Journal of Mathematical Research with Applications Mar., 2014, Vol. 34, No. 2, pp. 155–160 DOI:10.3770/j.issn:2095-2651.2014.02.004 Http://jmre.dlut.edu.cn

On the Congruence $\sigma(n) \equiv 1 \pmod{n}$, II

Meng LI, Min TANG*

School of Mathematics and Computer Science, Anhui Normal University, Anhui 241003, P. R. China

Abstract Let $k \geq 2$ be an integer, and let $\sigma(n)$ denote the sum of the positive divisors of an integer n. We call n a quasi-multiperfect number if $\sigma(n) = kn + 1$. In this paper, we give some necessary properties of quasi-multiperfect numbers with four different prime divisors.

Keywords quasiperfect number; quasi-multiperfect number.

MR(2010) Subject Classification 11A25

1. Introduction

For a positive integer n, let $\phi(n)$, $\omega(n)$ and $\sigma(n)$ denote the Euler function of n, the number of distinct prime factors of n and the sum of the positive divisors of n, respectively. We call n a quasi-multiperfect(QM) number if $\sigma(n) = kn + 1$ with $k \geq 2$. In particular, we call n a quasi-perfect number if $\sigma(n) = 2n + 1$, n a quasi-triperfect(QT) number if $\sigma(n) = 3n + 1$. Up to now, no quasi-multiperfect numbers are known, but necessary properties of them are described in many papers [1–8]. Recently, Anavi, Pollack and Pomerance [2] showed that the number of composite solutions $n \leq x$ to the congruence $\sigma(n) \equiv a \pmod{n}$ is at most $x^{\frac{1}{2} + o(1)}$. The authors of this paper [9] gave some necessary properties of quasi-multiperfect numbers with three different prime divisors.

In this paper, we obtain the following result.

Theorem 1.1 If n is a QM and $\omega(n) = 4$, then n is QT and has the form $n = 2^{\alpha_1} 3^{\alpha_2} p^{\alpha_3} q^{\alpha_4}$, where $\alpha'_i s$ are even.

Remark We can show that if n is QM and $\omega(n) = 4$, then prime factor p in Theorem 1.1 must satisfy $p \ge 23$.

2. Lemmas

In this section, we prepare several lemmas.

Lemma 2.1 ([6, Theorem 3]) If n is a quasiperfect number, then $\omega(n) \geq 7$.

Lemma 2.2 ([9, Theorem 1]) If n is QM and odd, then $\omega(n) \geq 7$. If n is QM and even, then

Received March 27, 2013; Accepted June 4, 2013

Supported by the National Natural Science Foundation of China (Grant No. 10901002) and the Natural Science Foundation of Anhui Province (Grant No. 1208085QA02).

* Corresponding author

E-mail address: limengde163youx@163.con (Meng LI); tmzzz2000@163.com (Min TANG)

 $\omega(n) \geq 3$.

Lemma 2.3 If n is an even QT, then n is a square number.

Proof Let $n = 2^{\alpha_0} \prod_{i=1}^t p_i^{\alpha_i}$ be the standard factorization of n. Since n is a QT, we have $(\sigma(n), 3) = 1$. Thus $2^{\alpha_0+1} - 1 \equiv 1 \pmod{3}$, $\alpha_0 \equiv 0 \pmod{2}$.

Moreover.

$$\sigma(n) = (2^{\alpha+1} - 1) \prod_{i=1}^{t} (1 + p_i + \dots + p_i^{\alpha_i}) \equiv \prod_{i=1}^{t} (\alpha_i + 1) \equiv 1 \pmod{2},$$

thus $\alpha_i \equiv 0 \pmod{2}$, $1 \leq i \leq t$.

This completes the proof of Lemma 2.3. \square

Lemma 2.4 If $\sigma(n) = 4n + 1$, then either $n = m^2$ with (m, 2) = 1, or $n = 2m^2$ with (m, 6) = 1.

Proof Let $n = 2^{\alpha} \prod_{i=1}^{t} p_i^{\alpha_i}$ be the standard factorization of n. By

$$\sigma(n) = (2^{\alpha+1} - 1) \prod_{i=1}^{t} (1 + p_i + \dots + p_i^{\alpha_i}) \equiv \prod_{i=1}^{t} (\alpha_i + 1) \equiv 1 \pmod{2},$$

we have $\alpha_i \equiv 0 \pmod{2}$. Thus $n = m^2$ with (m, 2) = 1, or $n = 2^{\alpha} m^2$ with (m, 2) = 1.

