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Abstract On the basis of concepts of bipolar fuzzy sets, we establish a new framework

of bipolar fuzzy subsemirings (resp., ideals) which is a generalization of traditional fuzzy

subsemirings (resp., ideals) in semirings. The concepts of bipolar fuzzy subsemirings (resp.,

ideals) are introduced and related properties are investigated by means of positive t-cut,

negative s-cut and equivalence relation. Particularly, the notion of a normal bipolar fuzzy

ideal is given, and some basic properties are studied in this paper.
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1. Introduction

With the application of traditional fuzzy sets presented by Zadeh [11] in the fields of algebraic
structures, the study of fuzzy algebras has achieved great success. Many wonderful and valuable
results have been obtained by some mathematical researchers, such as Rosenfeld [9], Mordeson,
Malik [8], Shum [1] and Zhan [12]. However, in traditional fuzzy sets, the membership degrees
of elements are all restricted to the interval [0, 1], which leads to a great difficulty in expressing
the difference of the irrelevant elements from the contrary elements in fuzzy sets. In order to
avoid this problem, Lee [6] introduced the concept of bipolar fuzzy sets which is an extension of
the traditional fuzzy sets. Recently, based on the results of bipolar fuzzy sets, more and more
researchers have devoted themselves to applying some results of bipolar fuzzy sets to algebraic
structures [5, 7].

On the other hand, in the past several decades, studies on the subject of semirings introduced
by Vandiver [10] have attracted researchers’ widespread interest, and related results emerged
in a large amount [2–4]. While, so far, to our knowledge, bipolar fuzzy sets have not been
widely exploited in semirings. So, it is reasonable and necessary to consider a new framework
of bipolar fuzzy subsemirings (resp., ideals). In this paper, we will give the concepts of bipolar
fuzzy subsemirings (resp., ideals) and investigate related properties. The rest of this article is
organized as follows. In Section 2, we introduce the basic notions which will be used in the
paper. In Section 3, we present the concepts of bipolar fuzzy subsemirings (resp., ideals), and
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discuss related properties. In Section 4, the characterization of the maps from the set of bipolar
fuzzy ideals to the set of ideals are investigated by means of equivalence relations. Finally, we
characterize normal bipolar fuzzy ideals in Section 5.

2. Preliminaries

In this section, we review some concepts regarding semiring [8] and bipolar fuzzy set [4].

Suppose that (S, +) and (S, ·) are two semigroups, then the algebraic system (S, +, ·) is
called a semiring, in which the two algebraic structures are connected by the distributive laws:
a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a for all a, b, c ∈ S. A non-empty subset
A of a semiring S is called a subsemiring of S if A is closed with respect to the addition and
multiplication in (S, +, ·). A non-empty subset I of a semiring S is called a left (resp., right) ideal
of S if not only I is closed with respect to the addition in (S, +, ·) but also SI ⊆ I(resp., IS ⊆ I).
Further, I is called an ideal of S if it is both a left and a right ideal of S.

Let S be a universe of discourse. Denotes J[0,1] = {µP |µP : S → [0, 1]}, and J[−1,0] =
{µN |µN : S → [−1, 0]}. For every µP

A ∈ J[0,1] and µN
A ∈ J[−1,0], we call A = {(x, µP

A(x), µN
A (x)) |

x ∈ S} a bipolar-valued fuzzy set in S, where µP
A(x) is called a positive membership degree which

denotes the satisfaction degree of an element x to some specific property about the bipolar-valued
fuzzy set A, and µN

A (x) is called a negative membership degree which denotes the satisfaction
degree of x to some implicit counter-property about the bipolar-valued fuzzy set A. For the
sake of simplicity, we shall use the symbol A = (µP

A, µN
A ) for the bipolar-valued fuzzy set A =

{(x, µP
A(x), µN

A (x)) | x ∈ S}, and use the notion of bipolar fuzzy sets instead of the notion of
bipolar-valued fuzzy sets.

3. Bipolar fuzzy subsemirings and bipolar fuzzy ideals

Throughout this paper, S and T are semirings unless otherwise specified.

Definition 3.1 A bipolar fuzzy set A = (µP
A, µN

A ) of S is called a bipolar fuzzy subsemiring of

S if for all x, y ∈ S:

(1a) µP
A(x + y) ≥ min{µP

A(x), µP
A(y)} and µN

A (x + y) ≤ max{µN
A (x), µN

A (y)},
(2a) µP

A(xy) ≥ min{µP
A(x), µP

A(y)} and µN
A (xy) ≤ max{µN

A (x), µN
A (y)}.

