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Abstract In this paper, we study the properties of generalized power series modules and

the filtration dimensions of generalized power series algebras. We obtain that [[4S,≤]]-

gfd([[AS,≤]]) = 4-gfd(A) if A is an R-module where R is a perfect and coherent commutative

algebra, and (R,≤) is standardly stratified.
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1. Introduction

As a generalization of power series rings, Ribenboim introduced the notion of generalized
power series rings in [1]. In fact, given a coefficient ring R and an ordered monoid (S,≤), Higman
[2] carried out this construction firstly, and also, Neumann [3] investigated many special examples
of these kinds of rings. Ribenboim [1] considered the ring consisting of functions from (S,≤)
to R, having support which is artinian and narrow. This restriction enables one to perform
the construction and gives rise to rings which are concrete enough to allow further study of
their properties. Ribenboim in [4] gave the condition under which a generalized power series
ring is noetherian, and provided some interesting examples of generalized power series rings.
Varadarajan [5] made a further research on noetherian generalized power series rings in 2001,
and investigated generalized power series modules [6] in the same year. Recently, Liu [7, 8] studied
the properties of generalized power series rings and gave the necessary and sufficient conditions
for a genralized power series ring to be reduced (2-primal, Dedekind finite, clean, uniquely clean,
Baer) if and only if its coefficient ring is reduced (2-primal, Dedekind finite, clean, uniquely clean,
Baer, respectively).

In this paper we study generalized power series algebras by another way– homological
method which is different from the above. We make research on modules over generalized power
series algebras and modules over their coefficient algebras through comparing their filtration di-
mensions. It has been several years to study algebras by way of filtration dimension. Here are
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some concise reviews about them. Scott [9] introduced the concept of quasi-hereditary algebras
in studying semisimple complex Lie algebras and highest weight module category of algebraic
groups in 1987. As a generalization of quasi-hereditary algebras, properly standardly stratified
algebras and standardly stratified algebras were introduced by Cline, Parshall, Scott [10] and
Dlab [11]. Many algebraists became more and more interested in this research field. For example,
in order to calculate the global dimensions of GL2- and GL3-algebras, Parker [12] introduced the
concept of ∇-(or 4-) good filtration dimension for a quasi-hereditary algebra and showed that
the global dimension of a Schur algebra for GL2 and GL3 is twice the good filtration dimension
in 2001. Zhu and Caenepeel [13] investigated these kinds of dimensions for standardly stratified
algebras and properly stratified algebras and gave several characterizations of ∇-good filtration
dimensions and 4-good filtration dimensions in 2004. Recently, Wang and Zhu [14] studied these
dimensions for standardly stratified algebras and Ringel’s dual and obtained that the ∇-good
filtration dimension of a standardly stratified algebra is equal to the 4-good filtration dimension
of its Ringel’s dual. On these foundation of the investigations above we make research on the
properties of generalized power series modules and the filtration dimensions of generalized power
series algebras, and establish the relation between filtration dimensions of R-modules and the
corresponding generalized power series [[RS,≤]]-modules.

2. Preliminaries

Let R be a commutative artinian ring, and A be a basic artinian algebra over R. Denote
by A-mod the category of finitely generated A-modules, and by gf the composition of maps
f : M1 → M2 and g : M2 → M3. The subcategories considered are full and closed under
isomorphism.

Definition 2.1 Given a class θ in A-mod, we denote by F(θ) the full subcategory of all A-

modules which have a θ-filtration, that is, a θ-filtration

0 = Mt ⊆ Mt−1 ⊆ · · · ⊆ M1 ⊆ M0 = M,

such that each factor Mi−1/Mi(1 ≤ i ≤ n) is isomorphic to an object in θ for 1 ≤ i ≤ t. The

modules in F(θ) are said to be θ-good modules, and the category F(θ) is said to be the θ-good

module category.

Definition 2.2 Let (A,≤) be the algebra together with a fixed ordering on a complete set

{e1, . . . , en} of primitive orthogonal idempotents (given by the natural ordering of indices). For

1 ≤ i ≤ n, let P (i) = Aei be an indecomposable projective A-module, and S(i) be the simple

top of P (i). The standard module 4(i) = 4A(i) is by definition the maximal factor module of

P (i) without composition factors S(j)(j > i). 4(i) = 4A(i) is said to be a proper standard

module, if it is the maximal factor module of 4(i) such that the multiplicity condition [4(i) :
S(i)] = dimkHomA(P (i),4(i)) = 1 holds.

