_1c_2 \in E(G)$. By Lemma 2.1(1), $J(c_2^+, v_2) = \{c_2\}$, then $c_2^+c_1 \in E(G)$ or $v_2c_1 \in E(G)$. Recall that $v_2c_1 \notin E(G)$ and by the maximality of $C, c_2^+c_1 \notin E(G)$. It follows that $v_1 \notin J(c_2, z)$ and then $J(c_2, z) = \{v_2\}$ for any vertex $z \in N_H(v_2) - \{v_1\}$. Thus similarly to $v_1, G[N_H(v_2) - \{v_1\}]$ is a complete graph. Let $H_2 = G[N_H(v_2) - \{v_1\}] - H_1$. Then H_2 is a complete graph. By Proposition 1.5, if there exists some vertex $x \in N_H(v_1) \cap N_H(v_2)$ such that $N(x) \subseteq (H_1 \cup H_2)$, then we can easily obtain a (v_1, v_2) -path P' containing all the vertices of N[x].

Suppose $x \in N_H(v_1) \cap N_H(v_2)$ and $N(x) - (H_1 \cup H_2) \neq \emptyset$. Let $W = N(x) - (H_1 \cup H_2)$. Then for any vertex $y \in W$, $d(y, v_2) = 2$. By Propositon 1.4, $J(v_2, y) \in N_H(v_2)$. Suppose $z \in W$, $x_1 \in J(v_2, z)$ and $x_1 \in H_2$. Then $W' = \{z : z \in W, x_1 \in J(z, v_2)\}$ is a complete graph. Without loss of generality, assume $|J(v_2, y)| = 1$ for any vertex $y \in W$. Let $T = \{a : a \in H_1 \cup H_2, \{a\} = J(y', v_2)\}$ for some vertex $y' \in W\}$. Assume $T = \{a_1, a_2, \ldots, a_m\}$, $W_1 = \{y : y \in W, \{a_1\} = J(y, v_2)\}$, $W_2 = \{y : y \in W, \{a_2\} = J(y, v_2)\}, \ldots, W_m = \{y : y \in W, \{a_m\} = J(y, v_2)\}$. Obviously, $W = W_1 \cup W_2 \cup \cdots \cup W_m$. We divide W_1, W_2, \ldots, W_m into k maximal strings $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_k$. Without loss of generality, assume $\mathcal{A}_1 = \{W_1, W_2, \ldots, W_p\}$. Now we use induction to prove if pis odd, then for any vertex $w_p \in W_p$, there is a path (w_1, w_p) -path P_1 containing all the vertices of $W_1 \cup \cdots \cup W_p$ such that $w_1 \in W_1$, and $V(P_1) \cap V(W_i) \neq \emptyset$, $i \in \{2, 3, \ldots, m\}$, and if p is

38

even, then there is a (w_1, w_p) -path P_1 containing all the vertices of $W_1 \cup \cdots \cup W_p$ such that $w_1 \in W_1, w_p = a_p$, and $V(P_1) \cap V(W_i) \neq \emptyset$, $i \in \{2, 3, \ldots, m\}$. Assume that the induction is true for any integer $l \leq p$, and $w_{p-1}w_p \in E(W_{p-1}, W_p)$. If p is odd, then by induction there is a (w_1, w_{p-1}) -path P'_1 containing all the vertices of $W_1 \cup W_2 \cdots \cup W_{p-1}$. Then we can get a (w_1, a_p) -path $w_1P'_1w_{p-1}w_p[W_p \setminus \{w_p, w\}]wa_p$ containing all the vertices of $W_1 \cup W_2 \cdots \cup W_p$. If p is even, then there is a (w_1, a_{p-1}) -path P'_1 containing all the vertices of $W_1 \cup W_2 \cup \cdots \cup W_p$. If p is even, then there is a (w_1, a_{p-1}) -path P'_1 containing all the vertices of $W_1 \cup W_2 \cup \cdots \cup W_p$. If p is even, then there is a (w_1, a_{p-1}) -path P'_1 containing all the vertices of $W_1 \cup W_2 \cup \cdots \cup W_p$. Then for any vertex $w \in W_p$, there is a (w_1, w) -path $w_1P'_1a_{p-1}a_p[W_p \setminus \{w\}]w$ containing all the vertices of $W_1 \cup W_2 \cdots \cup W_p$. Let (w_q, w_t) be a path P_2 containing all the vertices of \mathcal{A}_2 . Obviously, $d(w_p, w_q) = 2$. Assume $a \in J(w_p, w_q)$. Then by the maximal division of strings, $a \notin W_{p+1} \cup \cdots \cup W_m$. If $a \in W_i$ ($i \in \{1, 2, \ldots, p\}$, then $a_i w_p \in E(G)$ or $a_i w_q \in E(G)$. If $a_i w_p \in E(G)$, then $w_p \in W_i$ by the definition of W_i , a contradiction. Similarly, $a_i w_q \notin E(G)$. It follows that $a \notin W$ and then there is a path $w_1 P_1 w_p a w_q P_2 w_t$ containing all the vertices of $\mathcal{A}_1 \cup \mathcal{A}_2$. Then we can easily get a path P'' containing all the vertices of W. It follows that we can get a (v_1, v_2) -path P' containing all the vertices of N[x].