Suppose that $n = 2^{2a}m^2$, where $a \ge 0$ and m is odd. Then for any prime divisor q of $\sigma(n)$, we have

$$\sigma(n) = 4n + 1 = 2^{2a+2}m^2 + 1 \equiv 0 \pmod{q}.$$

Thus $\left(\frac{-1}{q}\right) = 1$, $q \equiv 1 \pmod{4}$. If $a \geq 1$, then $\sigma(2^{2a}) = 2^{2a+1} - 1 \equiv 3 \pmod{4}$, which is impossible. Hence a = 0.

Suppose that $n = 2^{2a+1}m^2$, where $a \ge 0$ and m is odd. Then for any prime divisor q of $\sigma(n)$, we have

$$\sigma(n) = 4n + 1 = 2(2^{a+1}m)^2 + 1 \equiv 0 \pmod{q}.$$

Thus $(\frac{-2}{q}) = 1$, $q \equiv 1, 3 \pmod{8}$. If $a \geq 1$, then $\sigma(2^{2a+1}) = 2^{2a+2} - 1 \equiv 7 \pmod{8}$, which is also impossible. Hence a = 0, $n = 2m^2$, $\sigma(n) = 3\sigma(m^2) = 8m^2 + 1$, we have (m, 3) = 1.

This completes the proof of Lemma 2.4. \square

Lemma 2.5 If n is a QM and $\omega(n) = 4$, then we know that n is a QT and n must be one of the following forms:

- (i) $n = 2^{\alpha_1} 3^{\alpha_2} p^{\alpha_3} q^{\alpha_4}$, where p, q are odd primes;
- (ii) $n = 2^{\alpha_1} 5^{\alpha_2} 7^{\alpha_3} p^{\alpha_4}$, where $p \in \{11, 13, 17, 19, 23, 29, 31\}$.

Proof Since $\omega(n) = 4$, by Lemma 2.2 we have n is even. Assume that $n = 2^{\alpha_1} p_1^{\alpha_2} p_2^{\alpha_3} p_3^{\alpha_4}$. If $p_1 \geq 7$, then

$$2 \le k = \frac{\sigma(n)}{n} - \frac{1}{n} < \frac{n}{\phi(n)} \le \frac{2}{1} \cdot \frac{7}{6} \cdot \frac{11}{10} \cdot \frac{13}{12} < 3,$$

thus k=2, n is a quasiperfect number. By Lemma 2.1, this is impossible. Hence $p_1=3$ or $p_1=5$.

Case 1 $p_1 = 3$. Then

$$2 \le k = \frac{\sigma(n)}{n} - \frac{1}{n} < \frac{n}{\phi(n)} \le \frac{2}{1} \cdot \frac{3}{2} \cdot \frac{5}{4} \cdot \frac{7}{6} = 4.375.$$

Thus k = 2, 3 or 4. By Lemmas 2.1 and 2.4, we have $\sigma(n) = 3n + 1$.

Case 2 $p_1 = 5$. If $p_2 \ge 11$, then

$$2 \le k = \frac{\sigma(n)}{n} - \frac{1}{n} < \frac{n}{\phi(n)} \le \frac{2}{1} \cdot \frac{5}{4} \cdot \frac{11}{10} \cdot \frac{13}{12} < 3,$$

thus k=2, n is a quasiperfect number. By Lemma 2.1, this is impossible. Hence $p_2=7$. If $p_3 \geq 37$, we have

$$2 \le k = \frac{\sigma(n)}{n} - \frac{1}{n} < \frac{n}{\phi(n)} \le \frac{2}{1} \cdot \frac{5}{4} \cdot \frac{7}{6} \cdot \frac{37}{36} < 3,$$

thus k=2, n is a quasiperfect number. By Lemma 2.1, this is impossible. Thus $n=2^{\alpha_1}5^{\alpha_2}7^{\alpha_3}p^{\alpha_4}$ where $p \in \{11, 13, 17, 19, 23, 29, 31\}$. In these cases, we have

$$2 \le k = \frac{\sigma(n)}{n} - \frac{1}{n} < \frac{n}{\phi(n)} \le \frac{2}{1} \cdot \frac{5}{4} \cdot \frac{7}{6} \cdot \frac{11}{10} = 3.20 \cdot \cdot \cdot ,$$

thus k=2 or 3. By Lemma 2.1, we have $\sigma(n)=3n+1$

This completes the proof of Lemma 2.5. \square

3. Proof of Theorem 1.1

By Lemma 2.5, it suffices to show that if $\alpha_i's$ are even and $p \in \{11, 13, 17, 19, 23, 29, 31\}$, then $n = 2^{\alpha_1} 5^{\alpha_2} 7^{\alpha_3} p^{\alpha_4}$ is not a QT. Assume that $n = 2^{\alpha_1} 5^{\alpha_2} 7^{\alpha_3} p^{\alpha_4}$ is a QT. Then

$$\sigma(n) = (2^{\alpha_1 + 1} - 1) \frac{5^{\alpha_2 + 1} - 1}{4} \frac{7^{\alpha_3 + 1} - 1}{6} \frac{p^{\alpha_4 + 1} - 1}{p - 1} = 2^{\alpha_1} \cdot 3 \cdot 5^{\alpha_2} 7^{\alpha_3} p^{\alpha_4} + 1. \tag{1}$$

