Longest Cycles in 2-Connected Quasi-Claw-Free Graphs

Xiaodong CHEN ${ }^{1, *}$, Mingchu $\mathbf{L I}^{2}$, Xin MA ${ }^{3}$
1. College of Science, Liaoning University of Technology, Liaoning 121001, P. R. China;
2. School of Softsware, Dalian University of Technology, Liaoning 116024, P. R. China;
3. Basic Science Department, Shenyang Urban Construction University, Liaoning 110167, P. R. China

Abstract

A graph G is called quasi-claw-free if it satisfies the property: $d(x, y)=2 \Rightarrow$ there exists a vertex $u \in N(x) \cap N(y)$ such that $N[u] \subseteq N[x] \cup N[y]$. In this paper, we show that every 2 -connected quasi-claw-free graph of order n with $G \notin \mathcal{F}$ contains a cycle of length at least $\min \{3 \delta+2, n\}$, where \mathcal{F} is a family of graphs.

Keywords quasi-claw-free graph; claw-free graph.
MR(2010) Subject Classification 68R10

1. Introduction

Graphs considered in this paper are simple and finite. We use [2] for notation and terminology not defined here. We denote by $\delta(G)$ (or δ) the minimum degree of a graph G. For a subgraph H of a graph G and a subset S of $V(G)$, we denote by $G-H$ and $G[S]$ the induced subgraphs of G by $V(G)-V(H)$ and S, respectively. Let $N(u)$ denote the set of the neighbors of u and $N[u]=N(u) \cup\{u\}$. Let $N_{H}(S)=\bigcup_{x \in S} N_{H}(x)$ and $d_{H}(S)=\left|N_{H}(S)\right|$. For A and B in $V(G)$, let $E(A, B)=\{u v \in E(G): u \in A$ and $v \in B\}$. For a cycle C with a fixed orientation, and two vertices x and y on C, we define the segment $C[x, y]=x C y$ to be the set of vertices on C from x to y (including x and y) and $C^{-}[y, x]=y C^{-} x$ to be a traversal of $C[x, y]$ in the opposite sense according to the orientation of C. Let x^{+}and x^{-}denote the successor and the predecessor of x according to the orientation of C, respectively, and x^{++}and x^{--}denote the successor and the predecessor of x^{+}and x^{-}, respectively. We define $C(x, y)=C[x, y]-\{x, y\}$.

In this paper, \mathcal{F} denotes the family of graphs as follows: if $G \in \mathcal{F}$, then G can be decomposed into three subgraphs G_{1}, G_{2}, and G_{3} such that $V\left(G_{i}\right) \cap V\left(G_{j}\right)=\emptyset$ and $E\left(V\left(G_{i}\right), V\left(G_{j}\right)\right)=$ $\left\{u_{i} u_{j}, v_{i} v_{j}\right\}$, where $1 \leq i \neq j \leq 3, u_{i}, v_{i} \in V\left(G_{i}\right), u_{j}, v_{j} \in V\left(G_{j}\right)$ and $u_{i} \neq v_{i}, u_{j} \neq v_{j}$.

A graph is called claw-free if it does not contain a copy of $K_{1,3}$ as an induced subgraph. Define $J(x, y)=\{u \in N(x) \cap N(y): N[u] \subseteq N[x] \cup N[y]\}$. A graph G is quasi-claw-free if it satisfies the property: $d(x, y)=2 \Rightarrow J(x, y) \neq \emptyset$. Clearly, a claw-free graph is quasi-claw-free, but not every quasi-claw-free graph is claw-free.

[^0]Ainouche [1], Li [9, 10], Zhan [14] and Qu and Wang [13] gave some properties of Hamiltonicity and vertex pancyclicity of quasi-claw-free graphs, but there are few results on the circumference of quasi-claw-free graphs.

Theorem 1.1 ([9]) Let G be a 2-connected quasi-claw-free graph of order n. If $\delta \geq n / 4$, then G is hamiltonian or $G \in \mathcal{F}$.

In this paper, we mainly consider the circumferences of 2-connected quasi-claw-free graphs not in \mathcal{F}.

Theorem 1.2 Every 2-connected quasi-claw-free graph of order n with $G \notin \mathcal{F}$ contains a cycle of length at least $\min \{3 \delta+2, n\}$.

2. Some lemmas

By the proof of Lemma 2.1 in Zhan [14], we can get the following lemma.
Lemma 2.1 Let G be a connected quasi-claw-free graph and C a longest cycle of G. Suppose that H is a component of $G-C$ and $c_{i} \in N_{C}(H), 1 \leq i \leq d_{C}(H)$. Then the following facts hold,
(1) $J\left(y_{i}, c_{i}^{+}\right)=J\left(y_{i}, c_{i}^{-}\right)=\left\{c_{i}\right\}$ and $c_{i}^{-} c_{i}^{+} \in E(G)$, where $y_{i} \in N_{H}\left(c_{i}\right)$.
(2) $N_{H}\left(c_{i}\right)$ is a complete subgraphs of G, and $c_{i}^{-} x, c_{i}^{+} x \in E(G), x \in N_{C}\left(c_{i}\right)-N_{C}(H)$.

For a pair of vertices x and y in a connected graph G, let $L_{G}(x, y)$ be the length of a longest (x, y)-path P in G. If G is connected with $|V(G)| \geq 2$, then we set $L(G)=\min \left\{L_{G}(x, y): x, y \in\right.$ $V(G), x \neq y\}$.

Lemma 2.2 ([4]) Let G be a 2-connected graph. Then there exist two distinct vertices $v_{1}, v_{2} \in$ $V(G)$ such that $L(G) \geq d\left(v_{i}\right)$, for $i \in\{1,2\}$.

Lemma 2.3 ([11]) Let G be a 2-connected graph on at least 2δ vertices. Then G has a cycle of length at least 2δ containing x and y for any two vertices x and y in G.

Lemma 2.4 ([3]) Let G be a 2-connected graph. If every longest path P in G has the property that the sum of the degrees of the two end-vertices of P is at least $|V(P)|+1$, then G is hamiltonconnected.

Given a subgraph H of a connected graph G such that $d(v)<|V(G)|-1$ for some vertex v in $V(H)$, let $k_{H}=\min \left\{\left|N_{G-S}(S)\right|: \emptyset \subseteq S \subseteq V(H)\right.$ and $\left.N_{G-S}(S) \cup S \neq V(G)\right\}$. Clearly, $k_{H} \geq k_{G}$.

A pair of distinct vertices x, y in $N_{G-H}(H)$ is a useful pair if $\left|N_{H}(x, y)\right| \geq 2 . H$ is strongly linked in G if for each useful pair x and y, there exists a hamiltonian path $P=P\left[x^{\prime}, y^{\prime}\right]$ in H such that $x \in N\left(x^{\prime}\right)$ and $y \in N\left(y^{\prime}\right)$, otherwise H is weakly linked in G.

Lemma 2.5 ([5]) Let G be a 2-connected graph, C a longest cycle of G and H a component of $G-C$. Suppose that H is not hamilton-connected and $k_{H} \geq 3$.
(1) If H is 2-connected nonhamiltonian, then there exist nonadjacent vertices v and w in H such that $|V(C)| \geq 2 d(v)+2 d(w)$;
(2) If H is hamiltonian and weakly linked in G, then there exist nonadjacent vertices v and w in H such that $|V(C)| \geq 2 d(v)+2 d(w)+\min \{(1 / 2)|V(H)|, 6\}$.

By Lemma 2.1 and the proof of $\mathrm{Li}[7]$, we can obtain Lemmas 2.6 and 2.7.
Lemma 2.6 Let C be a longest cycle in an m-connected ($m \geq 2$) quasi-claw-free graph G, and H be a component of $G-C$ such that $|V(H)| \geq 3$. If H is hamilton-connected, then there exists some vertex v in H such that $|V(C)| \geq s(d(v)-s+4)+\left(k_{H}-s\right)(|V(H)|-s+3) \geq$ $s(d(v)-s+4)+(m-s)(|V(H)|-s+3)$, where $0 \leq s \leq|V(H)|+3$.

Lemma 2.7 Let C be a longest cycle of a 2-connected quasi-claw-free graph G and H be a component of $G-C$.
(1) If H is strongly linked in G but not hamilton-connected, then there exist non-adjacent vertices v and w in H such that $|V(C)| \geq 2(d(v)+d(w))-2$ and $|V(G)| \geq 3(d(v)+d(w))-6$;
(2) If H is not 2-connected, then there exist nonadjacent vertices v and w such that $|V(C)| \geq 2(d(v)+d(w))+4$.