Example 3.2 Consider a semiring S = {0, 1, 2, 3} with the following tables:

+ 0 1 2 3

0 0 1 2 3

1 1 1 2 3

2 2 2 2 3

3 3 3 3 2

· 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 1 1

3 0 1 1 1
Define a bipolar fuzzy set A = (µP

A, µN
A ) as follows:
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0 1 2 3

µP
A 0.5 0.3 0.3 0.3

µN
A -0.7 -0.2 -0.2 -0.2

Then by routine calculations, we know that A = (µP
A, µN

A ) is a bipolar fuzzy subsemiring of S.

Definition 3.3 A bipolar fuzzy set A = (µP
A, µN

A ) of S is called a bipolar fuzzy left (resp., right)

ideal of S if for all x, y ∈ S there hold (1a) and

(2b) µP
A(xy) ≥ µP

A(y) (resp., µP
A(xy) ≥ µP

A(x)) and µN
A (xy) ≤ µN

A (y) (resp., µN
A (xy) ≤

µN
A (x)).

If a bipolar fuzzy set is not only a bipolar fuzzy left ideal but also a bipolar fuzzy right
ideal of S, then we call it a bipolar fuzzy ideal of S. In this paper, the collection of all bipolar
fuzzy ideals of S is denoted by BFI(S). We note that a bipolar fuzzy set A = (µP

A, µN
A ) of S is a

bipolar fuzzy ideal of S if and only if it satisfies (1a) and

(3c) µP
A(xy) ≥ max{µP

A(x), µP
A(y)} and µN

A (xy) ≤ min{µN
A (x), µN

A (y)} for all x, y ∈ S.

Example 3.4 The set N consisting of all non-zero positive integers is a semiring with respect
to usual addition and multiplication. Define a bipolar fuzzy set A = (µP

A, µN
A ) of N as:

µP
A(x) =





0, if 0 < x < 3,

0.5, if 3 ≤ x < 6,

0.8, if x ≥ 6

and

µN
A (x) =





−0.1, if 0 < x < 3,

−0.5, if 3 ≤ x < 6,

−1, if x ≥ 6.

Then it is easy to show that A is a bipolar fuzzy ideal of N .

Definition 3.5 Let A = (µP
A, µN

A ) ∈ BFI(S), B = (µP
B , µN

B ) ∈ BFI(S). Then we call A ⊆ B if

µP
A(x) ≤ µP

B(x) and µN
A (x) ≥ µN

B (x) for all x ∈ A.

Proposition 3.6 Let A be a non-empty subset of S. Then a bipolar fuzzy set A = (µP
A, µN

A )
defined by

µP
A(x) =

{
m1, if x ∈ A,

m2, otherwise
and µN

A (x) =

{
n1, if x ∈ A,

n2, otherwise,

where 0 ≤ m2 ≤ m1 ≤ 1, −1 ≤ n1 ≤ n2 ≤ 0, is a bipolar fuzzy left (resp., right) ideal of S if and

only if A is a left (resp., right) ideal of S.

From the definition, we can easily derive the following proposition.

Proposition 3.7 In a semiring S, every bipolar fuzzy ideal of S is a bipolar fuzzy subsemiring.

However, the converse of Proposition 3.7 is not true in general, which can be shown in the
following example.
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Example 3.8 Let S = {0, a, b} be a set with an addition operation (+) and a multiplication (·)
defined as follows:

+ 0 a b

0 0 a b

a a a b

b b b b

· 0 a b

0 0 b b

a b a b

b b b b

Let A = (µP
A, µN

A ) be a bipolar fuzzy set of S defined as

0 a b

µP
A 0.3 0.5 0.7

µN
A -0.3 -0.7 -0.5

By routine calculations, we know that A = (µP
A, µN

A ) is a bipolar fuzzy subsemiring, but not a
bipolar fuzzy ideal.

Definition 3.9 Let A = (µP
A, µN

A ) be a bipolar fuzzy set of S and (s, t) ∈ [−1, 0] × [0, 1]. We

define

AP
t = {x ∈ S | µP

A(x) ≥ t} and AN
s = {x ∈ S | µN

A (x) ≤ s},
and call them positive t − cut of A and negative s − cut of A, respectively. Further, for every

k ∈ [0, 1], the set AP
t ∩AN

−t is called the k − cut of A.

Theorem 3.10 Let A = (µP
A, µN

A ) be a bipolar fuzzy set of S. Then A = (µP
A, µN

A ) is a bipolar

fuzzy subsemiring of S if and only if

(i) for all t ∈ [0, 1], AP
t 6= ∅ ⇒ AP

t is a subsemiring of S;

(ii) for all s ∈ [−1, 0], AN
s 6= ∅ ⇒ AN

s is a subsemiring of S.