Similarly, if $v_1c_2, v_2c_1 \notin E(G)$, then Proposition 1.6 also holds. \Box

Now we complete the proof of Case 1. Since |X| = 2 and $d_C(H) \ge 3$, $v_1c_2 \in E(G)$ and $v_2c_1 \in E(G)$ cannot hold at the same time. Without loss of generality, assume $v_1c_2 \notin E(G)$. Then by Proposition 1.3, $d_C(c_2) \ge \delta - 1$. Let y_1 and y_2 be the neighbors of c_2 closest to c_1^+ and c_1^- on S_1 and $C(c_2^+, c_1^-)$, respectively. Then by Propositon 1.6, there is some vertex $x \in N_H(v_1) \cup N_H(v_2)$ and a (v_1, v_2) -path P' such that $N[x] \subseteq V(P')$. Then $|C(c_1^+, y_1)| \ge d(x) + 1$ and $|C(y_2, c_1^-)| \ge d(x) + 1$. It follows that $|V(C)| \ge |C(c_1^+, y_1)| + |C(y_2, c_1^-)| + |C[y_1, y_2]| + |\{c_1^-, c_1^+, c_2\}| \ge d_C(c_2) + 2d(x) + 5 \ge 3\delta + 4$, a contradiction. It follows that =Case 1 of Theorem 1.2 cannot hold. \Box

Case 2 H is hamiltonian but not hamilton-connected.

Recall that M is a maximum matching in E(V(H), V(C)) and $X = \{i : |N_H(c_i, c_{i+1})| \ge 2\}$. If |X| = 2, then obviously, |M| = 2, and using a similar proof to Case 1, we obtain a contradiction. Thus $|X| \ge 3$. It follows that $d_C(H) \ge 3$. By Lemmas 2.5(2) and 2.7(1), $k_H = 2$. By the definition of k_H , there is a vertex set S in V(H) such that $|N_{G-S}(S)| = 2$. Thus $|S| \ge \delta - 1$. If S = V(H), then by $d_C(H) \geq 3$, we obtain $k_H \geq 3$, a contradiction. Let $N_{G-S}(S) = \{u_1, u_2\}$. Suppose $\{u_1, u_2\} \subseteq V(C)$. Then $N_{H-S}(C) \neq \emptyset$ since $d_C(H) \geq 3$. Obviously, $E(H-S, S) \neq \emptyset$ and then $k_H \geq 3$, a contradiction. Suppose $u_1 \in V(C), u_2 \notin V(C)$. Then $u_2 \in V(H-S)$. It follows that u_2 is a cut vertex of H, a contradiction with the connectedness of H. From above, we obtain $\{u_1, u_2\} \cap V(C) = \emptyset$. Let C' be a hamiltonian cycle of H. Without loss of generality, assume that $i \in X, v_i \in N_H(c_i), v_j \in N_H(c_{i+1}) (i \neq j)$, and P_{ij} is a longest (v_i, v_j) -path in H. Obviously, $v_i, v_i \in V(H-S)$. Since H is hamiltonian, S and H-S are two segments of a hamiltonian cycle C' of H. Since $|N_{G-S}(S)| = 2$ and $N_{G-S}(S) \subseteq H - S$, $S \subseteq C'(v_i, v_j)$ or $S \subseteq C'(v_j, v_i)$. Without loss of generality, assume $S \subseteq C'(v_i, v_j)$. Then $|V(P_{ij})| \geq |C'(v_i, v_j)| \geq |S| \geq \delta - 1$. Since $|X| \ge 3$, suppose $i_1, i_2 \in X - \{i\}$ $(i_1 \ne i_2), v_{i_1} \in N_H(c_{i_1}), v_{i_2} \in N_H(c_{i_2})$. Then similarly to the above i and j, there is a (v_{i_1}, v_{j_1}) -path $P_{i_1j_1}$ and a (v_{i_2}, v_{j_2}) -path $P_{i_2j_2}$ in H such that $v_{j_1} \in N_H(c_{i_1+1}), v_{j_2} \in N_H(c_{i_2+1}), |V(P_{i_1j_1})| \ge \delta - 1, |V(P_{i_2j_2})| \ge \delta - 1.$ Since $|X| \ge 3$, we obtain $|V(C)| \ge |V(P_{ij})| + |V(P_{i_1j_1})| + |V(P_{i_2j_2})| + |\{c_i, c_i^-, c_i^+, c_{i_1}, c_{i_1}^-, c_{i_2}^+, c_{i_2}^-, c_{i_2}^+\}| \ge 3\delta + 6$