3. Proof of Theorem 1.2

Proof of Theorem 1.2 Let G be a 2-connected non-hamiltonian quasi-claw-free graph of order n satisfying the conditions of Theorem 1.3 and C a longest cycle of G with a chosen orientation. Assume that H is a component of $G-C$ and $N_{C}(H)=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$, where c_{i} is labeled in the order of the direction of C and i modulo m. Then by Lemma 2.1(1), $c_{i}^{-} c_{i}^{+} \in E(G)(i \in\{1, \ldots, m\})$. Suppose that Theorem 1.3 is not true. Then $|V(C)| \leq 3 \delta+1$. Let $X=\left\{i:\left|N_{H}\left(c_{i}, c_{i+1}\right)\right| \geq 2\right\}$ and $S_{i}=C\left(c_{i}^{+}, c_{i+1}^{-}\right)$. If $|V(H)|=1$, then by the maximality of C and $c_{i}^{-} c_{i}^{+} \in E(G)(i \in\{1, \ldots, m\}),|V(C)| \geq 4 \delta$, a contradiction. Since G is 2-connected and $|V(H)| \geq 2,|X| \geq 2$. By Lemma 2.7(2), any component of $G-C$ is 2-connected, otherwise $|V(C)| \geq 4 \delta+4$, a contradiction. Without loss of generality, assume $M=\left\{v_{i} c_{i} \in E(G): v_{i} \in\right.$ $\left.V(H), c_{i} \in N_{C}(H)\right\}$ is a maximum matching in $E(V(H), V(C))$. Then $|M| \geq 2$. Since H is 2-connected and G is a simple graph, there exist at least two internally-disjoint (v_{1}, v_{2})-paths in H and $|V(H)| \geq 3$. Obviously, there is a $\left(v_{1}, v_{2}\right)$-path of order at least 3 in H and then by the maximality of $C,|V(C)| \geq 12$. It follows that $3 \delta+1 \geq|V(C)| \geq 12$, which implies $\delta \geq 4$. Next we consider three cases to complete the proof of Theorem 1.2.

Case $1 H$ is not hamiltonian.
By Lemma 2.5(1), $k_{H}=2$. Again by the proof of Lemma 2.5(1) (in [5], Corollary 6.2), $|X|=|M|=2$. Since $M=\left\{v_{1} c_{1}, v_{2} c_{2}\right\}, N_{C}(H)=\left\{v_{1}, v_{2}\right\}$. Let P be a longest $\left(v_{1}, v_{2}\right)$-path in H. We can get the following claims.

Proposition 1.1 If $d_{C}(H)=2$, then $N_{C}\left(c_{1}\right)-\left\{c_{2}, c_{1}^{-}, c_{1}^{+}\right\}=N_{C}\left(c_{2}\right)-\left\{c_{1}, c_{2}^{-}, c_{2}^{+}\right\}=\emptyset$.
Proof Suppose $d_{C}(H)=2$. Then for any vertex $x \in V(H), d_{H}(x) \geq \delta-2$. By Lemma 2.2, $|V(P)| \geq \delta-1$. Without loss of generality, assume $y \in N\left(c_{1}\right) \cap S_{1}$. Suppose $N\left(y^{-}\right) \cap V\left(H^{\prime}\right) \neq \emptyset$, where H^{\prime} is a component of $G-C-H$. By Lemma 2.1(2), $y c_{1}^{-}, y c_{1}^{+} \in E(G)$. We obtain
$\left|C\left(y, c_{2}^{-}\right)\right| \geq|V(P)|$, otherwise there exists a longer cycle $C^{\prime}=c_{1} P\left[v_{1}, v_{2}\right] c_{2} c_{2}^{-} C\left[c_{2}^{+}, c_{1}^{-}\right] C^{-}\left[y, c_{1}\right]$ than C, a contradiction. If $y^{-} c_{2}^{+} \in E(G)$, then there is a longer cycle $C^{\prime}=c_{1} P\left[v_{1}, v_{2}\right] C^{-}\left[c_{2}, y\right]$ $C\left[c_{1}^{+}, y^{-}\right] C\left[c_{2}^{+}, c_{1}\right]$ than C, a contradiction. Thus $y^{-} c_{2}^{+} \notin E(G)$, similarly $y^{-} c_{2}^{-} \notin E(G)$. If $y^{-} c_{2} \in E(G)$, then by Lemma 2.1(2), $y^{-} c_{2}^{+}, y^{-} c_{2}^{-} \in E(G)$, a contradiction. Let y_{1} and y_{2} be the neighbors of y^{-}closest to c_{2}^{-}and c_{2}^{+}on S_{1} and S_{2}, respectively. Then $a=\left|C\left(y_{1}, c_{2}^{-}\right)\right| \geq|V(P)|$, otherwise there is a longer cycle $C^{\prime}=c_{1} P\left[v_{1}, v_{2}\right] c_{2} c_{2}^{-} C\left[c_{2}^{+}, c_{1}^{-}\right] C\left[y, y_{1}\right] C^{-}\left[y^{-}, c_{1}\right]$ than C, a contradiction. Similarly, $b=\left|C\left(c_{2}^{+}, y_{2}\right)\right| \geq|V(P)|$. Obviously, $d_{C}\left(H^{\prime}\right) \geq 2$ and H^{\prime} is 2-connected, then there exist three vertices u_{1}, y^{\prime}, u_{2} such that $y^{\prime} \in V(C), u_{1} \in N_{H^{\prime}}\left(y^{-}\right), u_{2} \in N_{H^{\prime}}\left(y^{\prime}\right)$. Let P^{\prime} be the longest $\left(u_{1}, u_{2}\right)$-path in H^{\prime} with an orientation from u_{1} to u_{2}. By Lemma 2.1(2), $G\left[N_{H^{\prime}}\left(y^{-}\right)\right]$and $G\left[N_{H^{\prime}}\left(y^{\prime}\right)\right]$ are two complete graphs and $N_{G-C-H^{\prime}}\left(y^{-}\right)=N_{G-C-H^{\prime}}\left(y^{\prime}\right)=\emptyset$. Thus $\left|V\left(P^{\prime}\right)\right| \geq d_{H^{\prime}}\left(y^{-}\right)$and $y^{\prime} \notin N_{C}(H)$. By Lemma 2.1(1), $y^{--} y, y^{\prime-} y^{\prime+} \in E(G)$. If $y^{\prime}=c_{1}^{-}$, then we can obtain a longer cycle $C^{\prime}=y^{\prime} P^{\prime-}\left[u_{2}, u_{1}\right] C^{-}\left[y^{-}, c_{1}\right] C\left[y, y^{\prime}\right]$ than C, a contradiction. Similarly, $y^{\prime} \notin\left\{c_{1}^{+}, c_{2}^{-}, c_{2}^{+}\right\}$. Now we consider the location of y^{\prime}.
(a) Suppose $y^{\prime} \in C\left(y_{1}, c_{2}^{-}\right)$. Then we obtain $d=\left|C\left(y^{\prime+}, c_{2}^{-}\right)\right| \geq|V(P)|+\left|V\left(P^{\prime}\right)\right|$, otherwise there is a longer cycle $C^{\prime}=c_{1} P\left[v_{1}, v_{2}\right] c_{2} c_{2}^{-} C\left[c_{2}^{+}, c_{1}^{-}\right] C\left[y, y^{\prime-}\right] y^{\prime+} y^{\prime} P^{\prime-}\left[u_{2}, u_{1}\right] C^{-}\left[y^{-}, c_{1}\right]$ than C. Recall that $b=\left|C\left(c_{2}^{+}, y_{2}\right)\right| \geq|V(P)|,\left|V\left(P^{\prime}\right)\right| \geq d_{H^{\prime}}\left(y^{-}\right),|V(P)| \geq \delta-1$ and $y^{-} c_{2}, y^{-} c_{2}^{+}, y^{-} c_{2}^{-} \notin$ $E(G)$. It follows that $|V(C)| \geq\left|C\left[y_{2}, y_{1}\right]\right|+b+d+\left|\left\{c_{2}, c_{2}^{-}, c_{2}^{+}, y^{-}\right\}\right| \geq 2|V(P)|+d_{H^{\prime}}\left(y^{-}\right)+$ $d_{C}\left(y^{-}\right)+4 \geq 3 \delta+2$, a contradiction. Thus $y^{\prime} \notin C\left(y_{1}, c_{2}^{-}\right)$, a contradiction. Similarly, we have (b) as follows.
(b) $y^{\prime} \notin C\left(c_{2}^{+}, y_{2}\right)$.
(c) Suppose $y^{\prime} \in C\left[y, y_{1}\right]$. Then without loss of generality, assume $N_{C}\left(H^{\prime}\right) \cap C\left(y, y^{\prime}\right)=\emptyset$. By the maximality of C, obviously $y^{\prime-}, y^{\prime+} \notin N\left(y^{-}\right)$. Let y_{3} be the neighbor of y^{-}closest to y^{\prime} on $C\left(y, y^{\prime}\right)$. Then $N_{C}\left(y^{-}\right)$is contained in $A=C\left[y_{2}, y_{3}\right] \cup C\left[y^{\prime}, y_{1}\right]$. We obtain $e=\left|C\left(y_{3}, y^{\prime-}\right)\right| \geq$ $\left|V\left(P^{\prime}\right)\right|$, otherwise there is a longer cycle $C^{\prime}=y^{-} P^{\prime}\left[u_{1}, u_{2}\right] y^{\prime} y^{\prime-} C\left[y^{\prime+}, y^{--}\right] C\left[y, y_{3}\right] y^{-}$than C, a contradiction. Recall that $a=\left|C\left(y_{1}, c_{2}^{-}\right)\right| \geq|V(P)|, b=\left|C\left(c_{2}^{+}, y_{2}\right)\right| \geq|V(P)|,|V(P)| \geq \delta-1$ and $y^{-} c_{2}, y^{-} c_{2}^{+}, y^{-} c_{2}^{-} \notin E(G)$. Thus $|V(C)| \geq e+|A|+a+b+\left|\left\{y^{-}, c_{2}^{-}, c_{2}, c_{2}^{+}\right\}\right| \geq d_{H^{\prime}}\left(y^{-}\right)+$ $d_{C}\left(y^{-}\right)+2|V(P)|+4 \geq 3 \delta+2$, a contradiction. Thus $y^{\prime} \notin C\left[y, y_{1}\right]$. Similarly, we can obtain (d).
(d) $y^{\prime} \notin C\left[y_{2}, y^{-}\right]$.