Dually we have the notions of costandard modules ∇(i) and proper costandard modules
∇(i).
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Definition 2.3 The pair (A,≤) is said to be standardly stratified if AA ∈ F (4).
The pair (A,≤) is said to be properly standardly stratified if AA ∈ F (4) and AA ∈ F (4).

Definition 2.4 Let Λ be an associative algebra. A full subcategory C of Λ-mod is said to be

contravariantly finite in Λ-mod if for any X ∈ Λ-mod, there is a module FX ∈ C with a morphism

f : FX → X such that the restriction of Hom(−, f) to C is surjective. Such a morphism f is

said to be a right C- approximation of X. Dually, one can give the notion of a covariantly finite

subcategory. A subcategory of Λ-mod is said to be functorially finite in Λ-mod if it is both

contravariantly finite and covariantly finite.

Now we will introduce some preliminaries about generalized power series algebras.
Throughout the next part of this section and the next section without special statement

we always denote by R a commutative algebra over a field K with unit element 1, and by S an
additive monoid, i.e., S is a commutative monoid and the operation is denoted by addition sign
“+′′. In this case the unit element in S is denoted by 0. We assume that S is endowed with a
compatible strict order relation ≤ which is not necessarily a total order.

Definition 2.5 Let (S,≤) be a set endowed with an order relation (which is not necessarily

a total order). (S,≤) is said to be artinian if there does not exist an infinite strictly decreasing

sequence of elements in S: s1 > s2 > s3 > · · · .
Similarly, (S,≤) is said to be noetherian if there does not exist an infinite strictly increasing

sequence of elements in S: s1 < s2 < s3 < · · · .
Finally, (S,≤) is said to be narrow if each subset of pairwise order incomparable elements

of S is finite.

Definition 2.6 Suppose that S is an additive monoid with zero element 0. Let ≤ be an order

relation which is compatible: if s ≤ t and u ∈ S, then s + u ≤ t + u. Then (S,≤) is called an

ordered monoid. An ordered monoid (S,≤) is called a strictly ordered monoid (and ≤ is called

a strict order) whenever it satisfies the condition: if s < t and u ∈ S, then s + u < t + u.

Definition 2.7 Suppose that S is a strictly ordered monoid (written additively). Let R be

a commutative algebra over a field K with unit element 1, and denote by RS the set of all

mappings f : S → R. If f ∈ RS , let the support of f be supp(f) = {s ∈ S|f(s) 6= 0}. Define

[[RS,≤]] = {f ∈ RS |supp(f) is artinian and narrow }.
For any f, g in [[RS,≤]] and s ∈ S, the set Xs(f, g) = {(u, v) ∈ S×S|u+v = s, f(u) 6= 0 and

g(v) 6= 0} turns out to be finite. With pointwise addition and multiplication (called convolution)
defined by

fg(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v),

[[RS,≤]] turns out to be an associative commutative algebra over K with unit element e, where
e(0) = 1 and for all s ∈ S with s 6= 0, e(s) = 0. The map r 7−→ re naturally embeds R as a
subalgebra of [[RS,≤]].

For any R-module, we define [[RS,≤]]-module [[MS,≤]] : [[MS,≤]] = {ϕ : S → M |supp(ϕ)
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is artinian and narrow }. For any f in [[RS,≤]], ϕ in [[MS,≤]] and s ∈ S, the set Xs(f, ϕ) =
{(u, v) ∈ S×S|u+v = s, f(u) 6= 0 and ϕ(v) 6= 0} turns out to be finite. With pointwise addition
and scalar product defined by

fϕ(s) =
∑

(u,v)∈Xs(f,ϕ)

f(u)ϕ(v)

[[MS,≤]] turns out to be a unital [[RS,≤]]-module. For any element m ∈ M , let ϕm be a map
from S to M with ϕm(0) = m and ϕm(s) = 0 for all the other s ∈ S. The map m 7−→ ϕm

naturally embeds M as a submodule of [[MS,≤]].

We call [[RS,≤]] a generalized power series algebra, and [[MS,≤]] a generalized power series
module.

Example 2.1 If S = N, the set of the natural numbers with the usual order, then A = [[RN,≤]] ∼=
R[[x]], where R[[x]] is the ring of formal power series in one indeterminate and coefficients in R
and R is the real field.

Example 2.2 Let R be a ring, and N be the set of natural numbers. Consider the multiplicative
monoid N≥1, endowed with the usual order ≤. Then A = [[RN≥1,≤]] is the ring of arithmetical
function with values in R, endowed with the Dirichlet convolution:

(f ∗ g)(n) =
∑

d|n
f(d)g(

n

d
)

for each n ≥ 1.

