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Abstract This paper presents a Pi-Sigma network to identify first-order Tagaki-Sugeno

(T-S) fuzzy inference system and proposes a simplified gradient-based neuro-fuzzy learning

algorithm. A comprehensive study on the weak and strong convergence for the learning

method is made, which indicates that the sequence of error function goes to a fixed value, and

the gradient of the error function goes to zero, respectively.
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1. Introduction

The combination of neural networks and fuzzy set theory is showing special promise and
is a growing hot topic in recent years. The Takagi-Sugeno (T-S) fuzzy model was proposed by
Takagi-Sugeno [1], which is characterized as a set of IF-THEN rules. Pi-Sigma Network (PSN)
[2] is a class of high-order feedforward network and is known to provide inherently more powerful
mapping abilities than traditional feedforward neural networks.

A hybrid Pi-Sigma network was introduced by Jin [3], which is capable of dealing with
the nonlinear systems more efficiently. Combination of the benefits of high-order network and
Takagi-Sugeno inference system makes Pi-Sigma network have a simple structure, less training
epoch and fast computational speed [4]. Despite numerous works dealing with T-S systems
analysis on identification and stability, fewer studies have been done concerning the convergence
of the learning process.

In this paper, a comprehensive study on convergence results for Pi-Sigma network based
on first-order T-S system is presented. In particular, the monotonicity of the error function in
the learning iteration is proven. Both the weak and strong convergence results are obtained,
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indicating that the gradient of the error function goes to zero and the weight sequence goes to a
fixed point, respectively.

The remainder of this paper is organized as follows. A brief introduction of first-order
Takagi-Sugeno system and Pi-Sigma neural network is proposed in the next section. Section 3
demonstrates our modified neuro-fuzzy learning algorithm based on gradient method. The main
convergence results are provided in Section 4. Section 5 presents a proof of the convergence
theorem. Some brief conclusions are drawn in Section 6.

2. First-order Takagi-Sugeno inference system and high-order network

2.1. First-order Takagi-Sugeno inference system

A general fuzzy system, which is a T-S model, is comprised of a set of IF-THEN fuzzy rules
having the following form:

Ri : If x1 is A1i and x2 is A2i and . . . and xm is Ami then yi = fi(·), (1)

where Ri (i = 1, 2, . . . , n) denotes the i-th implication, n is the number of the fuzzy implications
of the fuzzy model, x1, . . . , xm are the premise variables, fi(·) is the consequence of the i-th
implication, which is a nonlinear or linear function of the premises, and Ali is the fuzzy subset
whose membership function is continuous piecewise-polynomial function.

In the first-order Takagi-Sugeno system (T-S1), the output function fi(·) is a first order
polynomial of the input variables x1, . . . , xm and the corresponding output yi is determined by
[5, 6]

yi = p0i + p1ix1 + · · · pmixm. (2)

Given an input x = (x1, x2, . . . , xm), the final output of the fuzzy model is expressed by

y =
n∑

i=1

hiyi, (3)

where hi is the overall truth value of the premises of the i-th implication calculated as

hi = A1i(x1)A2i(x2) . . . Ami(xm) =
m∏

l=1

Ali(xl). (4)

We mention that there is another form of (3), that is [7],

y =
( n∑

i=1

hiyi

)
/
( n∑

i=1

hi

)
. (5)

For simplicity of learning, a common strategy is to obtain the fuzzy consequence without com-
puting the center of gravity [8]. Therefore, we adopt the form of (3) throughout our discussions.

2.2. Pi-Sigma neural network

The conventional feed-forward neural network has summary nodes which is difficult to iden-
tify some complex problem. A hybrid Pi-Sigma neural network is shown in Figure 1. In this
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Figure 1 Topological structure of the first-order Takagi-Sugeno inference system

high-order network, Σ denotes the summing neurons, Π denotes the product neurons. The output
of pi-sigma neural network is

y =
n∑

i=1

hiyi =
n∑

i=1

( m∏

l=1

µAli
(xl)

)
(p0i + p1ix1 + · · ·+ pmixm) = hPx, (6)

where “ · ” denotes the usual inner product, pi = (p0i, p1i, . . . , pmi)T , i = 1, 2, . . . , n, h =
(h1, h2, . . . , hn), P = (pT