a contradiction. It follows that Case 2 of Theorem 1.2 cannot hold. \Box

Case 3 *H* is hamilton-connected.

Obviously, H is 3-connected. Suppose $d_C(H) \ge 3$. If $k_H \ge 3$, then taking s = 3 in Lemma 2.6, we obtain $|V(C)| \ge 3\delta + 3$, a contradiction. If $k_H = 2$, then there is a vertex set S in H such that $|N_{G-S}(S)| = 2$ and by the proof of Case 2, $N_{G-S}(S) \subseteq H-S$. It follows that $|N_{H-S}(S)| = 2$, a contradiction with the connectedness of H. Thus $d_C(H) = 2$, i.e., $N_C(H) = \{c_1, c_2\}$, and then for any vertex $x \in V(H)$, $d(x) \ge \delta - 2$. It follows that $|V(H)| \ge \delta - 1$. Let |V(H)| = h. Recall that $v_1 \in N_H(c_1), v_2 \in N_H(c_2), S_1 = C(c_1^+, c_2^-), S_2 = C(c_2^+, c_1^-)$, and P is a hamiltonian (v_1, v_2) -path of H. Obviously, |V(P)| = h. By a similar argument to the proof of Proposition 1.1 of Case 1, we obtain the following result.

Proposition 3.1 The following properties hold,

- (a) $N_C(c_1) \{c_1^-, c_1^+, c_2\} = N_C(c_2) \{c_2^-, c_2^+, c_1\} = \emptyset.$
- (b) $N(c_1^+) \{c_1^-, c_1\} \subseteq S_1.$
- (c) $N(c_2^-) \{c_2^+, c_2\} \subseteq S_1.$
- (d) $N(c_1^-) \{c_1^+, c_1\} \subseteq S_2$.
- (e) $N(c_2^+) \{c_2^-, c_2\} \subseteq S_2.$

Proposition 3.2 If H is hamilton-connected, then $G[N(c_i^+) - \{c_i^-, c_i\}]$ and $G[N(c_i^-) - \{c_i^+, c_i\}]$ are complete graphs, $i \in \{1, 2\}$.

Proof By Proposition 3.1(a) and (b), $d(c_i, x) = 2$ and $J(c_i, x) = c_i^+$ for any vertex $x \in N(c_i^+) - \{c_i, c_i^-\}$. By Proposition 3.1(a), $y_1, y_2 \notin N(c_i)$, and then $y_1y_2 \in E(G)$ since $J(c_i, x) = c_i^+$ for any two distinct vertices $y_1, y_2 \in N(c_i^+) - \{c_i^-, c_i\}$. Thus $G[N(c_i^+) - \{c_i^-, c_i\}]$ is a complete graph. Similarly, $G[N(c_i^-) - \{c_i^+, c_i\}]$ is a complete graph. \Box

Proposition 3.3 If H is hamilton-connected, then $|S_i| \leq 2\delta - 4$, $i \in \{1, 2\}$.

Proof Otherwise, without loss of generality, suppose $|S_1| \ge 2\delta - 3$. Obviously, $|S_2| \ge |V(P)|$. Thus $|V(C)| \ge 2\delta - 3 + \delta - 1 + 6 \ge 3\delta + 2$, a contradiction. \Box

Let u and v be the neighbors of c_1^+ and c_2^- closest to c_2^- and c_1^+ on S_1 , respectively. Moreover let w and f be the neighbors of c_2^+ and c_1^- closest to c_1^- and c_2^+ on S_2 , respectively.