From (a)-(d), we obtain $N\left(y^{-}\right) \cap V\left(H^{\prime}\right)=\emptyset$. It follows that $N\left(y^{-}\right) \cap V(G-C)=\emptyset$. If $c_{2} y^{-} \in E(G)$, then there is a longer cycle $C^{\prime}=c_{1} P\left[v_{1}, v_{2}\right] c_{2} C^{-}\left[y^{-}, c_{1}^{+}\right] C^{-}\left[c_{1}^{-}, c_{2}^{+}\right] C^{-}\left[c_{2}^{-}, y\right] c_{1}$ than C, a contradiction. Similarly, $c_{2}^{-}, c_{2}^{+} \notin N\left(y^{-}\right)$. Thus $N\left[y^{-}\right]$is contained in $C\left[y_{2}, y_{1}\right]$. Recall that $a=\left|C\left(y_{1}, c_{2}^{-}\right)\right| \geq|V(P)|, b=\left|C\left(c_{2}^{+}, y_{2}\right)\right| \geq|V(P)|$ and $|V(P)| \geq \delta-1$. It follows that $|V(C)| \geq\left|C\left[y_{2}, y_{1}\right]\right|+a+b+\left|\left\{y^{-}, c_{2}^{-}, c_{2}^{+}, c_{2}\right\}\right| \geq d\left(y^{-}\right)+2|V(P)|+4 \geq 3 \delta+2$, a contradiction. Thus Proposition 1.1 is true.

Suppose that W_{1} is a complete graph, $W=W_{1} \cup\left\{z_{1}, z_{2}\right\}$ and z_{i} is adjacent to all the vertices of $W_{1}(i \in\{1,2\})$. Let $z_{1}\left[W_{1}\right] z_{2}$ denote a hamiltonian $\left(z_{1}, z_{2}\right)$-path of W.

Proposition 1.2 If H is not hamiltonian, then $d_{C}(H) \geq 3$.
Proof Suppose $d_{C}(H)=2$. Then $d_{H}(x) \geq \delta-2$ for any vertex $x \in V(H)$. By Lemma 2.4, $|V(H)| \geq 2(\delta-2)$. By Lemma 2.3, there is a cycle in H of length at least $2(\delta-2)$ containing v_{1} and v_{2}. Without loss of generality, assume that C^{\prime} is a longest cycle in H containing v_{1}
and v_{2} with a chosen orientation. Then $\left|V\left(C^{\prime}\right)\right| \geq 2(\delta-2)$. Let $C^{\prime}=w_{1} w_{2} \ldots w_{t} w_{1}$ and w_{i} $(i \in\{1,2, \ldots, t\})$ be labeled in the order of the direction of C^{\prime}. Then $t \geq 2 \delta-4$. Moreover let $w_{1}=v_{1}, w_{i}=v_{2}(2 \leq i \leq t)$. If $w_{t} c_{2} \in E(G)$, then $|V(P)| \geq\left|C\left[w_{1}, w_{t}\right]\right| \geq 2 \delta-4$. It follows that $|V(C)| \geq 2|V(P)|+6 \geq 4 \delta-2$, a contradiction. Thus $w_{t} c_{2} \notin E(G)$. Similarly, $w_{2} c_{2}, w_{i-1} c_{1}, w_{i+1} c_{1} \notin E(G)$. If $i \leq \delta / 2$, then $t-i \geq(3 \delta / 2)-4,|V(P)| \geq\left|C\left[w_{i}, w_{1}\right]\right| \geq(3 \delta / 2)-2$ and $|V(C)| \geq 2|V(P)|+6 \geq 3 \delta+2$, a contradiction. Thus $i \geq(\delta / 2)+1$.

Without loss of generality, assume $w_{j} \notin N\left(c_{2}\right)$ for $2 \leq j \leq i-1$ and $c_{1} c_{2} \in E(G)$. Then by Proposition 1.1, $d_{H}\left(c_{2}\right) \geq \delta-3$. Obviously, $c_{1}^{-} c_{2} \notin E(G)$, i.e., $d\left(c_{1}^{-}, c_{2}\right)=2$. Suppose $w \in J\left(c_{1}^{-}, c_{2}\right) \cap V(G-C)$. By Lemma 2.1(2), $w \in V(H)$ and then $c_{1}^{-} w \in E(G)$, i.e., $c_{1}^{-} \in N_{C}(H)$, a contradiction. Thus $J\left(c_{1}^{-}, c_{2}\right) \subseteq V(C)$ and by Proposition 1.1, $J\left(c_{1}^{-}, c_{2}\right)=\left\{c_{1}\right\}$. For any vertex $x_{1} \in N_{H}\left(c_{1}\right)$, obviously, $x_{1} c_{1}^{-} \notin E(G)$ and then $x_{1} c_{2} \in E(G)$. Similarly, $x_{2} \in N_{H}\left(c_{1}\right)$ for any vertex $x_{2} \in N_{H}\left(c_{2}\right)$. Thus $N_{H}\left(c_{1}\right)=N_{H}\left(c_{2}\right)$. Recall that $w_{1} \in N_{H}\left(c_{1}\right), w_{i} \in N_{H}\left(c_{2}\right)$. Let $T=N_{H}\left(c_{1}\right)$. By Lemma 2.1(2), T is a complete graph and then $w_{1} w_{i} \in E(G)$.

Suppose $T-V\left(C^{\prime}\right) \neq \emptyset$. Since T is a complete graph, $w_{1}, w_{i} \in N_{C^{\prime}}\left(T-C^{\prime}\right)$. By the maximality of C^{\prime} and the proof of Lemma 2.1 in [4], we obtain that Lemma 2.1 also holds for C^{\prime}. Thus $w_{t} w_{2}, w_{i-1} w_{i+1} \in E(G)$. Let $T^{\prime}=T-\left\{w_{1}, w_{i}\right\}$. Obviously, T^{\prime} is also a complete graph. Recall that $w_{i+1} c_{1} \notin E(G)$, i.e., $w_{i+1} \notin V(T)$. Let $P^{\prime}=w_{1} w_{t} C\left[w_{2}, w_{i-1}\right] w_{i+1} w_{i}\left[T^{\prime} \backslash\{w\}\right] w$, where $w \in V\left(T^{\prime}\right)$. Obviously, $w c_{2} \in E(G)$. Recall that $i \geq(\delta / 2)+1$. Then $\left|V\left(P^{\prime}\right)\right| \geq$ $i+\left|\left\{w_{t}, w_{i+1}\right\}\right|+d_{H}\left(c_{2}\right)-2 \geq(3 \delta / 2)-2$. Replacing the path P by P^{\prime}, we obtain $|V(C)| \geq$ $2\left|V\left(P^{\prime}\right)\right|+6 \geq 3 \delta+2$, a contradiction.