Remark Varadarajan pointed out in [6] that Ribenboim’s proofs in [4] are valid for the ring

[[Rs,≤]] to be noetherian even when R is noncommutative in the case of sided noetherianness.

3. Some lemmas on [[RS,≤]]-modules

We will give some lemmas in this section in order to prove the main results.

Lemma 3.1 If R is a perfect and coherent commutative ring with unit element 1, then [[RS,≤]]
is flat as a right R-module.

Proof As a right R-module, [[RS,≤]] ∼= ∏
s∈S R is projective, and so it is flat. ¤

Lemma 3.2 Let R be a commutative algebra with unit element 1, (S,≤) be a strictly ordered

monoid, [[RS,≤]] be a generalized power series algebra, and [[MS,≤]] be an [[RS,≤]]-module. Then

we have the following

(a) If M is an injective [[RS,≤]]-module, then M is an injective R-module;

(b) If M is a flat R-module, then [[RS,≤]]⊗R M is a flat [[RS,≤]]-module;

(c) If M is a flat [[RS,≤]]-module, then M is a flat R-module;

(d) If M is an injective R-module, then HomR([[RS,≤]],M) is an injective [[RS,≤]]-module.

Proof (a) If M is an injective [[RS,≤]]-module, then M is an injective
∏

R-module since
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[[RS,≤]] ∼= ∏
s∈S(RR). For any left ideal I in R we have that

∏
s∈S I is a left ideal in

∏
s∈S R,

and so every homomorphism g′ ∈ Hom(
∏

s∈S I, M) can be extended to a homomorphism f ′ ∈
Hom(

∏
s∈S R, M) such that

f ′(a1, a2, . . . , as, . . .) = g′(a1, a2, . . . , as, . . .)

in case (a1, a2, . . . , as, . . .) ∈
∏

s∈S I according to Baer’s criterion. Thus, for any left ideal I in
R, every homomorphism g ∈ Hom(I, M) can be extended to a homomorphism f ∈ Hom(R, M)
such that g(a) = f(a) for a ∈ I. Hence, M is an injective R-module.

(b) If M is a flat R-module, then [[RS,≤]] ⊗R M is a flat [[RS,≤]]-module according to
Theorem 4 on page 147 in [15].

(c) Obviously, if M is an [[RS,≤]]-module, then M is an R-module. If M is a flat [[RS,≤]]-
module, then HomZ(M, Q/Z) is an injective [[RS,≤]]-module by Theorem 31 on page 147 in [16],
where Z is the ring of integers, and Q is a commutative additive group consisting of all rational
numbers, and so Q is a Z−module. From (a) in this lemma we know that HomZ(M, Q/Z) is an
injective R-module. Thus, M is a flat R-module according to Theorem 31 on page 147 in [16].

(d) Since R is a commutative ring, the generalized power series ring [[RS,≤]] can be regarded
as an algebra over R. Therefore, we know that HomR([[RS,≤]],M) is an injective [[RS,≤]]-module
from Lemma 3 on page 79 in [16]. ¤

Lemma 3.3 Let R be a commutative algebra with unit element 1, (S,≤) be a strictly ordered

monoid. If A is an R-module, and B is a submodule of A, then [[AS,≤]]
[[BS,≤]]

∼= [[(A
B )S,≤]].

Proof We define a homomorphism ϕ from [[AS,≤]]
[[BS,≤]]

to [[(A
B )S,≤]] such that ϕ(f) = f̃ , where

f = f + [[BS,≤]], f ∈ [[AS,≤]] and f̃ is given by f̃(s) = f(s) + B, a mapping from S to A
B .

Firstly, we prove that ϕ is well-defined. If f = g, then f + [[BS,≤]] = g + [[BS,≤]]. Thus, for
any s ∈ S, we have that f(s)− g(s) ∈ B, and so, f(s) + B = g(s) + B. Hence, f̃ = g̃. It is easy
to check that ϕ is a homomorphism.

Secondly, we prove that ϕ is an isomorphism. If f̃ = 0, then f(s) + B = 0 for any s ∈ S.
Thus, f(s) ∈ B, i.e., f ∈ [[BS,≤]], that is, f = 0. So, Kerϕ = 0, i.e. ϕ is injective. Now we prove
that ϕ is surjective. For any f̃ ∈ [[(A

B )S,≤]], we have that f ∈ [[AS,≤]]
[[BS,≤]]

corresponds to f̃ under ϕ.
Thus, ϕ is surjective. Therefore, ϕ is an isomorphism. This completes the proof. ¤

Lemma 3.4 Let (R,≤) be a standardly stratified commutative algebra, Define

(i) [[4(i)S,≤]] = [[RS,≤]]⊗R 4(i); (ii) [[4(i)S,≤]] = [[RS,≤]]⊗R 4(i);
(iii) [[∇(i)S,≤]] = [[RS,≤]]⊗R ∇(i); (iv) [[∇(i)S,≤]] = [[RS,≤]]⊗R ∇(i).