Proposition 3.4 For any vertex $x \in C(c_1^+, u)$ and any vertex $y \in S_2$, $xy \notin E(G)$.

Proof Otherwise, suppose $xy \in E(G)$ and $y \in C(f, c_1^-)$. Let x_1 and x_2 be the neighbors of c_1^+ closest to x on $C(c_1^+, x)$ and C(x, u), respectively. Moreover, let y_1 and y_2 be the neighbors of c_1^- closest to y on C(f, y) and $C(y, c_1^-)$, respectively. By Proposition 3.2, $x_1u \in E(G)$. Then $a = |C(y_1, y)| + |C(x_1, x)| + |C(u, c_2^-)| \ge h$, otherwise there is a longer cycle $C' = c_1 P[v_1, v_2] c_2 c_2^- C[c_2^+, y_1] \ C^-[c_1^-, y] C[x, u] C^-[x_1, c_1]$ than C, a contradiction. Similarly, $b = |C(y, y_2)| + |C(c_2^+, f)| + |C(x, x_2)| \ge h$. Thus $|V(C)| \ge d(c_1^-) + d(c_1^+) - |\{c_1\}| + a + b + |\{c_2\}| \ge 4\delta - 2$, a contradiction. It follows that $y \notin C(f, c_1^-)$. By Proposition 3.1(e), $y \neq c_2^+$. Suppose $y \in C(c_2^+, f)$. Then $f \neq c_2^+$ and by the maximality of C, $d = |C(c_2^+, y)| + |C(x, x_2)| \ge h$.

Suppose $xc_1^+ \in E(G)$. Then by Proposition 3.1(b), $d(c_1^+, y) = 2$ and $J(c_1^+, y) \subseteq C(c_1^+, u)$. Let $x' \in J(c_1^+, y)$. Then $x'^+c_1^+ \in E(G)$ or $x'^+y \in E(G)$. If $x'^+c_1^+ \in E(G)$, then by the maximality of C, $|C(c_2^+, y)| \ge h$. It follows that $|S_2| \ge |C(c_2^+, y)| + |C[f, c_1^-)| \ge 2\delta - 3$, a contradiction with Proposition 3.3. Thus $x'^+y \in E(G)$. Then let x'_2 be the neighbor closet to C(x', u). By the maximality of C, $d' = |C(c_2^+, y)| + |C(x', x'_2)| \ge h + 1$. Thus $|V(C)| \ge d(c_1^-) + d(c_1^+) - |\{c_1\}| + d' + |\{c_2^-, c_2, y\}| \ge 3\delta + 2$, a contradiction. It follows that $x \notin N(c_1^+)$. Thus $|V(C)| \ge d(c_1^-) + d(c_1^+) - |\{c_1\}| + d + |\{c_2^-, c_2, x, y\}| \ge 3\delta + 2$, a contradiction. Thus $y \notin C(c_2^+, f)$. Suppose y = f. Then by Proposition 3.1(d), $d(c_1^-, x) = 2$ and $J(c_1^-, x) \subseteq S_2$. Let $z \in J(c_1^-, x)$. From above, $z \notin C(f, c_1^-) \cup C(c_2^+, f)$ since $zx \in E(G)$. Thus z = f and then $f^+x \in E(G)$ or $f^+c^- \in E(G)$. From above, $f^+x \notin E(G)$, and by the choice of f, $f^+c_1^- \notin E(G)$. Thus Proposition 3.4 is true. \Box

Using a similar proof to Proposition 3.4, we can get the following result.

Proposition 3.5 If H is hamilton-connected, then $E(A, S_2) = E(B, S_1) = \emptyset$, where $A = C(v, c_2^-), B = C(f, c_1^-) \cup C(c_2^+, w).$

Proposition 3.6 If *H* is hamilton-connected, then $wu, wv, uf, vf \notin E(G)$.