1 ,pT
2 , . . . ,pT

n )T , x = (1, x1, x2, . . . , xm)T . From (6), it can be seen that
this Pi-Sigma network is one form of T-S type fuzzy system. For fuzzy system implemented by
this type network, the degree of membership function and parameters can be updated indirectly.
For more efficient identification of nonlinear systems, Gaussian membership function is commonly
used for the fuzzy judgment “xl is Ali” which is defined by

Ali(xl) = exp
(− (xl − ali)2/σ2

li

)
= exp

(− (xl − ali)2b2
li

)
, (7)

where ali is the center of Ali(xl), and σli is the width of Ali(xl), bli is the reciprocal of σli(xl), i =
1, 2, . . . , n, l = 1, 2, . . . , m. What we need is to preset some initial weights, which will be updated
to their optimal values when some learning algorithm is implemented.

3. Modified gradient-based neuro-fuzzy learning algorithm

Let us introduce an operator “¯” for the description of the learning method.

Definition 3.1 ([8]) Let u = (u1, u2, . . . , un)T ∈ Rn, v = (v1, v2, . . . , vn)T ∈ Rn. Define the

operator “¯” by

u¯ v = (u1v1, u2v2, . . . , unvn)T ∈ Rn.

It is easy to verify the following properties of the operator “¯”:

1) ‖u¯ v‖ ≤ ‖u‖‖v‖,
2) (u¯ v) · (x¯ y) = (u¯ v ¯ x) · y,

3) (u + v)¯ x = u¯ x + v ¯ x,
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where u,v,x,y ∈ Rn, and “·” and “|| ||”represent the usual inner product and Euclidean norm,
respectively.

Suppose that the training sample set is {xj , Oj}J
j=1 ⊂ Rm×R for Pi-Sigma network, where

xj and Oj are the input and the corresponding ideal output of the j-th sample, respectively.
The fuzzy rules are provided by (1). We denote the weight vector connecting the input layer and
the Σ layer by pi = (p0i, p1i, . . . , pmi)T , (i = 1, 2, . . . , n) (see Figure 1). Similarly, we denote the
centers and the reciprocals of the widths of the corresponding Gaussian membership functions
by

ai = (a1i, a2i, . . . , ami)T ,

bi = (b1i, b2i, . . . , bmi)T = (
1

σ1i
,

1
σ2i

, . . . ,
1

σmi
)T , 1 ≤ i ≤ n, (8)

respectively, and take them as the weight vector connecting the input layer and membership
layer. For simplicity, all parameters are incorporated into a weight vector

W =
(
pT

1 ,pT
2 , . . . ,pT

n ,aT
1 , . . . ,aT

n ,bT
1 , . . . ,bT

n

)T
. (9)

The error function is defined as

E(W) =
1
2

J∑

j=1

(yj −Oj)2 =
J∑

j=1

gj(
n∑

i=1

hj
i (pi · xj)) =

J∑

j=1

gj(hjPxj), (10)

where Oj is the desired output for the j-th training pattern xj , yj is the corresponding fuzzy
reasoning result, J is the number of training patterns, and

hj = (hj
1, h

j
2, . . . , h

j
n)T = h(xj), gj(t) =

1
2
(t−Oj)2, t ∈ R, 1 ≤ j ≤ J. (11)

The purpose of the network learning is to find W∗ such that

E(W∗) = minE(W). (12)

The gradient descent method is often used to solve this optimization problem.

Remark 3.1 ([8]) Due to this simple simplification, the differentiation with respect to the
denominator is avoided, and the cost of calculating the gradient of the error function is reduced.

Let us describe our modified gradient-based neuro-fuzzy learning algorithm. Noting (8) is
valid, then we have

hj
q =

m∏

l=1

Alq(x
j
l ) =

m∏

l=1

exp
(− (xj

l − alq)2b2
lq

)
= exp

( m∑

l=1

(− (xj
l − alq)2b2

lq

))
. (13)

The gradient of the error function E(W) with respect to pi is given by

∂E(W)
∂pi

=
J∑

j=1

g′j(h
jPxj)hj

ix
j . (14)
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To compute the partial gradient ∂E(W)
∂ai

, we note, ∀1 ≤ i ≤ n, 1 ≤ q ≤ n

∂hj
q

∂ai
=

∂ exp
( m∑

l=1

(− (xj
l − alq)2b2

lq

))

∂ai
=





∂ exp
( m∑

l=1

(− (xj
l − ali)2b2

li

))

∂ai
, q = i,

0, q 6= i,

(15)

and

∂ exp
( m∑

l=1

(−(xj
l − ali)2b2

li)
)