Suppose $T \subseteq V\left(C^{\prime}\right)$. Obviously, $w_{1} c_{2} \in E(G)$. Recall that $w_{2} c_{2} \notin E(G)$. Then $d\left(w_{2}, c_{2}\right)=$ 2. Moreover, recall that $w_{j} \notin N\left(c_{2}\right)$ for $2 \leq j \leq i-1$ and $w_{t} c_{2} \notin E(G)$. Then $z \in C^{\prime}\left[w_{i}, w_{t}\right) \cup$ $\left\{w_{1}\right\}$ for any vertex $z \in J\left(w_{2}, c_{2}\right)$. Without loss of generality, assume $w_{j} \in J\left(w_{2}, c_{2}\right)(i+1 \leq j \leq$ $t-1)$. Then $w_{j+1} c_{2} \in E(G)$ or $w_{j+1} w_{2} \in E(G)$. Similarly, $w_{j-1} c_{2} \in E(G)$ or $w_{j-1} w_{2} \in E(G)$. If $w_{j+1} w_{2} \in E(G)$, then there is a $\left(w_{1}, w_{j}\right)$-path $P^{\prime}=C^{\prime-}\left[w_{1}, w_{j+1}\right] C\left[w_{2}, w_{j}\right]$ of order at least $2 \delta-4$. Replacing P by P^{\prime}, we obtain $|V(C)| \geq 2\left|V\left(P^{\prime}\right)\right|+6 \geq 4 \delta-2$, a contradiction. Thus $w_{j+1} w_{2} \notin E(G)$ and then $w_{j+1} c_{2} \in E(G)$. Similarly, $w_{j-1} c_{2} \notin E(G)$ and $w_{j-1} w_{2} \in E(G)$. By Lemma 2.1(2), $w_{j+1} w_{i} \in E(G)$. We obtain $w_{j-1} \neq w_{i+1}$, otherwise there is a (w_{1}, w_{j})-path $P^{\prime}=C^{\prime-}\left[w_{1}, w_{j+1}\right] C^{\prime-}\left[w_{i}, w_{2}\right] w_{j-1} w_{j}$ of order at least $2 \delta-4$, and we can get a contradiction as above. Let $T_{1}=T-C^{\prime}\left[w_{i}, w_{j}\right]$. Then we can get a path $P^{\prime}=C^{\prime}\left[w_{1}, w_{j-1}\right] w_{j}\left[T_{1} \backslash\{w\}\right] w$, where $w \in T_{1}$. Obviously, $A=\left\{w_{i+1}, w_{j-1}\right\}$ is contained in $V\left(P^{\prime}\right)$ and $A \cap T=\emptyset$. Thus $\left|V\left(P^{\prime}\right)\right| \geq i+d_{H}\left(c_{2}\right)-\left|\left\{w_{1}, w_{i}\right\}\right|+|A| \geq(3 \delta / 2)-2$, and then replacing P by P^{\prime}, we obtain $|V(C)| \geq 2\left|V\left(P^{\prime}\right)\right|+6 \geq 3 \delta+2$, a contradiction. It follows that Propositon 1.2 is true.

Proposition 1.3 If H is not hamiltonian, then $N_{H}\left(c_{1}\right)-\left\{v_{1}, v_{2}\right\}=N_{H}\left(c_{2}\right)-\left\{v_{1}, v_{2}\right\}=\emptyset$.
Proof Suppose $N_{H}\left(c_{1}\right)-\left\{v_{1}, v_{2}\right\} \neq \emptyset$. Recall that $|M|=2$ and $d_{C}(H) \geq 3$. Then $N_{H}(x)=$ $\left\{v_{2}\right\}$ for any vertex $x \in N_{C}(H)-\left\{c_{1}\right\}$ and $d_{H}(z) \geq \delta-1$ for any vertex $z \in V(H)-\left\{v_{2}\right\}$. Thus $d_{C}\left(c_{2}\right) \geq \delta-1$ and by Lemma 2.2, $|V(P)| \geq \delta$. Let y_{1} and y_{2} be the neighbors of c_{2} closest to c_{1}^{-}and c_{1}^{+}on $C\left(c_{2}^{+}, c_{1}^{-}\right)$and $C\left(c_{1}^{+}, c_{2}^{-}\right)$, respectively. Then we can obtain $a=$ $\left|C\left(y_{1}, c_{1}^{-}\right)\right| \geq|V(P)|$ and $b=\left|C\left(c_{1}^{+}, y_{2}\right)\right| \geq|V(P)|$. Obviously, $c_{1}^{-} c_{2}, c_{1}^{+} c_{2} \notin E(G)$. It follows that $|V(C)| \geq\left|C\left[y_{2}, y_{1}\right]\right|+a+b \geq d_{C}\left(c_{2}\right)+\left|\left\{c_{1}^{-}, c_{1}^{+}, c_{2}\right\}\right|+2|V(P)|=3 \delta+2$, a contradiction.

Thus $N_{H}\left(c_{1}\right)-\left\{v_{1}, v_{2}\right\}=\emptyset$. By symmetry, $N_{H}\left(c_{2}\right)-\left\{v_{1}, v_{2}\right\}=\emptyset$.
Since $|M|=2$ and by Proposition 1.3, we can obtain the following result.
Proposition 1.4 For any vertex $w \in V(H)-\left\{v_{1}, v_{2}\right\}, N_{C}(w)=\emptyset$.
Proposition 1.5 If H is not hamiltonian, then $N_{H}\left(v_{1}\right) \cap N_{H}\left(v_{2}\right) \neq \emptyset$.
Proof Suppose $N_{H}\left(v_{1}\right) \cap N_{H}\left(v_{2}\right)=\emptyset$. By Proposition 3, $d\left(c_{1}, x\right)=2$ for any vertex $x \in N_{H}\left(v_{1}\right)-$ $\left\{v_{2}\right\}$. By Propositions 1.3 and 1.4, $J\left(x, c_{1}\right) \subseteq\left\{v_{1}, v_{2}\right\}$, If $v_{2} \in J\left(x, c_{1}\right)$, then $x \in N_{H}\left(v_{1}\right) \cap N_{H}\left(v_{2}\right)$, a contradiction. Thus $J\left(x, c_{1}\right)=\left\{v_{1}\right\}$ and by Proposition 1.3, for any two distinct vertices $x_{1}, x_{2} \in N_{H}\left(v_{1}\right)-\left\{v_{2}\right\}, x_{1} x_{2} \in E(G)$. Thus $N_{H}\left(v_{1}\right)-\left\{v_{2}\right\}$ is a complete graph. Similarly, $N_{H}\left(v_{2}\right)-\left\{v_{1}\right\}$ is a complete graph. It follows that $|V(P)| \geq d_{H}\left(v_{1}\right)+d_{H}\left(v_{2}\right)$. Since $|X|=2$, $|V(C)| \geq 3 d_{C}\left(v_{1}\right)+3 d_{C}\left(v_{2}\right)-3+2|V(P)|>2\left(d_{C}\left(v_{1}\right)+d_{H}\left(v_{1}\right)\right)+2\left(d_{C}\left(v_{2}\right)+d_{H}\left(v_{2}\right)\right)-1 \geq 4 \delta-1$, a contradiction.

We call \mathcal{T} a string of a graph G if for two distant subgraphs W_{i}, W_{j} of \mathcal{T}, there is a sequence $i, i+1, \ldots, j-1, j$ such that $E\left(W_{i}, W_{i+1}\right) \neq \emptyset, E\left(W_{i+1}, W_{i+2}\right) \neq \emptyset, \ldots, E\left(W_{j-1}, W_{j}\right) \neq \emptyset$.

Proposition 1.6 There exists some vertex $x \in N_{H}\left(v_{1}\right) \cup N_{H}\left(v_{2}\right)$ and a $\left(v_{1}, v_{2}\right)$-path P^{\prime} in H such that $N[x] \subseteq V\left(P^{\prime}\right)$.