Proof Suppose that A = (µP
A, µN

A ) is a bipolar fuzzy subsemiring of S, and t ∈ [0, 1] satisfying
AP

t 6= ∅. If x, y ∈ AP
t , then we have µP

A(x) ≥ t and µP
A(y) ≥ t which imply that µP

A(x + y) ≥
min{µP

A(x), µP
A(y)} ≥ t and µP

A(xy) ≥ min{µP
A(x), µP

A(y)} ≥ t. So, x + y and xy ∈ µP
A. Then µP

A

is a subsemiring of S. Similarly, we can prove (ii).
Conversely, assume that (i) and (ii) are all valid. For any x ∈ S, letting µP

A(x) = t, and
µN

A (x) = s, we can obtain that x ∈ AP
t ∩AN

s , then AP
t and AN

s are all non-empty. If A = (µP
A, µN

A )
is not a bipolar fuzzy subsemiring of S, then there exist x1, x2 ∈ AP

t , and t ∈ [0, 1] satisfying

µP
A(x1 + x2) < t < min{µP

A(x1), µP
A(x2)} and µP

A(x1x2) < t < min{µP
A(x1), µP

A(x2)}.
Therefore, x1 and x2 ∈ AP

t , but x1 + x2 and x1x2 6∈ AP
t . Similarly, we can get that x1 and

x2 ∈ AN
s , but x1 + x2 and x1x2 6∈ AN

s . Those are all contradictions obviously. Consequently,
A = (µP

A, µN
A ) is a bipolar fuzzy subsemiring of S.

Corollary 3.11 If A = (µP
A, µN

A ) is a bipolar fuzzy subsemiring of S, then the k-cut of A =
(µP

A, µN
A ) is a bipolar fuzzy subsemiring of S for all k ∈ [0, 1].

Theorem 3.12 Let A = (µP
A, µN

A ) be a bipolar fuzzy set of S. Then A = (µP
A, µN

A ) is a bipolar

fuzzy ideal of S if and only if
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(i) for all t ∈ [0, 1] if AP
t 6= ∅ ⇒ AP

t is an ideal of S;

(ii) for all s ∈ [−1, 0] if AN
s 6= ∅ ⇒ AN

s is an ideal of S.

Proof The proof is similar to that of Theorem 3.10.
For the sake of simplicity, for a bipolar fuzzy set A = (µP

A, µN
A ) we use the notation S(t,s) =

{x ∈ S | µP
A(x) ≥ t} ∩ {x ∈ S | µN

A (x) ≤ s}.

Corollary 3.13 If A = (µP
A, µN

A ) is a bipolar fuzzy ideal of S, then S(t,s) is an ideal of S for all

(t, s) ∈ [0, 1] × [−1, 0]. In particular, the non-empty k-cut of A = (µP
A, µN

A ) is an ideal of S for

all k ∈ [0, 1].
In general, {x ∈ S | µP

A(x) ≥ t} ∪ {x ∈ S | µN
A (x) ≤ s} is often not an ideal of S, which can

be seen in the following example.

Example 3.14 For the semiring S defined in Example 3.2, let A = (µP
A, µN

A ) be a bipolar fuzzy
set of S defined by

0 1 2 3

µP
A 0.1 0.7 0.5 0.3

µN
A -0.4 -0.9 -0.6 -0.3

We have

AP
t =





∅, if 0.7 < t ≤ 1,

{1}, if 0.5 < t ≤ 0.7,

{1, 2}, if 0.3 < t ≤ 0.5,

{1, 2, 3}, if 0.1 < t ≤ 0.3,

S, if 0 ≤ t ≤ 0.1

and AN
s =





∅, if − 1 ≤ s < −0.9,

{1}, if − 0.9 ≤ s < −0.6,

{1, 2}, if − 0.6 ≤ s < −0.4,

{0, 1, 2}, if − 0.4 ≤ s < −0.3,

S, if − 0.3 ≤ t ≤ 0.

A routine calculation shows that A = (µP
A, µN

A ) is a bipolar fuzzy ideal of S, but AP
0.6 ∪AN

−0.5 =
{1} ∪ {1, 2} = {1, 2} is not an ideal of S. Likewise, AP

0.5 ∪AN
−0.5 = {1, 2} is not an ideal of S.

Theorem 3.15 If A = (µP
A, µN

A ) is a bipolar fuzzy ideal of S and µP
A(x) + µN

A (x) ≥ 0, for all

x ∈ S, then AP
k ∪AN

−k is an ideal of S for all k ∈ [0, 1].