Let

$$\begin{split} f(\alpha_1,\alpha_2,\alpha_3,\alpha_4) &= (1-\frac{1}{2^{\alpha_1+1}})(1-\frac{1}{5^{\alpha_2+1}})(1-\frac{1}{7^{\alpha_3+1}})(1-\frac{1}{p^{\alpha_4+1}}),\\ g(\alpha_1,\alpha_2,\alpha_3,\alpha_4) &= \frac{36(p-1)}{35p} + \frac{2^33(p-1)}{2^{\alpha_1+1}5^{\alpha_2+1}7^{\alpha_3+1}p^{\alpha_4+1}}. \end{split}$$

Thus $f(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = g(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$. Noting that

$$f(2, \alpha_2, \alpha_3, \alpha_4) < 1 - \frac{1}{2^3} = 0.875,$$

$$g(2, \alpha_2, \alpha_3, \alpha_4) > \frac{36 \times 10}{35 \times 11} = 0.935 \cdots,$$

we know that $\alpha_1 \geq 4$.

Case 1 p = 11. Then

$$f(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \ge f(4, 2, 2, 2) = 0.957 \cdots$$

$$q(\alpha_1, \alpha_2, \alpha_3, \alpha_4) < q(4, 2, 2, 2) = 0.935 \cdots$$

a contradiction.

Case 2 p = 13. Then

$$f(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \ge f(4, 2, 2, 2) = 0.957 \cdots,$$

 $g(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \le g(4, 2, 2, 2) = 0.949 \cdots,$

a contradiction.

Case 3 p = 17. By (1), we have

$$(2^{\alpha_1+1}-1)(5^{\alpha_2+1}-1)(7^{\alpha_3+1}-1)(17^{\alpha_4+1}-1) \equiv -1 \pmod{7}.$$
 (2)

Since $\alpha_i's$ are even for $1 \le i \le 4$, we have $2^{\alpha_1+1}-1 \equiv 0, 1, 3 \pmod{7}$, $5^{\alpha_2+1}-1 \equiv 2, 4, 5 \pmod{7}$, $17^{\alpha_4+1}-1 \equiv 2, 4, 5 \pmod{7}$. By (2), we have the following cases.

- (a) $2^{\alpha_1+1}-1 \equiv 1 \pmod{7}$, $5^{\alpha_2+1}-1 \equiv 2 \pmod{7}$, $17^{\alpha_4+1}-1 \equiv 4 \pmod{7}$. Thus $\alpha_1 \equiv 0 \pmod{6}$, $\alpha_2 \equiv 4 \pmod{6}$, $\alpha_4 \equiv 4 \pmod{6}$.
- (b) $2^{\alpha_1+1}-1 \equiv 1 \pmod{7}$, $5^{\alpha_2+1}-1 \equiv 4 \pmod{7}$, $17^{\alpha_4+1}-1 \equiv 2 \pmod{7}$. Thus $\alpha_1 \equiv 0 \pmod{6}$, $\alpha_2 \equiv 0 \pmod{6}$, $\alpha_4 \equiv 0 \pmod{6}$.

Hence

$$f(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \ge f(6, 4, 2, 4) = 0.988 \cdots,$$

 $g(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \le g(6, 4, 2, 4) = 0.968 \cdots,$

a contradiction.

Case 4 p = 19. Noting that

$$f(4, \alpha_2, \alpha_3, \alpha_4) < 1 - \frac{1}{2^5} = 0.968 \cdots,$$

$$g(4, \alpha_2, \alpha_3, \alpha_4) > \frac{36 \times 18}{35 \times 19} = 0.974 \cdots,$$

we know that $\alpha_1 \geq 6$. Hence

$$f(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \ge f(6, 2, 2, 2) = 0.981 \cdots,$$

 $g(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \le g(6, 2, 2, 2) = 0.974 \cdots,$

a contradiction.