∂ai
= (2hj

i (x
j
1 − a1i)b2

1i, · · · , 2hj
i (x

j
m − ami)b2

mi)
T

= 2hj
i

(
(xj − ai)¯ bi ¯ bi

)
. (16)

It follows from (10), (15), (16), that, for 1 ≤ i ≤ n, the partial gradient of the error function
E(W) with respect to ai is

∂E(W)
∂ai

=
J∑

j=1

g′j(h
jPxj)(

n∑
q=1

(pq · xj)
∂hj

q

∂ai
)

= 2
J∑

j=1

g′j(h
jPxj)(pi · xj)hj

i

(
(xj − ai)¯ bi ¯ bi

)
. (17)

Similarly, for 1 ≤ i ≤ n, the partial gradient of the error function E(W) with respect to bi is

∂E(W)
∂bi

=
J∑

j=1

g′j(h
jPxj)

( n∑
q=1

(pq · xj)
∂hj

q

∂bi

)

= −2
J∑

j=1

g′j(h
jPxj)(pi · xj)hj

i

(
(xj − ai)¯ (xj − ai)¯ bi

)
. (18)

Combined with (14), (17) and (18), the gradient of the error function E(W) with respect to W

is constructed as follows
∂E(W)

∂W
=

(
(
∂E(W)

∂p1
)T , . . . , (

∂E(W)
∂pn

)T , (
∂E(W)

∂a1
)T , . . . , (

∂E(W)
∂an

)T ,

(
∂E(W)

∂b1
)T , . . . , (

∂E(W)
∂bn

)T
)T

. (19)

Preset an arbitrary initial value W0, the weights are updated in the following fashion based on
the modified neuro-fuzzy learning algorithm

Wk+1 = Wk + ∆Wk, k = 0, 1, 2, . . . , (20)

where

∆Wk =
(
(∆pk

1)T , . . . , (∆pk
n)T , (∆ak

1)T , . . . , (∆ak
n)T , (∆bk

1)T , . . . , (∆bk
n)T

)T
,

and
∆pk

i = −η
∂E(W)

∂pi
, ∆ak

i = −η
∂E(W)

∂ai
, ∆bk

i = −η
∂E(W)

∂bi
, 1 ≤ i ≤ n, (21)

η > 0 is a constant learning rate. (20) is also given by

Wk+1 = Wk − η
∂E(W)

∂W
, k = 0, 1, 2, . . . . (22)
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4. Convergence theorem

To analyze the convergence of the algorithm, we need the following assumption:

(A) There exists a constant C0 > 0 such that ‖pk
i ‖ ≤ C0, ‖ak

i ‖ ≤ C0, ‖bk
i ‖ ≤ C0 for all

i = 1, 2, . . . , n, k = 1, 2, . . .

Let us specify some constants to be used in our convergence analysis as follows:

M = max
1≤j≤J

{‖xj‖, ‖Oj‖},
C1 =max{C0 + M, (C0 + M)C0},
C2 =2JC0C1(nC0C1 + C1)max{C1

0 , C2
1}+

2C2
0C2

1 (nC0C1 + C1) + 2JC0C
2
1 (C0 + C1)(nC0C1 + C1),

C3 =J(nC0C1 + C1)max{1
2
, 4C2

0C2
1 , 4C4

1},
C4 =4nJC2

1 max{C2
0C2

1 , C2
1 , 1},

C5 =C2 + C3 + C4

where xj is the j-th given training pattern, Oj is the corresponding desired output, n and J are
the numbers of the fuzzy rules and the training patterns, respectively.

Theorem If Assumption (A) is valid, the error function E(W) is defined in (10) and the learning

rate η is chosen such that 0 < η < 1
C5

is satisfied, then starting from an arbitrary initial value

W0, the learning sequence {Wk} is generated by (22) and (19), and we have

(i) E(Wk+1) ≤ E(Wk), k = 0, 1, 2, . . .; there exists E∗ > 0 such that limk→∞E(Wk) = E∗;

(ii) limk→∞EW(Wk) = 0.

5. Proof of the convergence theorem

The proof is divided into two parts dealing with Statements (i) and (ii), respectively.