Proof Let k ∈ [0, 1]. Then we have AP
k 6= ∅ and AN

−k 6= ∅ which are all ideals of S by Theorem
3.12. For all x1, x2 ∈ AP

k ∪ AN
−k and x ∈ S, to complete the proof, we just need to consider the

following four cases:
(i) x1 ∈ AP

k , x2 ∈ AP
k , (ii) x1 ∈ AP

k , x2 ∈ AN
−k, (iii) x1 ∈ AN

−k, x2 ∈ AP
k , (iv) x1 ∈ AN

−k, x2 ∈
AN
−k.

Case (i) implies that µP
A(x1) ≥ k, µP

A(x2) ≥ k. In fact, A = (µP
A, µN

A ) ∈ BFI(S), so we have
µP

A(x1 + x2) ≥ min{µP
A(x1), µP

A(x2)} ≥ k, µP
A(xx1) ≥ µP

A(x1) ≥ k and µP
A(x1x) ≥ µP

A(x1) ≥ k.
Therefore, x1 + x2, xx1 and x1x ∈ AP

k ⊆ AP
k ∪ AN

−k. The proof of case (iv) is similar to that
of case (i). For case (ii), we have µP

A(x1) ≥ k, µN
A (x2) ≤ −k. Since µP

A(x) + µN
A (x) ≥ 0,

µP
A(x2) ≥ −µN

A (x2) ≥ k, µP
A(x1 + x2) ≥ min{µP

A(x1), µP
A(x2)} ≥ min{µP

A(x1),−µN
A (x2)} ≥ k,

µP
A(xx1) ≥ µP

A(x1) ≥ k and µP
A(x1x) ≥ µP

A(x1) ≥ k. Then x1 + x2, xx1, x1x ∈ AP
k ⊆ AP

k ∪ AN
−k.

The proof of case (iii) is similar to that of case (ii). Hence AP
k ∪AN

−k is an ideal of S. ¤
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4. Equivalence relations on bipolar fuzzy ideals

For any (t, s) ∈ [0, 1]× [−1, 0], define two binary relations P t and Ns on BFI(S) as follows:
(A,B) ∈ P t ⇔ AP

t = BP
t and (A,B) ∈ Ns ⇔ AN

s = BN
s , for all A = (µP

A, µN
A ) and B = (µP

B , µN
B ).

It is easy to know P t and Ns are equivalence relations on BFI(S).
For any A = (µP

A, µN
A ) ∈ BFI(S), we use [A]P t (resp., [A]Ns) to denote the equivalence class

of A = (µP
A, µN

A ) modular P t(resp., Ns). For all A = (µP
A, µN

A ) ∈ BFI(S), the family of [A]P t

(resp., [A]Ns) is denoted by BFI(S)/P t (resp., BFI(S)/Ns). So BFI(S)/P t = {[A]P t | A =
(µP

A, µN
A ) ∈ BFI(S)}(resp., BFI(S)/Ns = {[A]Ns | A = (µP

A, µN
A ) ∈ BFI(S)}). Let I(S) be the

family of all ideals of S. For all A = (µP
A, µN

A ) ∈ BFI(S), we define two maps as follows:

ft : BFI(S) → I(S) ∪ {∅}, A → AP
t ,

gs : BFI(S) → I(S) ∪ {∅}, A → AN
s .

Then ft and gs are clearly well-defined.

Theorem 4.1 For any (t, s) ∈ (0, 1)× (−1, 0), the maps ft and gs are all surjective.

Proof Clearly, a bipolar fuzzy set 0 = (0P ,0N ) is a bipolar fuzzy ideal of S, where 0P (x) =
0N (x) = 0 for all x ∈ S. Then we have

ft(0) = 0P
t = {x ∈ S | 0P (x) ≥ t} = ∅, gs(0) = 0N

s = {x ∈ S | 0N (x) ≤ s} = ∅.
For any non-empty B in I(S), we consider a bipolar fuzzy set B∼ = (µP

B∼ , µN
B∼) in S, where

µP
B∼ : S → [0, 1], µP

B∼(x) =

{
1, if x ∈ B,

0, otherwise

and

µN
B∼ : S → [−1, 0], µN

B∼(x) =

{
−1, if x ∈ B,

0, otherwise.

By Proposition 3.6, we have B∼ = (µP
B∼ , µN

B∼) ∈ BFI(S). Consequently, we obtain

ft(B∼) = BP
∼t = {x ∈ S | µP

B∼(x) ≥ t} = {x ∈ S | µP
B∼(x) = 1} = B,

and
gs(B∼) = BN

∼s = {x ∈ S | µN
B∼(x) ≤ s} = {x ∈ S | µN

B∼(x) = −1} = B.

