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Abstract This paper concerns the exact multiplicity of one-sign solutions of a class of quasi-

linear elliptic eigenvalue problems with asymptotical nonlinearity at 0 and ∞. The proofs of

our main results are based upon bifurcation techniques and stability analysis.
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1. Introduction

In [1], Shi and Wang studied the precise global bifurcation diagrams of one-sign and sign-
changing solutions for a semilinear elliptic equation. In [2], Ma and Thompson studied the
global bifurcation structure of nodal solutions for a one-dimensional weighted semilinear elliptic
equation. In [3], Dai and Ma studied the global bifurcation structure of one-sign solutions for
p-Laplacian 0-Dirichlet problem with asymptotical nonlinearities at 0 and ∞.

Motivated by the above papers, we shall investigate the problems of the type
{
−div (ϕp(∇u)) = λa(x)f(u), in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω ⊂ RN with N ≥ 1 is a bounded smooth domain, ϕp(s) = |s|p−2s, 1 < p < +∞, λ is a
positive parameter, a and f satisfy the assumptions:

(H1) a ∈ C (Ω, [0,+∞)) with a 6≡ 0;
(H2) There exist f0, f∞ ∈ (0,+∞) such that f0 6= f∞ and

f0 = lim
s→0

f(s)
ϕp(s)

, f∞ = lim
|s|→+∞

f(s)
ϕp(s)

;

(H3) f ∈ C1(R,R) such that f(s)/ϕp(s) is decreasing in (0,+∞) and is increasing in
(−∞, 0).

Remark 1.1 From (H2) and (H3), we can see that f0 ≥ f(s)/ϕp(s) ≥ f∞ > 0 for any s 6= 0,
f(0) = 0 and f0 > f∞.

Remark 1.2 Note that if f0 = f∞, Remark 1.1 shows that f(s)/ϕp(s) ≡ f0 for any s 6= 0. In

Received October 20, 2012; Accepted June 4, 2013

Supported by the National Natural Science Foundation of China (Grant Nos. 11261052; 11101335).

* Corresponding author

E-mail address: daiguowei@nwnu.edu.cn (Guowei DAI); hanxiaoling@nwnu.edu.cn (Xiaoling HAN)



Exact multiplicity of one-sign solutions for a class of quasilinear eigenvalue problems 85

this case, it is well known (see [4] or [5]) that problem (1.1) has one-sign solutions if and only if
λ is the principal eigenvalue of the following problem

{
−div (ϕp(∇u)) = λa(x)ϕp(u), in Ω,

u = 0, on ∂Ω.
(1.2)

Let E := W 1,p
0 (Ω) with the norm ‖u‖ =

(∫
Ω
|∇u|p dx

)1/p. Set

Sν =
{
u ∈ C1,α(Ω)

∣∣νu(x) > 0 for all x ∈ Ω
}

,

where ν ∈ {+,−}. In [3], we have showed that there exists an unbounded continuum Cν of
solutions to problem (1.1) emanating from (λ1/f0, 0) and joining to (λ1/f∞,∞), such that Cν ⊆
({(λ1/f0, 0)} ∪ (R× Sν)), where λ1 is the principal eigenvalue of problem (1.2). However, we do
not know the whole one-sign solution set of problem (1.1). The purpose of this work is to obtain
the full information of the one-sign solutions for problem (1.1) under the assumptions of (H1),
(H2) and (H3). More precisely, we shall show that the unbounded continuum Cν is smooth curve
under the conditions of (H1), (H2) and (H3). Hence, we can give the optimal intervals for the
parameter λ so as to ensure the existence of exact zero or two one-sign solutions for problem
(1.1).

It is well known that the spectral structure of high-dimensional p-Laplacian is not so clear
as the case p = 2 or one-dimensional p-Laplacian. Our methods used in this paper cannot be
extended to the high eigenvalue by now. Hence, instead of all eigenvalues which are considered
in [1, 2], we only consider the principal eigenvalue λ1. Our results generalize and improve the
corresponding results to [1–3] in some sense.

The rest of this paper is arranged as follows. In Section 2, we shall give the main results
and their proofs of this work. In Section 3, we shall give some applications of the main results.