Proof of Statement (i) For any 1 ≤ j ≤ J , 1 ≤ i ≤ n and k = 0, 1, 2, . . . we define the
following notations for convergence:

Φk,j
0 = hk,jPkxj , Ψk,j = hk+1,j − hk,j , ξk,j

i = xj − ak
i , Φk,j

i = ξk,j
i ¯ bk

i . (23)

Noticing error function (10) is valid, and applying the Taylor mean value theorem with Lagrange
remainder, we have

E(Wk+1)− E(Wk)

=
J∑

j=1

(
gj(Φ

k+1,j
0 )− gj(Φ

k,j
0 )

)

=
J∑

j=1

[
g′j(Φ

k,j
0 )(hk+1,jPk+1xj − hk,jPkxj) +

1
2
g′′j (sk,j)(Φ

k+1,j
0 − Φk,j

0 )2
]



120 Yan LIU, Jie YANG, Dakun YANG, et al

=
J∑

j=1

[
g′j(Φ

k,j
0 )

(
hk,j∆Pk+1xj + Ψk,jPk+1xj + Ψk,j∆Pkxj

)]
+

1
2

J∑

j=1

g′′j (sk,j)(Φ
k+1,j
0 − Φk,j

0 )2,

where sk,j ∈ R is a constant between Φk,j
0 and Φk+1,j

0 .

Employing (14), we have

J∑

j=1

g′j(Φ
k,j
0 )(hk,j∆Pkxj) =

J∑

j=1

g′j(Φ
k,j
0 )

n∑

i=1

(
hk,j

i (∆pk
i )T

)
xj

=
n∑

i=1

(∆pk
i )T

J∑

j=1

g′j(Φ
k,j
0 )hk,j

i xj

=
n∑

i=1

∂E(Wk)
∂pi

·
(
− η

∂E(Wk)
∂pi

)

= −η

n∑

i=1

∥∥∥∂E(Wk)
∂pi

∥∥∥
2

.

Using the Taylor expansion, and noticing ht,j
i = exp(−Φt,j

i · Φt,j
i ), partly similar with the

proof of Lemma 2 in [16], we have

Ψk,jPkxj =
n∑

i=1

(hk+1,j
i − hk,j

i )(pk
i · xj) =

n∑

i=1

(pk
i · xj)

(
exp(−Φk+1,j

i · Φk+1,j
i )− exp(−Φk,j

i · Φk,j
i )

)

=
n∑

i=1

(pk
i · xj)hk,j

i

(− (Φk+1,j
i · Φk+1,j

i − Φk,j
i · Φk,j

i )
)
+

1
2

n∑

i=1

(pk
i · xj) exp(t̃s,j

i )(Φk+1,j
i · Φk+1,j

i − Φk,j
i · Φk,j

i )2, (24)

where t̃s,j
i lies between −Φk+1,j

i · Φk+1,j
i and −Φk,j

i · Φk,j
i .

Employing the property 2) of the operator“¯” in the Definition 3.1, we deduce

n∑

i=1

(pk
i · xj)hk,j

i

(
−(Φk+1,j

i · Φk+1,j
i − Φk,j

i · Φk,j
i )

)

=
n∑

i=1

(pk
i · xj)hk,j

i

[
−

(
2Φk,j

i · (Φk+1,j
i − Φk,j

i ) + (Φk+1,j
i − Φk,j

i ) · (Φk+1,j
i − Φk,j

i )
)]

= −2
n∑

i=1

(pk
i · xj)hk,j

i

(
Φk,j

i · (Φk+1,j
i − Φk,j

i )
)−

n∑

i=1

(pk
i · xj)hk,j

i ‖Φk+1,j
i − Φk,j

i ‖2

= −2
n∑

i=1

(pk
i · xj)hk,j

i

((
ξk,j
i ¯ bk

i

) · ((−∆ak
i )¯ bk+1

i + ξk,j
i ¯∆bk

i

))−
n∑

i=1

(pk
i · xj)hk,j

i ‖Φk+1,j
i − Φk,j

i ‖2
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= 2
n∑

i=1

(pk
i · xj)hk,j

i

(
ξk,j
i ¯ bk

i

) · (∆ak
i ¯ bk+1

i

)−

2
n∑

i=1

(pk
i · xj)hk,j

i (ξk,j
i ¯ bk

i ) · (ξk,j
i ¯∆bk

i )−
n∑

i=1

(pk
i · xj)hk,j

i ‖Φk+1,j
i − Φk,j

i )‖2

= 2
n∑

i=1

(pk
i · xj)hk,j

i (ξk,j
i ¯ bk

i ¯ bk
i ) ·∆ak

i + 2
n∑

i=1

(pk
i · xj)hk,j

i (ξk,j
i ¯ bk

i ¯∆bk
i ) ·∆ak

i−

2
n∑

i=1

(pk
i · xj)hk,j

i (ξk,j
i ¯ ξk,j

i ¯ bk
i ) ·∆bk

i −
n∑

i=1

(pk
i · xj)hk,j

i ‖Φk+1,j
i − Φk,j

i )‖2.