Therefore, ft and gs are surjective.

Theorem 4.2 The quotient sets BFI(S)/P t and BFI(S)/Ns are equipotent to I(S) ∪ ∅ for all

(t, s) ∈ (0, 1)× (−1, 0).

Proof For all (t, s) ∈ (0, 1)× (−1, 0) and A = (µP
A, µN

A ) ∈ BFI(S), let

f∗t : BFI(S)/P t → I(S) ∪ {∅}, [A]P t → ft(A),

and
g∗s : BFI(S)/Ns → I(S) ∪ {∅}, [A]Ns → gs(A),
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respectively. For every A,B ∈ BFI(S), if µP
A = µP

B and µN
A = µN

B , then (A,B) ∈ P t and
(A,B) ∈ Ns, which means [A]P t = [B]P t and [A]Ns = [B]Ns . Thus ft and gs are injective.

For any non-empty B in I(S), consider the bipolar fuzzy ideal B∼ = (µP
B∼ , µN

B∼) which is
given in the proof of Theorem 4.1, then we have

f∗t ([B∼]P t) = ft(B∼) = BP
∼t = B and g∗s ([B∼]Ns) = gs(B∼) = BN

∼s = B.

For the bipolar fuzzy ideal 0 = (0P ,0N ) of S, we have

f∗t ([0]P t) = ft(0) = 0P
t = {x ∈ S | 0P (x) ≥ t} = ∅

and

g∗s ([0]Ns) = gs(0) = 0N
s = {x ∈ S | 0N (x) ≤ s} = ∅.

Hence ft and gs are surjective. This completes the proof. ¤
For any 0 < k < 1, we define another relation Sk on BFI(S) as follows:

(A,B) ∈ Sk ⇔ Ak = Bk,

where Ak = AP
k ∩AN

−k. Then the relation Sk is also an equivalence relation on BFI(S).

Theorem 4.3 Let 0 < k < 1. Then the map ϕk : BFI(S) → I(S)∪ ∅ defined by ϕk(A) = Ak is

surjective.

Proof Suppose 0 < k < 1. We have ϕk(0) = 0P
k ∩ 0N

−k = ∅. For any non-empty B in BFI(S),
considering a bipolar fuzzy ideal B∼ = (µP

B∼ , µN
B∼) which is given in the proof of Theorem 4.1,

we can obtain

ϕk(B∼) = B∼k = BP
∼k ∩BN

∼(−k) = {x ∈ S | µP
B∼(x) ≥ k} ∩ {x ∈ S | µN

B∼(x) ≤ (−k)} = B.

Therefore, ϕk is surjective.

Theorem 4.4 Let 0 < k < 1. Then the quotient set BFI(S)/Sk is equipotent to I(S) ∪ ∅.

Proof Suppose that 0 < k < 1, then ϕ∗k : BFI(S)/Sk → I(S) ∪ ∅ is a map defined by
ϕ∗k([A]Sk) = ϕk(A) for all [A]Sk ∈ BFI(S)/Sk. For every [A]Sk , [B]Sk ∈ BFI(S)/Sk, let
ϕ∗k([A]Sk) = ϕ∗k([B]Sk). Then ϕk(A) = ϕk(B). Namely, Ak = Bk, which implies that (A,B) ∈
Sk. Thus [A]Sk = [B]Sk and ϕ∗k is injective. Moreover, for any non-empty B in I(S), consider
the bipolar fuzzy ideal B∼ = (µP

B∼ , µN
B∼) which is given in the proof of Theorem 4.1. Then

similarly to the proof of Theorem 4.1, we can prove that ϕ∗k is surjective. This completes the
proof. ¤

5. Normal bipolar fuzzy ideals

In this section, we introduce and characterize normal bipolar fuzzy ideals of semirings.

Definition 5.1 A bipolar fuzzy ideal A = (µP
A, µN

A ) of S is said normal if there exists an element

x ∈ S such that A(x) = (1,−1), i.e., µP
A(x) = 1 and µN

A (x) = −1.
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Definition 5.2 An element x0 ∈ S is called an extremal element of a bipolar fuzzy set A =
(µP

A, µN
A ) if µP

A(x0) ≥ µP
A(x) and µN

A (x0) ≤ µN
A (x) for all x ∈ S.

From the above definitions, we can easily obtain the following proposition.

Proposition 5.3 A bipolar fuzzy set A = (µP
A, µN

A ) of S is a normal bipolar fuzzy ideal if and

only if A(x) = (1,−1) for its all extremal elements.