Then we have the following:

(a) If M ∈ FR(4), then [[MS,≤]] ∈ F[[RS,≤]]([[4S,≤]]);

(b) If M ∈ FR(4), then [[MS,≤]] ∈ F[[RS,≤]]([[4
S,≤

]]);
(c) If M ∈ FR(∇), then [[MS,≤]] ∈ F[[RS,≤]]([[∇S,≤]]);

(d) If M ∈ FR(∇), then [[MS,≤]] ∈ F[[RS,≤]]([[∇
S,≤

]]).

Proof (a) If M ∈ FR(4), then there exists a filtration chain 0 = Mn ⊆ Mn−1 ⊆ · · · ⊆ M1 ⊆
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M0 = M such that Mi

Mi+1
∼= 4(j) holds for some j = 1, 2, . . . , n (i = 1, 2, . . . , n). Thus , we have

the following chain

0 = [[RS,≤]]⊗R Mn ⊆ [[RS,≤]]⊗R Mn−1 ⊆ · · · [[RS,≤]]⊗R M0 = [[RS,≤]]⊗R M

i.e., the chain 0 = [[MS,≤
n ]] ⊆ [[MS,≤

n−1]] ⊆ · · · ⊆ [[MS,≤
1 ]] ⊆ [[MS,≤

0 ]] = [[MS,≤]] is desired. In
fact, thanks to Lemma 3.3 we have that

[[MS,≤
i ]]

[[MS,≤
i+1 ]]

∼= [[(
Mi

Mi+1
)S,≤]] ∼= [[4(j)S,≤]]

holds for some j = 1, 2, . . . , n (i = 1, 2, . . . , n). Thus, [[MS,≤]] ∈ F[[RS,≤]]([[4S,≤]]).
Similarly to the proof of (a), we can prove (b), (c) and (d). ¤
The following lemma can be proved easily.

Lemma 3.5 Let (R,≤) be a standardly stratified commutative algebra. If [[BS,≤]] ∈ F[[RS,≤]]([[4S,≤]]),
then B ∈ FR(4).

Lemma 3.6 Assume that R is an associative ring with unit element 1, and A is a left R-module,

then we have the following

(
∏

λ∈Λ

R)⊗R A ∼=
∏

λ∈Λ

(R⊗R A) ∼=
∏

λ∈Λ

A (1)

where Λ is a finite or infinite set.

Proof In case Λ is finite, it is obvious that the lemma holds. So, we consider the case of
infiniteness. From the definition of products and tensor products, it is easy to obtain the following
homomorphism,

g : (
∏

λ∈Λ

R)⊗R A −→
∏

λ∈Λ

(R⊗R A) (2)

(· · · rλ · · · )⊗ a 7−→ (· · · rλ ⊗ a · · · )
It is easy to see that g is an isomorphism when A is the regular module R.
One can prove that g is also an isomorphism when A is a free left R-module, similarly.
Now, for any left R-module A, there exist free left R-modules F1 and F2 such that

F2
f2−−−−→ F1

f1−−−−→ A −−−−→ 0 (3)

is an exact sequence. Thus, we have the following commutative diagram:

(
∏

λ∈Λ R)⊗RF2
I⊗f2−−−−→ (

∏
λ∈Λ R)⊗RF1

I⊗f1−−−−→ (
∏

λ∈Λ R)⊗RA −−−−→ 0 −−−−→ 0

g2

y g1

y g

y ‖ ‖
∏

λ∈Λ(R⊗RF2)
∏

λ∈Λ(I⊗f2)−−−−−−−−→ ∏
λ∈Λ(R⊗RF1)

∏
λ∈Λ(I⊗f1)−−−−−−−→ ∏

λ∈Λ(R⊗RA) −−−−→ 0 −−−−→ 0

Diagram 3.1 Five Lemma Diagram

where g2, g1 and g are as ones in (2), and moreover g1 and g2 are isomorphisms. From Five
Lemma we learn that g is an isomorphism. This completes the proof. ¤
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Remark (i) Dually, in case M is a right R-module, we also have

M ⊗R (
∏

λ∈Λ

R) ∼=
∏

λ∈Λ

(M ⊗R R) ∼=
∏

λ∈Λ

M.