Proof Suppose $wu \in E(G)$. Then by Proposition 3.1(b) and the choice of $u, d(c_1^+, w) = 2$ and $J(c_1^+, w) \subseteq C(c_1^+, u]$. Let $x \in J(c_1^+, w)$. If $x \in C(c_1^+, u)$, then we obtain a contradiction with Proposition 3.4. Thus $J(c_1^+, w) = \{u\}$ and then $u^+c_1^+ \in E(G)$ or $u^+w \in E(G)$. By the choice of $u, u^+c_1^+ \notin E(G)$ and then $u^+w \in E(G), d(c_2^+, u^+) = 2$. Similarly, $J(c_2^+, u^+) = \{w\}$ and $w^+u^+ \in E(G)$. We obtain $a = |C(w^+, c_1^-)| + |C(u^+, c_2^-)| \ge h$, otherwise there is a longer cycle $C' = c_1 P[v_1, v_2] c_2 c_2^- C[c_2^+, w^+] C[u^+, c_1]$ than C, a contradiction. Thus $|V(C)| \ge a + |C[c_2^-, w]| + |C[c_1^-, u]| + |\{w^+, u^+\}| \ge a + d(c_2^+) + d(c_1^+) + |\{c_2^+, c_1^+, u^+, w^+\}| \ge 3\delta + 3$, a contradiction. Thus $wu \notin E(G)$. Similarly, $wv, uf, vf \notin E(G)$. \Box

Proposition 3.7 If *H* is hamilton-connected, then $E(S_1, S_2) = \emptyset$.

Proof By Proposition 3.3, $v = u^+$, u = v or $u \in C(v, c_2^-)$. Similarly, $f = w^+$, f = w or $w \in C(f, c_1^-)$. Suppose $xy \in E(G), x \in S_1, y \in S_2$. Then $x \in C(f, c_1^-) \cup C(c_2^+, w) \cup \{w, f\}$, and by Propositions 3.4-3.6, we obtain a contradiction. \Box

Proposition 3.8 For any vertex $x \in S_1$ and $y \in S_2$, there is no (x, y)-path in $G[H' \cup \{x, y\}]$, where H' is a component of G - C.

Proof Suppose that there is an (x, y)-path P with internal vertices in H'. Since $N_C(H) = \{c_1, c_2\}, H \cap H' = \emptyset$. Similar to H, H' is hamilton-connected and $h' = |V(H')| \ge \delta - 1$. Let P' be a hamiltonian (v'_1, v'_2) -path in H' such that $v'_1 \in N_{H'}(x), v'_2 \in N_{H'}(y)$. By Lemma 2.1(1), $x^-x^+, y^-y^+ \in E(G)$. Let $S'_1 = C(x^+, y^-)$ and $S'_2 = C(y^+, x^-)$. By the previous proof of Case 3, we obtain that Propositions 3.1–3.7 also hold for S'_1, S'_2, x and y. Obviously, $c_2 \in S'_1, c_1 \in S'_2$. Suppose $u = x^+$. Then by Proposition 3.1(b), $c_1^+ = x^-$. We obtain $a = |C(c_2^+, y^-)| \ge h + h'$, otherwise there exists a cycle $C' = xP'[v'_1, v'_2]yy^-C[y^+, c_1^-]c_1^+c_1P[v_1, v_2]c_2c_2^+C^-[c_2^-, x]$ longer than C, a contradiction. Then $|S'_1| > a \ge 2\delta - 2$, a contradiction with Proposition 3.3.

 $u \neq x^+$. Suppose $u = x^-$. Then by Proposition 3.3, $v \in C(c_1^+, u)$, $v = u = x^-$ or $v = u^+ = x$. If $v \in C(c_1^+, u)$, then $v \in S_1$, $c_2^+ \in S_1'$, $E(S_1', S_2') \neq \emptyset$, a contradiction with Proposition 3.7. Similarly, by Proposition 3.1(c) and Proposition 3.1(a), respectively, we obtain a contradiction if $v = u = x^-$ or $v = u^+ = x$. Thus $u \neq x^-$. Similarly, if $u \in C(c_1^+, x^-) \cup C(x^+, c_2^-) \cup \{x\}$, we obtain a contradiction. Thus Proposition 3.8 holds. \Box

Proposition 3.9 If *H* is hamilton-connected, then $N(x) \cap V(G - C) = N(y) \cap V(G - C) = \emptyset$ for any vertex $x \in S_1$ and any vertex $y \in S_2$.