Proof Since $|X|=2$ and $d_{C}(H) \geq 3, v_{1} c_{2} \in E(G)$ and $v_{2} c_{1} \in E(G)$ cannot hold at the same time. Without loss of generality, suppose $v_{1} c_{2} \in E(G)$. Then $c_{1} v_{2} \notin E(G)$ and for any vertex $z \in N_{H}\left(v_{1}\right)-\left\{v_{2}\right\}$, by Propositions 1.3 and 1.4, $J\left(c_{1}, z\right)=\left\{v_{1}\right\}$. For any two vertices $z_{1}, z_{2} \in N_{H}\left(v_{1}\right)-\left\{v_{2}\right\}$, since $J\left(c_{1}, z_{i}\right)=\left\{v_{1}\right\}$ and $z_{i} c_{1} \notin E(G)(i \in\{1,2\}), z_{1} z_{2} \in E(G)$. Thus $H_{1}=G\left[N_{H}\left(v_{1}\right)-\left\{v_{2}\right\}\right]$ is a complete graph. By Proposition 1.3, for any vertex $z \in N_{H}\left(v_{2}\right)-\left\{v_{1}\right\}$, $d\left(z, c_{2}\right)=2$, and moreover by Proposition 1.4, $J\left(c_{2}, z\right) \in\left\{v_{1}, v_{2}\right\}$. If $v_{1} \in J\left(c_{2}, z\right)$, then $c_{1} c_{2} \in$ $E(G)$ or $c_{1} z \in E(G)$. By Propositon 1.4, $c_{1} z \notin E(G)$ and then $c_{1} c_{2} \in E(G)$. By Lemma 2.1(1), $J\left(c_{2}^{+}, v_{2}\right)=\left\{c_{2}\right\}$, then $c_{2}^{+} c_{1} \in E(G)$ or $v_{2} c_{1} \in E(G)$. Recall that $v_{2} c_{1} \notin E(G)$ and by the maximality of $C, c_{2}^{+} c_{1} \notin E(G)$. It follows that $v_{1} \notin J\left(c_{2}, z\right)$ and then $J\left(c_{2}, z\right)=\left\{v_{2}\right\}$ for any vertex $z \in N_{H}\left(v_{2}\right)-\left\{v_{1}\right\}$. Thus similarly to $v_{1}, G\left[N_{H}\left(v_{2}\right)-\left\{v_{1}\right\}\right]$ is a complete graph. Let $H_{2}=G\left[N_{H}\left(v_{2}\right)-\left\{v_{1}\right\}\right]-H_{1}$. Then H_{2} is a complete graph. By Proposition 1.5, if there exists some vertex $x \in N_{H}\left(v_{1}\right) \cap N_{H}\left(v_{2}\right)$ such that $N(x) \subseteq\left(H_{1} \cup H_{2}\right)$, then we can easily obtain a $\left(v_{1}, v_{2}\right)$-path P^{\prime} containing all the vertices of $N[x]$.

Suppose $x \in N_{H}\left(v_{1}\right) \cap N_{H}\left(v_{2}\right)$ and $N(x)-\left(H_{1} \cup H_{2}\right) \neq \emptyset$. Let $W=N(x)-\left(H_{1} \cup H_{2}\right)$. Then for any vertex $y \in W, d\left(y, v_{2}\right)=2$. By Propositon 1.4, $J\left(v_{2}, y\right) \in N_{H}\left(v_{2}\right)$. Suppose $z \in W, x_{1} \in$ $J\left(v_{2}, z\right)$ and $x_{1} \in H_{2}$. Then $W^{\prime}=\left\{z: z \in W, x_{1} \in J\left(z, v_{2}\right)\right\}$ is a complete graph. Without loss of generality, assume $\left|J\left(v_{2}, y\right)\right|=1$ for any vertex $y \in W$. Let $T=\left\{a: a \in H_{1} \cup H_{2},\{a\}=J\left(y^{\prime}, v_{2}\right)\right.$ for some vertex $\left.y^{\prime} \in W\right\}$. Assume $T=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}, W_{1}=\left\{y: y \in W,\left\{a_{1}\right\}=J\left(y, v_{2}\right)\right\}$, $W_{2}=\left\{y: y \in W,\left\{a_{2}\right\}=J\left(y, v_{2}\right)\right\}, \ldots, W_{m}=\left\{y: y \in W,\left\{a_{m}\right\}=J\left(y, v_{2}\right)\right\}$. Obviously, $W=W_{1} \cup W_{2} \cup \cdots \cup W_{m}$. We divide $W_{1}, W_{2}, \ldots, W_{m}$ into k maximal strings $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}$. Without loss of generality, assume $\mathcal{A}_{1}=\left\{W_{1}, W_{2}, \ldots, W_{p}\right\}$. Now we use induction to prove if p is odd, then for any vertex $w_{p} \in W_{p}$, there is a path $\left(w_{1}, w_{p}\right)$-path P_{1} containing all the vertices of $W_{1} \cup \cdots \cup W_{p}$ such that $w_{1} \in W_{1}$, and $V\left(P_{1}\right) \cap V\left(W_{i}\right) \neq \emptyset, i \in\{2,3, \ldots, m\}$, and if p is
even, then there is a $\left(w_{1}, w_{p}\right)$-path P_{1} containing all the vertices of $W_{1} \cup \cdots \cup W_{p}$ such that $w_{1} \in W_{1}, w_{p}=a_{p}$, and $V\left(P_{1}\right) \cap V\left(W_{i}\right) \neq \emptyset, i \in\{2,3, \ldots, m\}$. Assume that the induction is true for any integer $l \leq p$, and $w_{p-1} w_{p} \in E\left(W_{p-1}, W_{p}\right)$. If p is odd, then by induction there is a $\left(w_{1}, w_{p-1}\right)$-path P_{1}^{\prime} containing all the vertices of $W_{1} \cup W_{2} \cdots \cup W_{p-1}$. Then we can get a $\left(w_{1}, a_{p}\right)$-path $w_{1} P_{1}^{\prime} w_{p-1} w_{p}\left[W_{p} \backslash\left\{w_{p}, w\right\}\right] w a_{p}$ containing all the vertices of $W_{1} \cup W_{2} \cdots \cup W_{p}$. If p is even, then there is a $\left(w_{1}, a_{p-1}\right)$-path P_{1}^{\prime} containing all the vertices of $W_{1} \cup W_{2} \cup \cdots W_{p-1}$. Then for any vertex $w \in W_{p}$, there is a $\left(w_{1}, w\right)$-path $w_{1} P_{1}^{\prime} a_{p-1} a_{p}\left[W_{p} \backslash\{w\}\right] w$ containing all the vertices of $W_{1} \cup W_{2} \cdots \cup W_{p}$. Let $\left(w_{q}, w_{t}\right)$ be a path P_{2} containing all the vertices of \mathcal{A}_{2}. Obviously, $d\left(w_{p}, w_{q}\right)=2$. Assume $a \in J\left(w_{p}, w_{q}\right)$. Then by the maximal division of strings, $a \notin W_{p+1} \cup \cdots \cup W_{m}$. If $a \in W_{i}\left(i \in\{1,2, \ldots, p\}\right.$, then $a_{i} w_{p} \in E(G)$ or $a_{i} w_{q} \in E(G)$. If $a_{i} w_{p} \in E(G)$, then $w_{p} \in W_{i}$ by the definition of W_{i}, a contradiction. Similarly, $a_{i} w_{q} \notin E(G)$. It follows that $a \notin W$ and then there is a path $w_{1} P_{1} w_{p} a w_{q} P_{2} w_{t}$ containing all the vertices of $\mathcal{A}_{1} \cup \mathcal{A}_{2}$. Then we can easily get a path $P^{\prime \prime}$ containing all the vertices of W. It follows that we can get a $\left(v_{1}, v_{2}\right)$-path P^{\prime} containing all the vertices of $N[x]$.

Similarly, if $v_{1} c_{2}, v_{2} c_{1} \notin E(G)$, then Proposition 1.6 also holds.
Now we complete the proof of Case 1. Since $|X|=2$ and $d_{C}(H) \geq 3, v_{1} c_{2} \in E(G)$ and $v_{2} c_{1} \in$ $E(G)$ cannot hold at the same time. Without loss of generality, assume $v_{1} c_{2} \notin E(G)$. Then by Proposition 1.3, $d_{C}\left(c_{2}\right) \geq \delta-1$. Let y_{1} and y_{2} be the neighbors of c_{2} closest to c_{1}^{+}and c_{1}^{-}on S_{1} and $C\left(c_{2}^{+}, c_{1}^{-}\right)$, respectively. Then by Propositon 1.6, there is some vertex $x \in N_{H}\left(v_{1}\right) \cup N_{H}\left(v_{2}\right)$ and a $\left(v_{1}, v_{2}\right)$-path P^{\prime} such that $N[x] \subseteq V\left(P^{\prime}\right)$. Then $\left|C\left(c_{1}^{+}, y_{1}\right)\right| \geq d(x)+1$ and $\left|C\left(y_{2}, c_{1}^{-}\right)\right| \geq d(x)+1$. It follows that $|V(C)| \geq\left|C\left(c_{1}^{+}, y_{1}\right)\right|+\left|C\left(y_{2}, c_{1}^{-}\right)\right|+\left|C\left[y_{1}, y_{2}\right]\right|+\left|\left\{c_{1}^{-}, c_{1}^{+}, c_{2}\right\}\right| \geq d_{C}\left(c_{2}\right)+2 d(x)+5 \geq$ $3 \delta+4$, a contradiction. It follows that $=$ Case 1 of Theorem 1.2 cannot hold.