(ii) For the general case, the formula does not hold (one can refer to page 152, in [13]);
(iii) If Mλ is a free right R-module(λ ∈ Λ), and A is a left R-module, then one can similarly

prove
(
∏

λ∈Λ

Mλ)⊗R A ∼=
∏

λ∈Λ

(Mλ ⊗R A).

Lemma 3.7 F[[RS,≤]([[4S,≤]]) is contravariantly finite in the subcategory consisting of all mod-

ules in the form of [[AS,≤].

Proof Since FR(4) is contravariantly finite, there exists a right FR(4)- approximation f :
C −→ A of A for each R-module A. Thus, for any B ∈ FR(4) we have the following exact
sequence

HomR(B,C)
Hom(B,f)−−−−−−→ HomR(B,A) −−−−→ 0.

Now we prove that 1[[RS,≤]] ⊗ f : [[RS,≤]] ⊗R C ' [[CS,≤]] −→ [[RS,≤]] ⊗R A ' [[AS,≤]]
is a right F[[RS,≤]]([[4S,≤]])-approximation of [[AS,≤]]. i.e., we prove that for any [[BS,≤]] ∈
F[[RS,≤]]([[4S,≤]]) there exists the following exact sequence

Hom[[RS,≤]]([[BS,≤]],[[CS,≤]])
Hom[[RS,≤]]([[B

S,≤]],1[[RS,≤]]⊗f)

−−−−−−−−−−−−−−−−−−−−→Hom[[RS,≤]]([[BS,≤]],[[AS,≤]]) −−−−→ 0.

As we have that

Hom[[RS,≤]]([[B
S,≤]], [[AS,≤]]) ' Hom[[RS,≤]]([[R

S,≤]]⊗R B, [[AS,≤]])

' HomR(B,Hom[[RS,≤]]([[R
S,≤]], [[AS,≤]]))

' HomR(B, [[AS,≤]]),

and that Hom[[RS,≤]]([[BS,≤]], [[CS,≤]]) ' HomR(B, [[CS,≤]]), it suffices to prove that there exists
the following exact sequence

HomR(B, [[CS,≤]])
HomR(B,1[[RS,≤]]⊗f)

−−−−−−−−−−−−−−→ HomR(B, [[AS,≤]]) −−−−→ 0.

That is to prove that for any given R-homomorphism ξ : B −→ [[AS,≤]] there exists an R-
homomorphism η : B −→ [[CS,≤]] such that the following commutative diagram holds.

B

[[CS,≤]]

@
@

@@I

¡
¡

¡¡µ

- [[AS,≤]]

η ξ

1[[RS,≤]] ⊗ f

Diagram 3.2 Universal Property Diagram

As
[[CS,≤]] ' [[RS,≤]]⊗R C '

∏

i∈S

R⊗R C '
∏

i∈S

C
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and
[[AS,≤]] ' [[RS,≤]]⊗R A '

∏

i∈S

R⊗R A '
∏

i∈S

A,

we can regard the R-homomorphism 1[[RS,≤]] ⊗ f : [[RS,≤]] ⊗R C −→ [[RS,≤]] ⊗R A as the R-
homomorphism

∏
i∈S f :

∏
i∈S C −→ ∏

i∈S A. Now, let R-homomorphism g : C −→ ∏
i∈S C

be the embedding map and R-homomorphism h :
∏

i∈S A −→ A be the projective map. Then
h(

∏
i∈S f)g = f . Since f : C −→ A is a right FR(4)-approximation of A, and B ∈ FR(4),

there exists a τ in HomR(B,C) such that the following commutative diagram holds:

C
∏

C
∏

A A

B

- - -

A
A

A
AK

HHHHHHHHHY

©©©©©©©©©*

¢
¢
¢
¢̧

g
∏

f h

τ
η ξ

Diagram 3.3 Approximation Property Diagram

Now, it is sufficient to take η = gτ . Thus, 1[[RS,≤]] ⊗ f : [[RS,≤]]⊗R C −→ [[RS,≤]]⊗R A is
a right F[[RS,≤]]([[4S,≤]])-approximation of [[AS,≤]]. This completes the proof. ¤

Similarly, we have:

Lemma 3.8 F[[RS,≤]]([[∇
S,≤

]]) is covariantly finite in the subcategory consisting of modules in

the form of [[AS,≤]].

Lemma 3.9 If R is a commutative ring with unit element 1 and A is an R-module, then we

have [[AS,≤]] ∼= [[RS,≤]]⊗R A.