Proof Suppose $z_1 \in N(x) \cap V(G-C)$. Then obviously, $z_1 \notin V(H)$. Let H' be a component of G-C-H containing z_1 . Similar to H, H' is hamilton-connected, $d_C(H') = 2$ and $|V(H')| = h' \geq \delta - 1$. Let $N_C(H') = \{c'_1, c'_2\}, z_2 \in N_H(c'_2), x = c'_1$ and P' be a hamiltonian (z_1, z_2) -path in H'. By Lemma 2.1(1), $c'_1 - c'_1 + c'_2 - c'_2 + \in E(G)$. By Proposition 3.8, $c'_2 \in S_1$. Without loss of generality, assume $c'_1 \in C(c_1^+, c'_2^-)$. By the maximality of C, $|C(c'_1 + c'_2)| \geq h'$. By Proposition 3.3, $c'_1 \in C(c_1^+, u)$ and $c'_2 \in C(v, c_2^-)$. Without loss of generality, assume $c'_2 \in C(c'_1, u]$. Let y_1 and y_2 be the neighbors of c_1^+ closest to c'_1 and c'_2 on $C(c_1^+, c'_1)$ and $C(c'_1, c'_2)$, respectively. Then by Proposition 3.2, $y_1y_2 \in E(G)$. Let $A = C(y_1, c'_1) \cup C(y_2, c'_2)$. Then $|A| \geq h'$, otherwise there is a longer cycle $C' = c'_1 P'[z_1, z_2]c'_2c'_2 - C[c'_2^+, y_1]C^-[y_2, c'_1^+]c'_1 - c'_1$ than C, a contradiction. Obviously, $N(c_1^+) - \{c_1, c_1^-\}$ is contained in $S_1 - A$. Thus $|S_1| \geq |A| + d(c_1^+) - |\{c_1, c_1^-\}| \geq 2\delta - 3$, a contradiction with Proposition 3.3. It follows that $N(x) \cap V(G-C) = \emptyset$ for any vertex $x \in S_1$. Similarly, $N(y) \cap V(G-C) = \emptyset$ for any vertex $y \in S_2$.

By Propositions 3.8 and 3.9, we obtain that G - C has only one component H which is hamilton-connected. Let $G_1 = G[H \cup \{c_1, c_2\}], G_2 = G[C[c_1^+, c_2^-]]$ and $G_3 = G[C[c_2^+, c_1^-]]$. Then by Propositions 3.7–3.9, we obtain $G_1 \cup G_2 \cup G_3 \in \mathcal{F}$. It follows that Case 3 of Theorem 1.2 cannot hold. By Cases 1–3, Theorem 1.2 is true. \Box

References

- [1] A. AINOUCHE. Quasi-claw-free graphs. Discrete Math., 1998, 179(1-3): 13-26.
- [2] J. A. BONDY, U. S. R. MURTY. Graph Theory With Applications. American Elsevier Publishing Co., Inc., New York, 1976.
- [3] B. JACKSON, Hao LI, Yongjin ZHU. Dominating cycles in regular 3-connected graphs. Discrete Math., 1992, 102(2): 163–176.
- [4] H. A. JUNG. Longest paths joining given vertices in a graph. Abh. Math. Sem. Univ. Hamburg, 1986, 56: 127–137.
- [5] H. A. JUNG. Longest circuits in 3-connected graphs. Colloquia Mathmathica, 1981, 403–438.
- [6] Mingchu LI. Hamiltonian cycles in 3-connected claw-free graphs. J. Graph Theory, 1993, 17(3): 303–313.
- [8] Mingchu LI. A note on the circumferences of 3-connected claw-free graphs. J. Nanjing Univ. Special Issue, 1991, 27: 98–105.
- [9] Mingchu LI. Hamiltonicity in 2-connected claw-free graphs. J. Xinjiang Univ. Natur. Sci., 1996, 13(3): 22–32.
- [10] Rao LI. Hamiltonicity of 3-connected quasi-claw-free graphs. Discrete Math., 2003, 265(1-3): 393-399.
- [11] S. G. LOCKE. Ph.D Thesis, University of Waterloo, 1981.
- [12] M. M. MATTHEWS, D. P. SUMNER. Longest paths and cycles in K_{1,3}-free graphs. J. Graph Theory, 1985, 9(2): 269–277.
- [13] E. X. Y. QU, Jianglu WANG. Vertex pancyclicity in quasi-claw-free graphs. Discrete Math., 2009, 309(5): 1135–1141.
- [14] Mingquan ZHAN. Vertex pancyclicity in quasi claw-free graphs. Discrete Math., 2007, 307(13): 1679–1683.