Case $2 H$ is hamiltonian but not hamilton-connected.
Recall that M is a maximum matching in $E(V(H), V(C))$ and $X=\left\{i:\left|N_{H}\left(c_{i}, c_{i+1}\right)\right| \geq 2\right\}$. If $|X|=2$, then obviously, $|M|=2$, and using a similar proof to Case 1, we obtain a contradiction. Thus $|X| \geq 3$. It follows that $d_{C}(H) \geq 3$. By Lemmas $2.5(2)$ and $2.7(1), k_{H}=2$. By the definition of k_{H}, there is a vertex set S in $V(H)$ such that $\left|N_{G-S}(S)\right|=2$. Thus $|S| \geq \delta-1$. If $S=V(H)$, then by $d_{C}(H) \geq 3$, we obtain $k_{H} \geq 3$, a contradiction. Let $N_{G-S}(S)=\left\{u_{1}, u_{2}\right\}$. Suppose $\left\{u_{1}, u_{2}\right\} \subseteq V(C)$. Then $N_{H-S}(C) \neq \emptyset$ since $d_{C}(H) \geq 3$. Obviously, $E(H-S, S) \neq \emptyset$ and then $k_{H} \geq 3$, a contradiction. Suppose $u_{1} \in V(C), u_{2} \notin V(C)$. Then $u_{2} \in V(H-S)$. It follows that u_{2} is a cut vertex of H, a contradiction with the connectedness of H. From above, we obtain $\left\{u_{1}, u_{2}\right\} \cap V(C)=\emptyset$. Let C^{\prime} be a hamiltonian cycle of H. Without loss of generality, assume that $i \in X, v_{i} \in N_{H}\left(c_{i}\right), v_{j} \in N_{H}\left(c_{i+1}\right)(i \neq j)$, and $P_{i j}$ is a longest $\left(v_{i}, v_{j}\right)$-path in H. Obviously, $v_{i}, v_{j} \in V(H-S)$. Since H is hamiltonian, S and $H-S$ are two segments of a hamiltonian cycle C^{\prime} of H. Since $\left|N_{G-S}(S)\right|=2$ and $N_{G-S}(S) \subseteq H-S, S \subseteq C^{\prime}\left(v_{i}, v_{j}\right)$ or $S \subseteq C^{\prime}\left(v_{j}, v_{i}\right)$. Without loss of generality, assume $S \subseteq C^{\prime}\left(v_{i}, v_{j}\right)$. Then $\left|V\left(P_{i j}\right)\right| \geq\left|C^{\prime}\left(v_{i}, v_{j}\right)\right| \geq|S| \geq \delta-1$. Since $|X| \geq 3$, suppose $i_{1}, i_{2} \in X-\{i\}\left(i_{1} \neq i_{2}\right), v_{i_{1}} \in N_{H}\left(c_{i_{1}}\right), v_{i_{2}} \in N_{H}\left(c_{i_{2}}\right)$. Then similarly to the above i and j, there is a $\left(v_{i_{1}}, v_{j_{1}}\right)$-path $P_{i_{1} j_{1}}$ and a $\left(v_{i_{2}}, v_{j_{2}}\right)$-path $P_{i_{2} j_{2}}$ in H such that $v_{j_{1}} \in N_{H}\left(c_{i_{1}+1}\right), v_{j_{2}} \in N_{H}\left(c_{i_{2}+1}\right),\left|V\left(P_{i_{1} j_{1}}\right)\right| \geq \delta-1,\left|V\left(P_{i_{2} j_{2}}\right)\right| \geq \delta-1$. Since $|X| \geq 3$, we obtain $|V(C)| \geq\left|V\left(P_{i j}\right)\right|+\left|V\left(P_{i_{1} j_{1}}\right)\right|+\left|V\left(P_{i_{2} j_{2}}\right)\right|+\left|\left\{c_{i}, c_{i}^{-}, c_{i}^{+}, c_{i_{1}}, c_{i_{1}}^{-}, c_{i_{1}}^{+}, c_{i_{2}}, c_{i_{2}}^{-}, c_{i_{2}}^{+}\right\}\right| \geq 3 \delta+6$,
a contradiction. It follows that Case 2 of Theorem 1.2 cannot hold.
Case $3 H$ is hamilton-connected.
Obviously, H is 3 -connected. Suppose $d_{C}(H) \geq 3$. If $k_{H} \geq 3$, then taking $s=3$ in Lemma 2.6, we obtain $|V(C)| \geq 3 \delta+3$, a contradiction. If $k_{H}=2$, then there is a vertex set S in H such that $\left|N_{G-S}(S)\right|=2$ and by the proof of Case $2, N_{G-S}(S) \subseteq H-S$. It follows that $\left|N_{H-S}(S)\right|=2$, a contradiction with the connectedness of H. Thus $d_{C}(H)=2$, i.e., $N_{C}(H)=\left\{c_{1}, c_{2}\right\}$, and then for any vertex $x \in V(H), d(x) \geq \delta-2$. It follows that $|V(H)| \geq \delta-1$. Let $|V(H)|=h$. Recall that $v_{1} \in N_{H}\left(c_{1}\right), v_{2} \in N_{H}\left(c_{2}\right), S_{1}=C\left(c_{1}^{+}, c_{2}^{-}\right), S_{2}=C\left(c_{2}^{+}, c_{1}^{-}\right)$, and P is a hamiltonian $\left(v_{1}, v_{2}\right)$-path of H. Obviously, $|V(P)|=h$. By a similar argument to the proof of Proposition 1.1 of Case 1, we obtain the following result.

Proposition 3.1 The following properties hold,
(a) $N_{C}\left(c_{1}\right)-\left\{c_{1}^{-}, c_{1}^{+}, c_{2}\right\}=N_{C}\left(c_{2}\right)-\left\{c_{2}^{-}, c_{2}^{+}, c_{1}\right\}=\emptyset$.
(b) $N\left(c_{1}^{+}\right)-\left\{c_{1}^{-}, c_{1}\right\} \subseteq S_{1}$.
(c) $N\left(c_{2}^{-}\right)-\left\{c_{2}^{+}, c_{2}\right\} \subseteq S_{1}$.
(d) $N\left(c_{1}^{-}\right)-\left\{c_{1}^{+}, c_{1}\right\} \subseteq S_{2}$.
(e) $N\left(c_{2}^{+}\right)-\left\{c_{2}^{-}, c_{2}\right\} \subseteq S_{2}$.

Proposition 3.2 If H is hamilton-connected, then $G\left[N\left(c_{i}^{+}\right)-\left\{c_{i}^{-}, c_{i}\right\}\right]$ and $G\left[N\left(c_{i}^{-}\right)-\left\{c_{i}^{+}, c_{i}\right\}\right]$ are complete graphs, $i \in\{1,2\}$.

Proof By Proposition 3.1(a) and (b), $d\left(c_{i}, x\right)=2$ and $J\left(c_{i}, x\right)=c_{i}^{+}$for any vertex $x \in$ $N\left(c_{i}^{+}\right)-\left\{c_{i}, c_{i}^{-}\right\}$. By Proposition 3.1(a), $y_{1}, y_{2} \notin N\left(c_{i}\right)$, and then $y_{1} y_{2} \in E(G)$ since $J\left(c_{i}, x\right)=c_{i}^{+}$ for any two distinct vertices $y_{1}, y_{2} \in N\left(c_{i}^{+}\right)-\left\{c_{i}^{-}, c_{i}\right\}$. Thus $G\left[N\left(c_{i}^{+}\right)-\left\{c_{i}^{-}, c_{i}\right\}\right]$ is a complete graph. Similarly, $G\left[N\left(c_{i}^{-}\right)-\left\{c_{i}^{+}, c_{i}\right\}\right]$ is a complete graph.

Proposition 3.3 If H is hamilton-connected, then $\left|S_{i}\right| \leq 2 \delta-4, i \in\{1,2\}$.
Proof Otherwise, without loss of generality, suppose $\left|S_{1}\right| \geq 2 \delta-3$. Obviously, $\left|S_{2}\right| \geq|V(P)|$. Thus $|V(C)| \geq 2 \delta-3+\delta-1+6 \geq 3 \delta+2$, a contradiction.

Let u and v be the neighbors of c_{1}^{+}and c_{2}^{-}closest to c_{2}^{-}and c_{1}^{+}on S_{1}, respectively. Moreover let w and f be the neighbors of c_{2}^{+}and c_{1}^{-}closest to c_{1}^{-}and c_{2}^{+}on S_{2}, respectively.