Proof From Lemma 3.6 we have

[[AS,≤]] ∼=
∏

s∈S

A ∼=
∏

s∈S

(R⊗R A) ∼= (
∏

s∈S

R)⊗R A ∼= [[RS,≤]]⊗R A. ¤

4. On [[4S,≤]]-gfd of [[RS,≤]]

In this section, let R be a perfect and coherent commutative algebra with unit element 1
(in fact, in this case R is artinian [17]), and (R,≤) be a standardly stratified algebra.

For any [[RS,≤]]-module [[AS,≤]] there exists a finite F[[RS,≤]]([[4S,≤]])-resolution,

· · · −→ [[MS,≤
d ]] −→ · · · −→ [[MS,≤

0 ]] −→ [[AS,≤]] −→ 0,

where [[MS,≤
i ]] ∈ F[[RS,≤]]([[4S,≤]]), i = 1, 2, . . . , d.

Definition 4.1 Let R be a standardly stratified algebra. We define [[4S,≤]]-gfd(AS,≤]]) as the

minimal index d in all F[[RS,≤]]([[4S,≤]])-resolutions. If such a minimal index d does not exist,we

define [[4S,≤]]-gfd(AS,≤]] = ∞. Furthermore, we define,

[[4S,≤]]-gfd([[RS,≤]]) = sup{[[4S,≤]]-gfd([[AS,≤]])|A ∈ mod R}.
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Similarly, one can give the definitions of [[∇S,≤
]]-gfd(AS,≤]]) and [[∇S,≤

]]-gfd(RS,≤]]).

Theorem 4.1 Let A be an R-module. Then 4-gfd(A) = [[4S,≤]]-gfd([[AS,≤]]).

Proof Considering an FR(4)-resolution of A

· · · −→ Mn −→ Mn−1 · · · −→ M1 −→ M0 −→ A −→ 0,

we obtain an F[[RS,≤]]([[4S,≤]])-resolution of [[AS,≤]] as follows

· · · −→ [[RS,≤]]⊗R Mn −→ [[RS,≤]]⊗R Mn−1 · · · −→ [[RS,≤]]⊗R M1

−→ [[RS,≤]]⊗R M0 −→ [[RS,≤]]⊗R A −→ 0.

Thus, [[4S,≤]]-gfd([[AS,≤]]) ≤ 4-gfd(A).
We now prove 4-gfd(A) ≤ [[4S,≤]]-gfd([[AS,≤]]).
Suppose [[4S,≤]]-gfd([[AS,≤]]) = n. Then there exists an F[[RS,≤]]([[4S,≤]])-resolution of

[[AS,≤]] as follows

0 −→ Qn −→ Qn−1 · · · −→ Q1 −→ Q0 −→ [[AS,≤]] −→ 0,

where Qi ∈ F[[RS,≤]]([[4S,≤]]) (i = 1, 2, . . . , n). As an R-module, we have that Qi ∈ FR(4).
Since [[AS,≤]] is the direct product of |S| copies of A, we know that 4-gfd(

∏
A) = n, and

4-gfd(A) ≤ [[4S,≤]]-gfd([[AS,≤]]).

Hence, 4-gfd(A) = [[4S,≤]]-gfd([[AS,≤]]). ¤
Similarly, the following holds.

Theorem 4.2 Let A be an R-module. Then [[∇S,≤
]]-gfd([[AS,≤]]) = ∇-gfd(A).

Theorem 4.3 Let R be a perfect and coherent commutative algebra, and (R,≤) be a stan-

dardly stratified algebra. If A is an R-module, then [[4S,≤]]-gfd([[AS,≤]]) = d if and only if

Exti
[[RS,≤]]([[A

S,≤],[[∇(λ)S,≤]])= 0 for all i > d and λ ∈ Λ, but there exists a λ ∈ Λ such that

Extd
[[RS,≤]]([[A

S,≤]], [[∇(λ)S,≤]]) 6= 0.