2. Main results

Firstly, we propose the definition of linearly stable solution. For any φ ∈ E and nontrivial
solution u of problem (1.1), Afrouzi and Rasouli [6] have shown that the linearized problem of
problem (1.1) about u at the direction φ is

{
−(p− 1)div

(|∇u|p−2∇φ
)− λa(x)f ′(u)φ = µφ, in Ω,

φ = 0, on ∂Ω.
(2.1)

A solution u of problem (1.1) is stable if all eigenvalues of problem (2.1) are positive, otherwise it
is unstable. We define the Morse index M(u) of a solution u to problem (1.1) to be the number
of negative eigenvalues of problem (2.1). A solution u of problem (1.1) is degenerate if 0 is an
eigenvalue of problem (2.1), otherwise it is non-degenerate.

The main results of this paper are the following:

Theorem 2.1 Let (H1), (H2) and (H3) hold. Then

(1) Problem (1.1) has exactly two solutions u+(λ, ·) and u−(λ, ·) for λ ∈ (λ1/f0, λ1/f∞),
such that u+(λ, ·) is positive in Ω, and u−(λ, ·) is negative in Ω;
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(2) All one-sign solutions of problem (1.1) lie on two smooth curves

Σ± =
{(

λ, u±(λ, ·)) ∣∣λ ∈ (λ1/f0, λ1/f∞)
}

,

Σ+ and Σ− join at (λ1/f0, 0), and limλ→λ1/f∞ ‖u±(λ, ·)‖ = +∞;

(3) For a solution (λ, u) ∈ Σ+ ∪ Σ−, u is non-degenerate and the Morse index M(u) = 0;

(4) u+(λ, ·) (u−(λ, ·)) is increasing (decreasing) with respect to λ.

Remark 2.2 From Lemma 3.6 of [7], we can see that C = C+ ∪ C− near (λ1, 0) is given by a
curve (λ(s), u(s)) = (λ1 + o(1), sϕ1 + o(s)) for s near 0, where ϕ1 is the positive eigenfunction
corresponding to λ1 with ‖ϕ1‖ = 1. Moreover, we can distinguish between two portions of this
curve by s ≥ 0 and s ≤ 0.

The following lemma is our main stability result for the positive solution.

Lemma 2.3 Let (H1) and (H3) hold. Then any positive solution u of problem (1.1) is stable,

hence, non-degenerate and Morse index M(u) = 0.

Proof Let u be a positive solution of problem (1.1), and let (µ1, φ1) be the corresponding
principal eigen-pairs of problem (2.1) with φ1 > 0 in Ω. We notice that u and φ1 satisfy the
problems {

−div (ϕp(∇u))− λa(x)f(u) = 0, in Ω,

u = 0, on ∂Ω
(2.2)

and {
−(p− 1)div

(|∇u|p−2∇φ
)− λa(x)f ′(u)φ = µφ, in Ω,

φ = 0, on ∂Ω.
(2.3)

Multiplying the first equation of problem (2.3) by u and the first equation of problem (2.2) by
(p− 1)φ1, subtracting and integrating, we obtain

µ1

∫

Ω

φ1udx = λ

∫

Ω

a(x)φ1 ((p− 1)f(u)− f ′(u)u) dx.

By some simple computations, we can show that it follows from (H3) that (p−1)f(s)−f ′(s)s ≥ 0
for any s ≥ 0. Since u > 0 and φ1 > 0 in Ω, we have µ1 > 0 and the positive solution u must be
stable. ¤

Similarly, we also have:

Lemma 2.4 Under the assumptions of Lemma 2.3, any negative solution u of problem (1.1) is

stable, hence, non-degenerate and Morse index M(u) = 0.

Proof of Theorem 2.1 Define F : R× E → R by

F (λ, u) = −div (ϕp(∇u))− λa(x)f(u).

From Lemmas 2.3 and 2.4, we know that any one-sign solution (λ, u) of problem (1.1) is stable.
Therefore, at any one-sign solution (λ∗, u∗), we can apply Implicit Function Theorem to F (λ, u) =
0, and all the solutions of F (λ, u) = 0 near (λ∗, u∗) are on a curve (λ, u(λ)) with |λ− λ∗| ≤ ε for
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some small ε > 0. Furthermore, by virtue of Remark 2.2, the unbounded continua C+ and C−
are all curves.

To complete the proof, it suffices to show that u+(λ, ·) (u−(λ, ·)) is increasing (decreasing)
with respect to λ. We only prove the case of u+(λ, ·). The proof of u−(λ, ·) can be given similarly.
Since u+(λ, ·) is differentiable with respect to λ (as a consequence of Implicit Function Theorem),
du+(λ,·)

dλ satisfies

−(p− 1)div
( ∣∣∇u+

∣∣p−2∇du+

dλ

)
= λa(x)f ′

(
u+

) du+

dλ
+ a(x)f

(
u+

)
.