Proposition 3.4 For any vertex $x \in C\left(c_{1}^{+}, u\right)$ and any vertex $y \in S_{2}, x y \notin E(G)$.
Proof Otherwise, suppose $x y \in E(G)$ and $y \in C\left(f, c_{1}^{-}\right)$. Let x_{1} and x_{2} be the neighbors of c_{1}^{+}closest to x on $C\left(c_{1}^{+}, x\right)$ and $C(x, u)$, respectively. Moreover, let y_{1} and y_{2} be the neighbors of c_{1}^{-}closest to y on $C(f, y)$ and $C\left(y, c_{1}^{-}\right)$, respectively. By Proposition $3.2, x_{1} u \in$ $E(G)$. Then $a=\left|C\left(y_{1}, y\right)\right|+\left|C\left(x_{1}, x\right)\right|+\left|C\left(u, c_{2}^{-}\right)\right| \geq h$, otherwise there is a longer cycle $C^{\prime}=c_{1} P\left[v_{1}, v_{2}\right] c_{2} c_{2}^{-} C\left[c_{2}^{+}, y_{1}\right] C^{-}\left[c_{1}^{-}, y\right] C[x, u] C^{-}\left[x_{1}, c_{1}\right]$ than C, a contradiction. Similarly, $b=\left|C\left(y, y_{2}\right)\right|+\left|C\left(c_{2}^{+}, f\right)\right|+\left|C\left(x, x_{2}\right)\right| \geq h$. Thus $|V(C)| \geq d\left(c_{1}^{-}\right)+d\left(c_{1}^{+}\right)-\left|\left\{c_{1}\right\}\right|+a+b+\left|\left\{c_{2}\right\}\right| \geq$ $4 \delta-2$, a contradiction. It follows that $y \notin C\left(f, c_{1}^{-}\right)$. By Proposition 3.1(e), $y \neq c_{2}^{+}$. Suppose $y \in C\left(c_{2}^{+}, f\right)$. Then $f \neq c_{2}^{+}$and by the maximality of $C, d=\left|C\left(c_{2}^{+}, y\right)\right|+\left|C\left(x, x_{2}\right)\right| \geq h$.

Suppose $x c_{1}^{+} \in E(G)$. Then by Proposition 3.1(b), $d\left(c_{1}^{+}, y\right)=2$ and $J\left(c_{1}^{+}, y\right) \subseteq C\left(c_{1}^{+}, u\right)$. Let $x^{\prime} \in J\left(c_{1}^{+}, y\right)$. Then $x^{\prime+} c_{1}^{+} \in E(G)$ or $x^{\prime+} y \in E(G)$. If $x^{\prime+} c_{1}^{+} \in E(G)$, then by the maximality of $C,\left|C\left(c_{2}^{+}, y\right)\right| \geq h$. It follows that $\left|S_{2}\right| \geq\left|C\left(c_{2}^{+}, y\right)\right|+\left|C\left[f, c_{1}^{-}\right)\right| \geq 2 \delta-3$, a contradiction with Proposition 3.3. Thus $x^{\prime+} y \in E(G)$. Then let x_{2}^{\prime} be the neighbor closet to $C\left(x^{\prime}, u\right)$. By the maximality of C, $d^{\prime}=\left|C\left(c_{2}^{+}, y\right)\right|+\left|C\left(x^{\prime}, x_{2}^{\prime}\right)\right| \geq h+1$. Thus $|V(C)| \geq$ $d\left(c_{1}^{-}\right)+d\left(c_{1}^{+}\right)-\left|\left\{c_{1}\right\}\right|+d^{\prime}+\left|\left\{c_{2}^{-}, c_{2}, y\right\}\right| \geq 3 \delta+2$, a contradiction. It follows that $x \notin N\left(c_{1}^{+}\right)$. Thus $|V(C)| \geq d\left(c_{1}^{-}\right)+d\left(c_{1}^{+}\right)-\left|\left\{c_{1}\right\}\right|+d+\left|\left\{c_{2}^{-}, c_{2}, x, y\right\}\right| \geq 3 \delta+2$, a contradiction. Thus $y \notin C\left(c_{2}^{+}, f\right)$. Suppose $y=f$. Then by Proposition 3.1(d), $d\left(c_{1}^{-}, x\right)=2$ and $J\left(c_{1}^{-}, x\right) \subseteq S_{2}$. Let $z \in J\left(c_{1}^{-}, x\right)$. From above, $z \notin C\left(f, c_{1}^{-}\right) \cup C\left(c_{2}^{+}, f\right)$ since $z x \in E(G)$. Thus $z=f$ and then $f^{+} x \in E(G)$ or $f^{+} c^{-} \in E(G)$. From above, $f^{+} x \notin E(G)$, and by the choice of $f, f^{+} c_{1}^{-} \notin E(G)$. Thus Proposition 3.4 is true.

Using a similar proof to Proposition 3.4, we can get the following result.
Proposition 3.5 If H is hamilton-connected, then $E\left(A, S_{2}\right)=E\left(B, S_{1}\right)=\emptyset$, where $A=$ $C\left(v, c_{2}^{-}\right), B=C\left(f, c_{1}^{-}\right) \cup C\left(c_{2}^{+}, w\right)$.

Proposition 3.6 If H is hamilton-connected, then $w u, w v, u f, v f \notin E(G)$.
Proof Suppose $w u \in E(G)$. Then by Proposition 3.1(b) and the choice of $u, d\left(c_{1}^{+}, w\right)=2$ and $J\left(c_{1}^{+}, w\right) \subseteq C\left(c_{1}^{+}, u\right]$. Let $x \in J\left(c_{1}^{+}, w\right)$. If $x \in C\left(c_{1}^{+}, u\right)$, then we obtain a contradiction with Proposition 3.4. Thus $J\left(c_{1}^{+}, w\right)=\{u\}$ and then $u^{+} c_{1}^{+} \in E(G)$ or $u^{+} w \in E(G)$. By the choice of u, $u^{+} c_{1}^{+} \notin E(G)$ and then $u^{+} w \in E(G), d\left(c_{2}^{+}, u^{+}\right)=2$. Similarly, $J\left(c_{2}^{+}, u^{+}\right)=\{w\}$ and $w^{+} u^{+} \in E(G)$. We obtain $a=\left|C\left(w^{+}, c_{1}^{-}\right)\right|+\left|C\left(u^{+}, c_{2}^{-}\right)\right| \geq h$, otherwise there is a longer cycle $C^{\prime}=c_{1} P\left[v_{1}, v_{2}\right] c_{2} c_{2}^{-} C\left[c_{2}^{+}, w^{+}\right] C\left[u^{+}, c_{1}\right]$ than C, a contradiction. Thus $|V(C)| \geq a+\left|C\left[c_{2}^{-}, w\right]\right|+$ $\left|C\left[c_{1}^{-}, u\right]\right|+\left|\left\{w^{+}, u^{+}\right\}\right| \geq a+d\left(c_{2}^{+}\right)+d\left(c_{1}^{+}\right)+\left|\left\{c_{2}^{+}, c_{1}^{+}, u^{+}, w^{+}\right\}\right| \geq 3 \delta+3$, a contradiction. Thus $w u \notin E(G)$. Similarly, wv, uf, vf $\notin E(G)$.

Proposition 3.7 If H is hamilton-connected, then $E\left(S_{1}, S_{2}\right)=\emptyset$.
Proof By Proposition 3.3, $v=u^{+}, u=v$ or $u \in C\left(v, c_{2}^{-}\right)$. Similarly, $f=w^{+}, f=w$ or $w \in C\left(f, c_{1}^{-}\right)$. Suppose $x y \in E(G), x \in S_{1}, y \in S_{2}$. Then $x \in C\left(f, c_{1}^{-}\right) \cup C\left(c_{2}^{+}, w\right) \cup\{w, f\}$, and by Propositions 3.4-3.6, we obtain a contradiction.

Proposition 3.8 For any vertex $x \in S_{1}$ and $y \in S_{2}$, there is no (x, y)-path in $G\left[H^{\prime} \cup\{x, y\}\right]$, where H^{\prime} is a component of $G-C$.