Theorem 5.4 If x0 is an extremal element of a bipolar fuzzy ideal A = (µP
A, µN

A ) of S, then

a bipolar fuzzy set Ā = (µ̄P
A, µ̄N

A ) of S, defined by µ̄P
A(x) = µP

A(x) + 1 − µP
A(x0) and µ̄N

A (x) =
µN

A (x)− 1− µN
A (x0) for all x ∈ S, is a normal bipolar fuzzy ideal of S containing A.

Proof First, we claim that Ā is normal. In fact, since µ̄P
A(x) = µP

A(x) + 1 − µP
A(x0), µ̄N

A (x) =
µN

A (x) − 1 − µN
A (x0) and x0 is an extremal element of A, we have µ̄P

A(x0) = 1, µ̄N
A (x0) = −1,

µ̄P
A(x) ∈ [0, 1] and µ̄N

A (x) ∈ [−1, 0] for all x ∈ S. Thus Ā = (µ̄P
A, µ̄N

A ) is normal.

Next we show Ā is a bipolar fuzzy ideal. For all x, y ∈ S, we have

µ̄P
A(x + y) = µP

A(x + y) + 1− µP
A(x0)

≥ min{µP
A(x), µP

A(y)}+ 1− µP
A(x0)

= min{µP
A(x) + 1− µP

A(x0), µP
A(y) + 1− µP

A(x0)}
= min{µ̄P

A(x), µ̄P
A(y)}

and

µ̄N
A (x + y) = µN

A (x + y)− 1− µN
A (x0)

≤ max{µN
A (x), µN

A (y)} − 1− µN
A (x0)

= max{µN
A (x)− 1− µN

A (x0), µN
A (y)− 1− µN

A (x0)}
= max{µ̄N

A (x), µ̄N
A (y)}.

Thus, (1a) is valid. Similarly, we can prove that Ā = (µ̄P
A, µ̄N

A ) satisfies (3c). Hence Ā = (µ̄P
A, µ̄N

A )
is a normal bipolar fuzzy ideal of S. Clearly, A ⊆ Ā. ¤

Corollary 5.5 From the definition of Ā in Theorem 5.4, we get that ¯̄A = Ā for all A ∈ BFI(S).
In particular, if A is normal, then Ā = A.

Let N (S) be the set consisting of all normal bipolar fuzzy ideals of S. Then N (S) is a poset
under the set inclusion obviously.

Theorem 5.6 A non-constant maximal element of (N (S),⊆) only takes a value among (0, 0), (1,−1)
and (1, 0).

Proof Assume that A = (µP
A, µN

A ) ∈ N (S) is a non-constant maximal element of (N (S),⊆).
Then µP

A(x0) = 1 and µN
A (x0) = −1 for some x0 ∈ S. Let x ∈ S and µP

A(x) 6= 1. Then µP
A(x) = 0.

Otherwise, there exists m ∈ S such that 0 < µP
A(m) < 1. On the other hand, let Am = (αP

A, αN
A )

be a bipolar fuzzy set of S defined by αP
A(x) = 1

2 (µP
A(x)+µP

A(m)) and αN
A (x) = 1

2 (µN
A (x)+µN

A (m))
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for all x ∈ S. Apparently, Am is well defined. So, for all x ∈ S, we have

αP
A(x0) =

1
2
(µP

A(x0) + µP
A(m)) ≥ 1

2
(µP

A(x) + µP
A(m)) = αP

A(x)

and
αN

A (x0) =
1
2
(µN

A (x0) + µN
A (m)) ≤ 1

2
(µN

A (x) + µN
A (m)) = αN

A (x).

Further, for all x, y ∈ S, we have

αP
A(x + y) =

1
2
(µP

A(x + y) + µP
A(m))

≥ 1
2
(min{µP

A(x), µP
A(y)}+ µP

A(m))

= min{1
2
(µP

A(x) + µP
A(m)),

1
2
(µP

A(y) + µP
A(m))}

= min{αP
A(x), αP

A(y)}
and

αP
A(xy) =

1
2
(µP

A(xy) + µP
A(m))

≥ 1
2
(max{µP

A(x), µP
A(y)}+ µP

A(m))

= max{1
2
(µP

A(x) + µP
A(m)),

1
2
(µP

A(y) + µP
A(m))}

= max{αP
A(x), αP

A(y)}.
By the same argument, we can prove

αN
A (x + y) ≤ max{αN

A (x), αN
A (y)} and αN

A (xy) ≤ min{αN
A (x), αN

A (y)}.
This means Am is a bipolar fuzzy ideal of S with the same extremal elements as A. So, by
Theorem 5.4, a bipolar fuzzy set Ām = (ᾱP

A, ᾱN
A ) belongs to N (S), where

ᾱP
A(x) = αP

A(x) + 1− αP
A(x0) =

1
2
(1 + µP

A(x))

and
ᾱN

A (x) = αN
A (x)− 1− αN

A (x0) =
1
2
(µN

A (x)− 1).