So we have
J∑

j=1

g′j(Φ
k,j
0 )

n∑

i=1

(pk
i · xj)hk,j

i

(− (Φk+1,j
i · Φk+1,j

i − Φk,j
i · Φk,j

i )
)

= 2
J∑

j=1

g′j(Φ
k,j
0 )

n∑

i=1

(pk
i · xj)hk,j

i (ξk,j
i ¯ bk

i ¯ bk
i ) ·∆ak

i +

2
J∑

j=1

g′j(Φ
k,j
0 )

n∑

i=1

(pk
i · xj)hk,j

i (ξk,j
i ¯ bk

i ¯∆bk
i ) ·∆ak

i−

2
J∑

j=1

g′j(Φ
k,j
0 )

n∑

i=1

(pk
i · xj)hk,j

i (ξk,j
i ¯ ξk,j

i ¯ bk
i ) ·∆bk

i −
J∑

j=1

g′j(Φ
k,j
0 )δ

=
n∑

i=1

∂E(Wk)
∂ai

·∆ak
i + 2

J∑

j=1

g′j(Φ
k,j
0 )

n∑

i=1

(pk
i · xj)hk,j

i (ξk,j
i ¯ bk

i ¯∆bk
i ) ·∆ak

i +

n∑

i=1

∂E(Wk)
∂bi

·∆bk
i −

J∑

j=1

g′j(Φ
k,j
0 )

n∑

i=1

(pk
i · xj)hk,j

i ‖Φk+1,j
i − Φk,j

i )‖2. (25)

We can easily get ‖Φk,j
0 ‖ = ‖Σn

i=1h
k,j
i (pk

i · xj)‖ ≤ Σn
i=1‖pk

i · xj‖ ≤ Σn
i=1‖pk

i ‖‖xj‖ = nMC0,
‖ξk,j

i ‖ = ‖xj−ak
i ‖ ≤ M +C0. By definition of gj(t) in (11), it is easy to find that g′j(t) = t−Oj ,

then we can get |g′j(Φk,j
0 )| ≤ (nMC0 + M) ≤ nC0C1 + C1.

Together with Assumption (A), and the property 1) of the operator “¯”, we get

2
J∑

j=1

g′j(Φ
k,j
0 )

n∑

i=1

(pk
i · xj)hk,j

i (ξk,j
i ¯ bk

i ¯∆bk
i ) ·∆ak

i

≤ 2JC2
0C2

1 (nC0C1 + C1)
n∑

i=1

‖∆bk
i ‖‖∆ak

i ‖

≤ JC2
0C2

1 (nC0C1 + C1)
n∑

i=1

(‖∆ak
i ‖2 + ‖∆bk

i ‖2
)
, (26)

and

−
J∑

j=1

g′j(Φ
k,j
0 )

n∑

i=1

(pk
i · xj)hk,j

i ‖Φk+1,j
i − Φk,j

i )‖2
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≤ C0C1(nC0C1 + C1)
J∑

j=1

n∑

i=1

‖Φk+1,j
i − Φk,j

i ‖2

= C0C1(nC0C1 + C1)
J∑

j=1

n∑

i=1

‖(−∆ak
i )¯ bk+1

i + ξk,j
i ¯∆bk

i ‖2

≤ 2JC0C1(nC0C1 + C1)
n∑

i=1

(
C2

0‖∆ak
i ‖2 + C2

1‖∆bk
i ‖2

)

≤ C21

n∑

i=1

(‖∆ak
i ‖2 + ‖∆bk

i ‖2
)
, (27)

where C21 = 2JC0C1(nC0C1 + C1)max{C2
0 , C2

1}. The combination of (29)–(31) leads to

J∑

j=1

g′j(Φ
k,j
0 )

n∑

i=1

(pk
i · xj)hk,j

i

(− (Φk+1,j
i · Φk+1,j

i − Φk,j
i · Φk,j

i )
)