Proof As an R-module we have that [[∇(λ)S,≤]] ∼= ∏∇(λ). Thus, we have that

[[4S,≤]]-gfd([[AS,≤]]) = d ⇐⇒4-gfd(A) = d ⇐⇒ Exti
R(A,∇(λ)) = 0

for all i > d and λ ∈ Λ, but there exists a λ ∈ Λ such that Extd
R(A,∇(λ)) 6= 0 ⇐⇒

Exti
R(A,

∏∇(λ)) = 0 for all i > d and λ ∈ Λ, but there exists a λ ∈ Λ such that Extd
R(A,

∏∇(λ)) 6=
0. Since

Exti
[[RS,≤]]([[R

S,≤]]⊗R A, [[∇(λ)S,≤]]) ∼= Exti
R(A,Hom[[RS,≤]]([[R

S,≤]], [[∇(λ)S,≤]]))

∼= Exti
R(A, [[∇(λ)S,≤]]) ∼= Exti

R(A,
∏

s∈S

∇(λ)) ∼=
∏

s∈S

Exti
R(A,∇(λ)),

we know that [[4S,≤]]-gfd([[AS,≤]]) = d if and only if

Exti
[[RS,≤]]([[A

S,≤]], [[∇(λ)S,≤]]) = 0



58 Hailou YAO and Ying GUO

for all i > d and λ ∈ Λ, but there exists a λ ∈ Λ such that

Extd
[[RS,≤]]([[A

S,≤]], [[∇(λ)S,≤]]) 6= 0. ¤

Similarly, one can obtain the following

Theorem 4.4 Let R be a perfect and coherent commutative algebra, and (R,≤) be a stan-

dardly stratified algebra. If A is an R-module, then [[∇S,≤
]]-gfd([[AS,≤]]) = d if and only if

Exti
[[RS,≤]]([[4(λ)S,≤]], [[AS,≤]]) = 0 for all i > d and λ ∈ Λ, but there exists a λ ∈ Λ such that

Extd
[[RS,≤]]([[4(λ)S,≤]], [[AS,≤]]) 6= 0.

Theorem 4.5 Let A,B and C be R-modules. If

0 → [[AS,≤]] → [[BS,≤]] → [[CS,≤]] → 0

is an exact sequence, we have the following

(i) If [[4S,≤]]-gfd([[BS,≤]]) > [[4S,≤]]-gfd([[AS,≤]]), then

[[4S,≤]]-gfd([[CS,≤]]) = [[4S,≤]]-gfd([[BS,≤]]);

(ii) If [[4S,≤]]-gfd([[BS,≤]]) < [[4S,≤]]-gfd([[AS,≤]]), then

[[4S,≤]]-gfd([[CS,≤]]) = [[4S,≤]]-gfd([[AS,≤]]) + 1;

(iii) If [[4S,≤]]-gfd([[BS,≤]]) = [[4S,≤]]-gfd([[AS,≤]]), then

[[4S,≤]]-gfd([[CS,≤]]) ≤ [[4S,≤]]-gfd([[AS,≤]]) + 1.

Proof For any [[∇(λ)S,≤]] and n, there exists a long exact sequence

· · · → Extn
[[RS,≤]]([[C

S,≤]], [[∇(λ)S,≤]]) → Extn
[[RS,≤]]([[B

S,≤]], [[∇(λ)S,≤]])

→ Extn
[[RS,≤]]([[A

S,≤]], [[∇(λ)S,≤]]) → Extn+1
[[RS,≤]]

([[CS,≤]], [[∇(λ)S,≤]])

→ Extn+1
[[RS,≤]]

([[BS,≤]], [[∇(λ)S,≤]]) → Extn+1
[[RS,≤]]

([[AS,≤]], [[∇(λ)S,≤]]) → · · · .

Assume [[4S,≤]]-gfd([[BS,≤]]) = m, and [[4S,≤]]-gfd([[AS,≤]]) = n, we will discuss the
following three cases.

Case 1 If m > n, then Extm
[[RS,≤]]([[A

S,≤]], [[∇(λ)S,≤]]) = 0, but there exists a λ such that

Extm
[[RS,≤]]([[B

S,≤]], [[∇(λ)S,≤]]) 6= 0.

According to the above long exact sequence it holds that

Extm
[[RS,≤]]([[C

S,≤]], [[∇(λ)S,≤]]) 6= 0.

Thus, we have that

Extm+j
[[RS,≤]]

([[BS,≤]], [[∇(λ)S,≤]]) ' Extm+j
[[RS,≤]]

([[CS,≤]], [[∇(λ)S,≤]])

for any j > 0 and λ ∈ Λ. From Theorem 4.3 we learn that [[4S,≤]]-gfd([[CS,≤]]) = [[4S,≤]]-
gfd([[BS,≤]]).
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Case 2 If m < n, then Extn
[[RS,≤]]([[B

S,≤]], [[∇(λ)S,≤]]) = 0, but there exists a λ such that

Extn
[[RS,≤]]([[A

S,≤]], [[∇(λ)S,≤]]) 6= 0.

According to the above long exact sequence it holds that

Extn+1
[[RS,≤]]

([[CS,≤]], [[∇(λ)S,≤]]) 6= 0.