Clearly, A ⊆ Ām. Since ᾱP
A(x) = 1

2 (1 + µP
A(x)) > µP

A(x), A is a proper subset of Ām. By the
definition, we have ᾱP

A(m) = 1
2{1 + µP

A(m)} < 1 = ᾱP
A(x0). Therefore, Ām is non-constant, and

A is not a maximal element of N (S). This is a contradiction. Thus, µP
A only takes two possible

values 0 and 1. Likewise, we can prove that µN
A just takes a value between 0 and −1. This

implies that all the possible values of A are (0, 0), (0,−1), (1,−1) and (1, 0). Further, if A takes
a value from above four values, then

S(0,0) = {x ∈ S | µP
A(x) ≥ 0} ∩ {x ∈ S | µN

A (x) ≤ 0} = S,

S(0,−1) = {x ∈ S | µP
A(x) ≥ 0} ∩ {x ∈ S | µN

A (x) ≤ −1} = {x ∈ S | µN
A (x) = −1},

S(1,−1) = {x ∈ S | µP
A(x) ≥ 1} ∩ {x ∈ S | µN

A (x) ≤ −1} = {x ∈ S | µP
A(x) = 1, µN

A (x) = −1},
S(1,0) = {x ∈ S | µP

A(x) ≥ 1} ∩ {x ∈ S | µN
A (x) ≤ 0} = {x ∈ S | µP

A(x) = 1}
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are all non-empty ideals satisfying
(i) S(1,−1) ⊆ S(0,−1) ⊆ S(0,0) and (ii) S(1,−1) ⊆ S(1,0) ⊆ S(0,0).

For case (i), according to Proposition 3.6, a bipolar fuzzy set B = (µP
B , µN

B ) defined by

µP
B(x) =

{
1, if x ∈ S(0,−1);

0, otherwise
and µN

B (x) =

{
−1, if x ∈ S(0,−1);

0, otherwise,
is a bipolar fuzzy ideal of S. Moreover, it is normal. Now, for all x ∈ S(0,−1), we have µP

B(x) =
1 ≥ µP

A(x) and µN
B (x) = −1 = µN

A (x), that is A ⊆ B. For all x ∈ S(0,0) − S(0,−1), we have
µP

B(x) = 0 = µN
B (x). Since µP

A only takes two possible values 0 and 1, if µP
A(x) = 0, then

µP
A(x) = µP

B(x) = 0, µN
A (x) ≤ 0 = µN

B (x), hence B ⊆ A. Otherwise, if µP
A(x) = 1, then

µP
A(x) ≥ µP

B(x), µN
A (x) ≤ 0 = µN

B (x). Whence, B ⊆ A. In addition, for all x ∈ S(0,−1) − S(1,−1),
we have µP

A(x) = 0 < 1 = µP
B(x) and µN

A (x) = −1 = µN
B (x). Then A ⊂ B, which contradicts the

fact that A is a non-constant maximal element of (N (S),⊆). Therefore, A 6= (0,−1). For case
(ii), we can show that A 6= (0,−1) similarly. Hence A only takes a value among (0, 0), (1,−1)
and (1, 0). ¤

Definition 5.7 A non-constant bipolar fuzzy ideal A of S is called a maximal element of S

when Ā defined in Theorem 5.4 is a maximal element of the poset (N (S),⊆).

Proposition 5.8 A maximal bipolar fuzzy ideal of S is normal, and it takes a value among

(0, 0), (1,−1) and (1, 0).

Proof Let A = (µP
A, µN

A ) be a maximal bipolar fuzzy ideal of S. Then Ā is a maximal element
of the poset (N (S),⊆). By Theorem 5.6, Ā only takes a value among (0, 0), (1,−1) and (1, 0).
In addition, A ⊆ Ā from Theorem 5.4. Hence, A also takes a value among (0, 0), (1,−1) and
(1, 0). Next we show A is normal. Since µ̄P

A(x) only takes a value among 0 and 1, and µ̄P
A(x) =

µP
A(x) + 1 − µP

A(x0), µ̄P
A(x) = 1 if and only if µP

A(x) = µP
A(x0), and µ̄P

A(x) = 0 if and only if
µP

A(x) = µP
A(x0)− 1, where x0 is an extremal element of A. From A ⊆ Ā we get µP

A(x) ≤ µ̄P
A(x)

for all x ∈ S. Thus µ̄P
A(x) = 0, which implies µP

A(x) = 0. That is, µP
A(x0) = 1. Similarly, by

µ̄N
A (x) = µN

A (x)− 1− µN
A (x0), we have µN

A (x0) = −1. Therefore, A is normal. ¤

Proposition 5.9 Let A = (µP
A, µN

A ) be a maximal bipolar fuzzy ideal of S. Then S(1,−1) is a

maximal ideal of S.