≤
n∑

i=1

∂E(Wk)
∂ai

·∆ak
i +

n∑

i=1

∂E(Wk)
∂bi

·∆bk
i + C22

n∑

i=1

(‖∆ak
i ‖2 + ‖∆bk

i ‖2
)
,

where C22 = C21 + JC2
0C2

1 (nC0C1 + C1). Furthermore,

g′j(Φ
k,j
0 )

1
2

J∑

j=1

n∑

i=1

(pk
i · xj) exp(t̃s,j

i )(Φk+1,j
i · Φk+1,j

i − Φk,j
i · Φk,j

i )2

≤ C0C1(nC0C1 + C1)
2

J∑

j=1

n∑

i=1

(Φk+1,j
i · Φk+1,j

i − Φk,j
i · Φk,j

i )2

=
C0C1(nC0C1 + C1)

2

J∑

j=1

n∑

i=1

[
(Φk+1,j

i + Φk,j
i ) · (Φk+1,j

i − Φk,j
i )

]2

≤ 2C0C
2
1 (nC0C1 + C1)

J∑

j=1

n∑

i=1

‖Φk+1,j
i − Φk,j

i ‖2

≤ C23

n∑

i=1

(‖∆ak
i ‖2 + ‖∆bk

i ‖2
)
, (28)

where C23 = 2JC0C
2
1 (C0 + C1)(nC0C1 + C1). Combining (28) and (32) leads to

J∑

j=1

g′j(Φ
k,j
0 )(Ψk,jPkxj)

≤
n∑

i=1

∂E(Wk)
∂ai

·∆ak
i +

n∑

i=1

∂E(Wk)
∂bi

·∆bk
i + C2

n∑

i=1

(‖∆ak
i ‖2 + ‖∆bk

i ‖2
)

= −η
n∑

i=1

(∥∥∥∂E(Wk)
∂ai

∥∥∥
2

+
∥∥∥∂E(Wk)

∂bi

∥∥∥
2)

+ C2η
2

n∑

i=1

(∥∥∥∂E(Wk)
∂ai

∥∥∥
2

+
∥∥∥∂E(Wk)

∂bi

∥∥∥
2)

,

where C2 = C22 + C23.

Notice ‖Φt,j
i ‖ = ‖ξt,j

i ¯ bt
i‖ ≤ C1, ‖bi‖ ≤ C0, ‖ξi‖ ≤ C0 + M = C1. By the Taylor mean
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value theorem with Lagrange remainder and the properties of Euclidean norm, we get

‖Ψt,j‖2 =

∥∥∥∥∥∥∥∥




ht+1,j
1 − ht,j

1

ht+1,j
2 − ht,j

2

· · ·
hk+1,j

n − ht,j
n




∥∥∥∥∥∥∥∥

2

=
n∑

i=1

(ht+1,j
i − ht,j

i )2 =
n∑

i=1

(
exp

(− Φt+1,j
i · Φt+1,j

i

)− exp
(− Φt,j

i · Φt,j
i

))2

=
n∑

i=1

(
− exp(s̃t,j

i )
((

Φt+1,j
i + Φt,j

i

) · (Φt+1,j
i − Φt,j

i

))2

≤
n∑

i=1

(|2C1|
(
ξt+1,j
i ¯ bt+1,j
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i

))2

=
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∥∥(ξt+1,j
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∥∥
)2

≤
n∑

i=1

(|2C1C0|‖ξt+1,j
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(
C31(‖∆ai

t‖+ ‖∆bi
t‖)

)2

≤ 2C2
31

n∑

i=1

(‖∆ai
t‖2 + ‖∆bi

t‖2),

where C31 = 2C1 max{C0, C1} and s̃t,j
i lies between −Φt+1,j

i · Φt+1,j
i and −Φt,j

i · Φt,j
i . A combi-

nation of Cauchy-Schwartz inequality and (33) gives
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k,j
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≤C1(nC0C1 + C1)
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31
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J
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≤C3
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i=1

(‖(∆pk
i )T ‖2 +

n∑
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=C3η
2
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∂E(Wk)
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2

,
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where C3 = J(nC0C1 + C1)max{ 1
2 , 4C2

0C2
1 , 4C4

1}.
g′′j (t) = 1 is easily deduced from the definition of gj(t) in (11), and we get

1
2

J∑

j=1

g′′j (sk,j)(Φ
k+1,j
0 − Φk,j

0 )2

=
1
2

J∑

j=1

‖Φk+1,j
0 − Φk,j

0 ‖2

=
1
2

J∑

j=1
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=
1
2
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‖
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i · xj)−
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i (pk
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=
1
2