Thus, we have that

Extn+j
[[RS,≤]]

([[CS,≤]], [[∇(λ)S,≤]]) ' Extn+j−1
[[RS,≤]]

([[AS,≤]], [[∇(λ)S,≤]])

for any j > 0 and λ ∈ Λ. From Theorem 4.3 we learn that [[4S,≤]]-gfd([[CS,≤]]) = [[4S,≤]]-
gfd([[AS,≤]]) + 1.

Case 3 If m = n, then Extn+1
[[RS,≤]]

([[BS,≤]], [[∇(λ)S,≤]]) ' Extn+1
[[RS,≤]]

([[AS,≤]], [[∇(λ)S,≤]]) = 0.
According to the above long exact sequence it holds that Extn+2

[[RS,≤]]
([[CS,≤]],[[∇(λ)S,≤]]) = 0.

From Theorem 4.3 we learn that [[4S,≤]]-gfd([[CS,≤]]) ≤ [[4S,≤]]-gfd([[AS,≤]]) + 1. ¤
Similarly, one can obtain

Theorem 4.6 Let A,B and C be R-modules. If

0 → [[AS,≤]] → [[BS,≤]] → [[CS,≤]] → 0

is an exact sequence, then we have the following

(i) If [[∇S,≤
]]-gfd([[BS,≤]]) > [[∇S,≤

]]-gfd([[CS,≤]]), then

[[∇S,≤
]]-gfd([[AS,≤]]) = [[∇S,≤

]]-gfd([[CS,≤]]);

(ii) If [[∇S,≤
]]-gfd([[BS,≤]]) < [[∇S,≤

]]-gfd([[CS,≤]]), then

[[∇S,≤
]]-gfd([[AS,≤]]) = [[∇S,≤

]]-gfd([[CS,≤]]) + 1;

(iii) If [[∇S,≤
]]-gfd([[BS,≤]]) = [[∇S,≤

]]-gfd([[CS,≤]]), then

[[∇S,≤
]]-gfd([[AS,≤]]) ≤ [[∇S,≤

]]-gfd([[CS,≤]]) + 1.

Acknowledgements The authors would like to express their thanks to the referee’s comments
and suggestions.

References

[1] P. RIBENBOIM. Generalized Power Series Rings. Lattices, semigroups, and universal algebra (Lisbon, 1988),

271–277, Plenum, New York, 1990.

[2] G. HIGMAN. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3), 1952, 2: 326–336.

[3] B. H. NEUMANN. On ordered division rings. Trans. Math. Soc., 1949, 66: 202–252.

[4] P. RIBENBOIM. Noetherian Rings of generalized power series. J. Pure Appl. Algebra, 1992, 79(3): 293–312.

[5] K. VARADARAJAN. Noetherian generalized power series rings and Modules. Comm. Algebra, 2001, 29(1):

245–251.

[6] K. VARADARAJAN. Generalized power series modules. Comm. Algebra, 2001, 29(3): 1281–1294.

[7] Zhongkui LIU. Special properties of rings of generalized power series. Comm. Algebra, 2004, 32(8): 3215–

3226.

[8] Zhongkui LIU. Baer rings of generalized power series. Glasg. Math. J., 2002, 44(3): 463–469.

[9] L. SCOTT. Simulating Algebraic Geometry with Algebra (I). Amer. Math. Soc., Providence, RI, 1987.



60 Hailou YAO and Ying GUO

[10] E. CLINE, B. PARSHALL, L. SCOTT. Stratifying endomorphism algebras. Mem. Amer. Math. Soc., 1996,

124(591): 1–119.

[11] V. DLAB. Properly stratified algebras. C. R. Acad. Sci. Paris Sér. I Math., 2000, 331(1): 191–196.

[12] A. E. PARKER.The Global dimension of Schur algebras for GL2 and GL3. J. Algebra. 2001, 241(1):

340–378.

[13] Bin ZHU, S. CAENEPEEL. On good filtration dimensions for standardly stratified algebras. Comm. Algebra,

2004, 32(4): 1603–1614.

[14] Shugui WANG, Bin ZHU. Finitistic dimensions and good filtration dimensions of stratified algebras. Bull.

Austral. Math. Soc., 2004, 69(2): 341–347.

[15] W. TONG. Introduction to Homological Algebra. Higher Education Press, Beijing, 1998. (in Chinese)

[16] B. ZHOU. Homological Algebra. Scientific Press, Beijing, 1999. ( in Chinese)

[17] I. W. LAM. Lectures on Modules and Rings. Springer-Verlag, New York, 1999.