Proof According to Corollary 3.11, S(1,−1) is an ideal of S. Next, we show that it is a maximal
ideal of S. Let T = S(1,−1) = {x ∈ S | µP

A(x) = 1, µN
A (x) = −1}. From Theorem 5.6, µP

A(x) only
takes a value among 0 and 1. Thus T 6= S. If M is an ideal of S containing T , then µP

T ⊆ µP
M .

Because µP
A = µP

T and µP
A(x) only takes a value between 0 and 1, µP

M also takes them. While, by
the assumption, A is a maximal bipolar fuzzy ideal of S. Thus µP

A = µP
T = µP

M or µP
M (x) = 1 for

all x ∈ S. In the last case, T = S, which is a contradiction. Hence µP
A = µP

T = µP
M , i.e., M = T .

This implies that S(1,−1) is a maximal ideal of S. ¤

Definition 5.10 A non-empty bipolar fuzzy ideal of S is called completely normal if there exists

x ∈ S such that A(x) = (0, 0).
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Let C(S) be the family consisting of all completely normal bipolar fuzzy ideals of S. Clearly,
C(S) ⊆ N (S). So we can obtain the following result.

Proposition 5.11 A non-constant maximal element of (N (S),⊆) is also a maximal element of

(C(S),⊆).

Proof Let A be a non-constant maximal element of (N (S),⊆). By Theorem 5.6, A only takes
a value among (0, 0), (1,−1) and (1, 0). Then there exists x0, x1, x2 ∈ S such that A(x0) =
(0, 0), A(x1) = (1,−1) and A(x2) = (1, 0). Hence A ∈ C(S). Further, assume that B ∈ C(S) and
A ⊆ B, then A ⊆ B in N (S). Since A is a maximal element of (N (S),⊆) and B is non-constant,
A = B. Consequently, A is a maximal element of (C(S),⊆). ¤

From the above results, we can easily obtain the following proposition.

Proposition 5.12 Every maximal bipolar fuzzy ideal of S is completely normal.

Theorem 5.13 Let f : [0, 1] → [0, 1] and g : [−1, 0] → [−1, 0] be two increasing functions,

and A = (µP
A, µN

A ) be a bipolar fuzzy set of S. Then A(f,g) = (µP
Af

, µN
Ag

) defined by µP
Af

(x) =
f(µP

A(x)) and µN
Ag

(x) = g(µN
A (x)) for all x ∈ S is a bipolar fuzzy ideal of S if and only if

A = (µP
A, µN

A ) ∈ BFI(S). In particular, if f(µP
A(0)) = 1 and g(µN

A (0)) = −1, then A(f,g) is

normal.

Proof Let A(f,g) = (µP
Af

, µN
Ag

) ∈ BFI(S). Then for all x, y ∈ S, we have

f(µP
A(x + y)) = µP

Af
(x + y)

≥ min{µP
Af

(x), µP
Af

(y)} = min{f(µP
A(x)), f(µP

A(y))}
= f(min{µP

A(x), µP
A(y)}).

Since f is increasing, it follows that µP
A(x + y) ≥ min{µP

A(x), µP
A(y)}. Conversely, if A =

(µP
A, µN

A ) ∈ BFI(S), then for all x, y ∈ S, we have

µP
Af

(x + y) = f(µP
A(x + y))

≥ f(min{µP
A(x), µP

A(y)}) = min{f(µP
A(x)), f(µP

A(y))}
= min{µP

Af
(x), µP

Af
(y)}.

Similarly, we can obtain

µN
Ag

(x + y) ≤ max{µN
Ag

(x), µN
Ag

(y)} ⇐⇒ µN
A (x + y) ≤ max{µN

A (x), µN
A (y)}.

Thus A(f,g) = (µP
Af

, µN
Ag

) satisfies (1a) if and only if A = (µP
A, µN

A ) satisfies (1a). Analogously,
A(f,g) = (µP

Af
, µN

Ag
) satisfies (3c) if and only if A = (µP

A, µN
A ) satisfies the same condition. This

completes the proof. ¤
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