Proof Suppose that there is an (x, y)-path P with internal vertices in H^{\prime}. Since $N_{C}(H)=$ $\left\{c_{1}, c_{2}\right\}, H \cap H^{\prime}=\emptyset$. Similar to H, H^{\prime} is hamilton-connected and $h^{\prime}=\left|V\left(H^{\prime}\right)\right| \geq \delta-1$. Let P^{\prime} be a hamiltonian $\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$-path in H^{\prime} such that $v_{1}^{\prime} \in N_{H^{\prime}}(x), v_{2}^{\prime} \in N_{H^{\prime}}(y)$. By Lemma 2.1(1), $x^{-} x^{+}, y^{-} y^{+} \in E(G)$. Let $S_{1}^{\prime}=C\left(x^{+}, y^{-}\right)$and $S_{2}^{\prime}=C\left(y^{+}, x^{-}\right)$. By the previous proof of Case 3, we obtain that Propositions 3.1-3.7 also hold for $S_{1}^{\prime}, S_{2}^{\prime}, x$ and y. Obviously, $c_{2} \in S_{1}^{\prime}, c_{1} \in S_{2}^{\prime}$. Suppose $u=x^{+}$. Then by Proposition 3.1(b), $c_{1}^{+}=x^{-}$. We obtain $a=\left|C\left(c_{2}^{+}, y^{-}\right)\right| \geq h+h^{\prime}$, otherwise there exists a cycle $C^{\prime}=x P^{\prime}\left[v_{1}^{\prime}, v_{2}^{\prime}\right] y y^{-} C\left[y^{+}, c_{1}^{-}\right] c_{1}^{+} c_{1} P\left[v_{1}, v_{2}\right] c_{2} c_{2}^{+} C^{-}\left[c_{2}^{-}, x\right]$ longer than C, a contradiction. Then $\left|S_{1}^{\prime}\right|>a \geq 2 \delta-2$, a contradiction with Proposition 3.3. Thus
$u \neq x^{+}$. Suppose $u=x^{-}$. Then by Proposition 3.3, $v \in C\left(c_{1}^{+}, u\right), v=u=x^{-}$or $v=u^{+}=x$. If $v \in C\left(c_{1}^{+}, u\right)$, then $v \in S_{1}, c_{2}^{+} \in S_{1}^{\prime}, E\left(S_{1}^{\prime}, S_{2}^{\prime}\right) \neq \emptyset$, a contradiction with Proposition 3.7. Similarly, by Proposition 3.1(c) and Proposition 3.1(a), respectively, we obtain a contradiction if $v=u=x^{-}$or $v=u^{+}=x$. Thus $u \neq x^{-}$. Similarly, if $u \in C\left(c_{1}^{+}, x^{-}\right) \cup C\left(x^{+}, c_{2}^{-}\right) \cup\{x\}$, we obtain a contradiction. Thus Proposition 3.8 holds.

Proposition 3.9 If H is hamilton-connected, then $N(x) \cap V(G-C)=N(y) \cap V(G-C)=\emptyset$ for any vertex $x \in S_{1}$ and any vertex $y \in S_{2}$.

Proof Suppose $z_{1} \in N(x) \cap V(G-C)$. Then obviously, $z_{1} \notin V(H)$. Let H^{\prime} be a component of $G-C-H$ containing z_{1}. Similar to H, H^{\prime} is hamilton-connected, $d_{C}\left(H^{\prime}\right)=2$ and $\left|V\left(H^{\prime}\right)\right|=$ $h^{\prime} \geq \delta-1$. Let $N_{C}\left(H^{\prime}\right)=\left\{c_{1}^{\prime}, c_{2}^{\prime}\right\}, z_{2} \in N_{H}\left(c_{2}^{\prime}\right), x=c_{1}^{\prime}$ and P^{\prime} be a hamiltonian $\left(z_{1}, z_{2}\right)$-path in H^{\prime}. By Lemma 2.1(1), $c_{1}^{\prime-} c_{1}^{\prime+}, c_{2}^{\prime-} c_{2}^{\prime+} \in E(G)$. By Proposition 3.8, $c_{2}^{\prime} \in S_{1}$. Without loss of generality, assume $c_{1}^{\prime} \in C\left(c_{1}^{+}, c_{2}^{\prime-}\right)$. By the maximality of $C,\left|C\left(c_{1}^{\prime+}, c_{2}^{\prime-}\right)\right| \geq h^{\prime}$. By Proposition 3.3, $c_{1}^{\prime} \in C\left(c_{1}^{+}, u\right)$ and $c_{2}^{\prime} \in C\left(v, c_{2}^{-}\right)$. Without loss of generality, assume $c_{2}^{\prime} \in C\left(c_{1}^{\prime}, u\right]$. Let y_{1} and y_{2} be the neighbors of c_{1}^{+}closest to c_{1}^{\prime} and c_{2}^{\prime} on $C\left(c_{1}^{+}, c_{1}^{\prime}\right)$ and $C\left(c_{1}^{\prime}, c_{2}^{\prime}\right)$, respectively. Then by Proposition 3.2, $y_{1} y_{2} \in E(G)$. Let $A=C\left(y_{1}, c_{1}^{\prime-}\right) \cup C\left(y_{2}, c_{2}^{\prime-}\right)$. Then $|A| \geq h^{\prime}$, otherwise there is a longer cycle $C^{\prime}=c_{1}^{\prime} P^{\prime}\left[z_{1}, z_{2}\right] c_{2}^{\prime} c_{2}^{\prime-} C\left[c_{2}^{\prime+}, y_{1}\right] C^{-}\left[y_{2}, c_{1}^{\prime+}\right] c_{1}^{\prime-} c_{1}^{\prime}$ than C, a contradiction. Obviously, $N\left(c_{1}^{+}\right)-\left\{c_{1}, c_{1}^{-}\right\}$is contained in $S_{1}-A$. Thus $\left|S_{1}\right| \geq|A|+d\left(c_{1}^{+}\right)-\left|\left\{c_{1}, c_{1}^{-}\right\}\right| \geq 2 \delta-3$, a contradiction with Proposition 3.3. It follows that $N(x) \cap V(G-C)=\emptyset$ for any vertex $x \in S_{1}$. Similarly, $N(y) \cap V(G-C)=\emptyset$ for any vertex $y \in S_{2}$.

By Propositions 3.8 and 3.9 , we obtain that $G-C$ has only one component H which is hamilton-connected. Let $G_{1}=G\left[H \cup\left\{c_{1}, c_{2}\right\}\right], G_{2}=G\left[C\left[c_{1}^{+}, c_{2}^{-}\right]\right]$and $G_{3}=G\left[C\left[c_{2}^{+}, c_{1}^{-}\right]\right]$. Then by Propositions 3.7-3.9, we obtain $G_{1} \cup G_{2} \cup G_{3} \in \mathcal{F}$. It follows that Case 3 of Theorem 1.2 cannot hold. By Cases $1-3$, Theorem 1.2 is true.

References

[1] A. AINOUCHE. Quasi-claw-free graphs. Discrete Math., 1998, 179(1-3): 13-26.
[2] J. A. BONDY, U. S. R. MURTY. Graph Theory With Applications. American Elsevier Publishing Co., Inc., New York, 1976.
[3] B. JACKSON, Hao LI, Yongjin ZHU. Dominating cycles in regular 3-connected graphs. Discrete Math., 1992, $\mathbf{1 0 2 (2) : ~ 1 6 3 - 1 7 6 . ~}$
[4] H. A. JUNG. Longest paths joining given vertices in a graph. Abh. Math. Sem. Univ. Hamburg, 1986, 56: 127-137.
[5] H. A. JUNG. Longest circuits in 3-connected graphs. Colloquia Mathmathica, 1981, 403-438.
[6] Mingchu LI. Hamiltonian cycles in 3-connected claw-free graphs. J. Graph Theory, 1993, 17(3): 303-313.
[8] Mingchu LI. A note on the circumferences of 3-connected claw-free graphs. J. Nanjing Univ. Special Issue, 1991, 27: 98-105.
[9] Mingchu LI. Hamiltonicity in 2-connected claw-free graphs. J. Xinjiang Univ. Natur. Sci., 1996, 13(3): 22-32.
[10] Rao LI. Hamiltonicity of 3-connected quasi-claw-free graphs. Discrete Math., 2003, 265(1-3): 393-399.
[11] S. G. LOCKE. Ph.D Thesis, University of Waterloo, 1981.
[12] M. M. MATTHEWS, D. P. SUMNER. Longest paths and cycles in $K_{1,3}$-free graphs. J. Graph Theory, 1985, 9(2): 269-277.
[13] E. X. Y. QU, Jianglu WANG. Vertex pancyclicity in quasi-claw-free graphs. Discrete Math., 2009, 309(5): 1135-1141.
[14] Mingquan ZHAN. Vertex pancyclicity in quasi claw-free graphs. Discrete Math., 2007, 307(13): 1679-1683.

[^0]: Received June 4, 2012; Accepted July 7, 2013
 Supported by the National Natural Science Foundation of China (Grant No. 60673046).

 * Corresponding author

 E-mail address: xiaodongchen74@126.com (Xiaodong CHEN)