J∑

j=1

‖
n∑

i=1

(hk+1,j
i − hk,j

i )(pk+1
i · xj) +

n∑
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(hk+1,j
i − hk,j

i )(pk+1
i · xj)‖2

≤ 1
2

J∑

j=1

n∑

i=1

‖(hk+1,j
i − hk,j

i )(pk+1
i · xj) + (hk+1,j

i − hk,j
i )(pk+1

i · xj)‖2

≤ 1
2

J∑

j=1

n∑

i=1

[‖(hk+1,j
i − hk,j

i )(pk+1
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i − hk,j
i )(pk+1

i · xj)‖2]

≤ C4η
2
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i=1

(∥∥∥∂E(Wk)
∂pi

∥∥∥
2

+
∥∥∥∂E(Wk)

∂ai

∥∥∥
2

+
∥∥∥∂E(Wk)

∂bi
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2)

= C4η
2
∥∥∥∂E(Wk)

∂W

∥∥∥
2

,

where C4 = 4nJC2
1 max{C2

0C2
1 , C2

1 , 1}.
Using the Taylor expansion theorem, for k = 0, 1, 2, . . . we get

E(Wk+1)− E(Wk)

≤ −η

n∑

i=1

∥∥∥∂E(Wk)
∂pi

∥∥∥
2

− η
n∑

i=1

(∥∥∥∂E(Wk)
∂ai

∥∥∥
2

+
∥∥∥∂E(Wk)

∂bi

∥∥∥
2)

+

C3η
2
( n∑

i=1

∥∥∥∂E(Wk)
∂pi

∥∥∥
2

+
n∑

i=1

∥∥∥∂E(Wk)
∂ai

∥∥∥
2

+
n∑

i=1

∥∥∥∂E(Wk)
∂bi
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2)

+

(C2 + C4)η2
∥∥∥∂E(Wk)

∂W

∥∥∥
2

≤ −(η − C5η
2)

∥∥∥∂E(Wk)
∂W
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2

,

where C5 = C2 + C3 + C4, and sk,j ∈ R lies between Φk,j
0 and Φk+1,j

0 . Write β = η−C5η
2, then

E(Wk+1) ≤ E(Wk)− β
∥∥∥∂E(Wk)

∂W

∥∥∥
2

. (30)

Suppose the learning rate η satisfies

0 < η <
1
C5

. (31)
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Then there holds

E(Wk+1) ≤ E(Wk), k = 0, 1, 2, . . . . (32)

From (32), we know the nonnegative sequence {E(W k)} is monotone, adding it is bounded
below, hence, there exists E∗ > 0 such that limk→∞E(Wk) = E∗. The statement (i) is proved.

Proof of Statement (ii) Using (35), we have

E(Wk+1) ≤ E(Wk)− β
∥∥∥∂E(Wk)

∂W

∥∥∥
2

≤ · · · ≤ E(W0)− β
k∑

t=0

∥∥∥∂E(Wt)
∂W

∥∥∥
2

.

For E(Wk+1) ≥ 0, we get

β
k∑

t=0

∥∥∥∂E(Wt)
∂W

∥∥∥
2

≤ E(W0).

Set k →∞, then
∞∑

t=0

∥∥∥∂E(Wt)
∂W

∥∥∥
2

≤ 1
β

E(W0) < ∞.

This immediately gives

lim
k→∞

∥∥∥∂E(Wk)
∂W

∥∥∥ = 0. (33)

The Statement (ii) is proved. And this completes the proof of Theorem.

6. Conclusion

First-order Takagi-Sugeno (T-S) system has recently been a powerful practical engineering
tool for modeling and control of complex systems. Ref. [7] showed that Pi-Sigma network is
capable of dealing with the nonlinear systems more efficiently, and it is a good model for first-
order T-S system identification.

We note that the convergence property for Pi-Sigma neural network learning is an inter-
esting research topic which offers an effective guarantee in real application. To further enhance
the potential of Pi-Sigma network, a modified gradient-based algorithm based on first-order T-S
inference system has been proposed to reduce the computational cost of learning. Our contribu-
tion is to provide a rigorous convergence analysis for this learning method, and some convergence
results are given which indicate that the gradient of the error function goes to zero and the fuzzy
parameter sequence goes to a local minimum of the error function, respectively.
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