By an argument similar to that of Lemma 2.3, we can show that
∫

Ω

(
λa(x)

(
f ′

(
u+

)
u+ − (p− 1)f

(
u+

)) du+

dλ
+ f

(
u+

)
u+

)
dx = 0.

Remak 2.1 implies f(s)s ≥ 0 for any s ∈ R. So we get (f ′ (u+) u+ − (p− 1)f (u+)) du+

dλ ≤ 0 by
(H1). While (H3) shows that f ′ (u+) u+ − (p− 1)f (u+) ≤ 0. Therefore, we have du+

dλ ≥ 0. ¤

Remark 2.5 From Theorem 2.1, we can also get that problem (1.1) has no one-sign nontrivial
solution for all λ ∈ (0, λ1/f0] ∪ [λ1/f∞,+∞) under the assumptions of Theorem 2.1.

Moreover, under more strict condition, we may have the following uniqueness result.

Theorem 2.6 Besides the assumptions of Theorem 2.1, we also assume that f ≥ 0. Then for

any λ ∈ (λ1/f0, λ1/f∞), problem (1.1) has exactly one positive solution u+.

Proof Define

f̃(s) =





f(s), if s > 0,

0, if s = 0,

−f(−s), if s < 0.

We consider the following problem
{
−div (ϕp(∇u)) = λa(x)f̃(u), in Ω,

u = 0, on ∂Ω.
(2.4)

Applying Theorem 2.1 to problem (2.4), we obtain that for any λ ∈ (λ1/f0, λ1/f∞), problem (2.4)
has exactly two solutions u+(λ, ·) and u−(λ, ·) such that u+(λ, ·) is positive in Ω and increasing
with respect to λ, and u−(λ, ·) is negative in Ω and decreasing with respect to λ. Clearly, u+(λ, ·)
is also the solution of problem (1.1). On the other hand, f(s) ≥ 0 implies that any solution of
problem (1.1) is nonnegative. The proof is completed. ¤

3. Applications

Consider the following semilinear elliptic eigenvalue problem
{
−∆u = λa(x)f(u), in Ω,

u = 0, on ∂Ω,
(3.1)

where a satisfies (H1), and f satisfies the assumptions:
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(F1) There exist f0, f∞ ∈ (0,+∞) such that f0 6= f∞ and

f0 = lim
s→0

f(s)
s

and f∞ = lim
|s|→+∞

f(s)
s

;

(F2) f ∈ C1(R,R) such that f(s)/s is decreasing in (0,+∞) and is increasing in (−∞, 0).
Applying Theorem 2.1, we have the following results.

Corollary 3.1 Let (H1), (F1) and (F2) hold. Then

(1) Problem (3.1) has exactly two solutions u+(λ, ·) and u−(λ, ·) for λ ∈ (λ1/f0, λ1/f∞),
such that u+(λ, ·) is positive in Ω, and u−(λ, ·) is negative in Ω;

(2) All one-sign solutions of problem (3.1) lie on two smooth curves

Σ± =
{(

λ, u±(λ, ·)) ∣∣λ ∈ (λ1/f0, λ1/f∞)
}

,

Σ+ and Σ− join at (λ1/f0, 0), and limλ→λ1/f∞ ‖u±(λ, ·)‖ = +∞;

(3) For a solution (λ, u) ∈ Σ+ ∪ Σ−, u is non-degenerate and the Morse index M(u) = 0;

(4) u+(λ, ·) (u−(λ, ·)) is increasing (decreasing) with respect to λ.

Remark 1.10 It is not difficult to verify that the results of [1, Theorem 1.3] are also valid for
problem (3.1). Obviously, the results of Corollary 3.1 are better than the corresponding ones of
[1, Theorem 1.3] in the case of µk = λ1.

Remark 1.11 Note that the results of Theorem 2.1 or Corollary 3.1 extend the corresponding
ones of [8].

Example 1.12 Take f(s) = 2s + 1 − √s2 + 1 for s ∈ [0,+∞), then it is easy to verify that
f0 = 2, f∞ = 1 and f satisfies (F2). Hence, from Theorem 2.6 it follows that problem (3.1) has
a unique positive solution for any λ ∈ (λ1/2, λ1).
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