Case 5 p = 23. Noting that

$$f(4, \alpha_2, \alpha_3, \alpha_4) < 1 - \frac{1}{2^5} = 0.968 \cdots,$$

 $g(4, \alpha_2, \alpha_3, \alpha_4) > \frac{36 \times 22}{35 \times 23} = 0.983 \cdots,$

we know that $\alpha_1 \geq 6$. By (1), we have

$$(2^{\alpha_1+1}-1)(5^{\alpha_2+1}-1)(7^{\alpha_3+1}-1)(23^{\alpha_4+1}-1) \equiv 3 \pmod{7}.$$
 (3)

Since $\alpha_i's$ are even for $1 \le i \le 4$, we have $2^{\alpha_1+1}-1 \equiv 0, 1, 3 \pmod{7}$, $5^{\alpha_2+1}-1 \equiv 2, 4, 5 \pmod{7}$, $23^{\alpha_4+1}-1 \equiv 0, 1, 3 \pmod{7}$. By (3), we have the following cases.

- (a) $2^{\alpha_1+1}-1 \equiv 1 \pmod{7}$, $5^{\alpha_2+1}-1 \equiv 4 \pmod{7}$, $23^{\alpha_4+1}-1 \equiv 1 \pmod{7}$. Thus $\alpha_1 \equiv 0 \pmod{6}$, $\alpha_2 \equiv 0 \pmod{6}$, $\alpha_4 \equiv 0 \pmod{6}$.
- (b) $2^{\alpha_1+1}-1 \equiv 3 \pmod{7}$; $5^{\alpha_2+1}-1 \equiv 2 \pmod{7}$; $23^{\alpha_4+1}-1 \equiv 3 \pmod{7}$. Thus $\alpha_1 \equiv 4 \pmod{6}$; $\alpha_2 \equiv 4 \pmod{6}$; $\alpha_4 \equiv 4 \pmod{6}$.

Hence

$$f(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \ge f(6, 6, 2, 6) = 0.989 \cdots,$$

 $g(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \le g(6, 6, 2, 6) = 0.983 \cdots,$

a contradiction.

Case 6 p = 29. Noting that

$$f(4, \alpha_2, \alpha_3, \alpha_4) < f(6, \alpha_2, \alpha_3, \alpha_4) < 1 - \frac{1}{2^7} = 0.992 \cdots,$$

 $g(4, \alpha_2, \alpha_3, \alpha_4) > g(6, \alpha_2, \alpha_3, \alpha_4) > \frac{36 \times 28}{35 \times 29} = 0.993 \cdots,$

we know that $\alpha_1 \geq 8$. Similarly, we have $\alpha_2 \geq 4$. Hence

$$f(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \ge f(8, 4, 2, 2) = 0.994 \cdots,$$

 $g(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \le g(8, 4, 2, 2) = 0.993 \cdots,$

a contradiction.

Case 7 p = 31. Noting that

$$f(4, \alpha_2, \alpha_3, \alpha_4) < f(6, \alpha_2, \alpha_3, \alpha_4) < 1 - \frac{1}{2^7} = 0.992 \cdots,$$

 $g(4, \alpha_2, \alpha_3, \alpha_4) > g(6, \alpha_2, \alpha_3, \alpha_4) > \frac{36 \times 30}{35 \times 31} = 0.995 \cdots,$

we know that $\alpha_1 \geq 8$. By (1), we have

$$(2^{\alpha_1+1}-1)(5^{\alpha_2+1}-1)(7^{\alpha_3+1}-1)(31^{\alpha_4+1}-1) \equiv -1 \pmod{7}.$$
 (4)

Since $\alpha_i's$ are even for $1 \le i \le 4$, we have $2^{\alpha_1+1}-1 \equiv 0, 1, 3 \pmod{7}$, $5^{\alpha_2+1}-1 \equiv 2, 4, 5 \pmod{7}$, $31^{\alpha_4+1}-1 \equiv 2, 4, 5 \pmod{7}$. By (4), we have the following cases.

- (a) $2^{\alpha_1+1}-1 \equiv 1 \pmod{7}$, $5^{\alpha_2+1}-1 \equiv 2 \pmod{7}$, $31^{\alpha_4+1}-1 \equiv 4 \pmod{7}$. Thus $\alpha_1 \equiv 0 \pmod{6}$, $\alpha_2 \equiv 4 \pmod{6}$, $\alpha_4 \equiv 4 \pmod{6}$.
- (b) $2^{\alpha_1+1}-1 \equiv 1 \pmod{7}$, $5^{\alpha_2+1}-1 \equiv 4 \pmod{7}$, $31^{\alpha_4+1}-1 \equiv 2 \pmod{7}$. Thus $\alpha_1 \equiv 0 \pmod{6}$, $\alpha_2 \equiv 0 \pmod{6}$, $\alpha_4 \equiv 0 \pmod{6}$.

Hence

$$f(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \ge f(12, 4, 2, 4) = 0.996 \cdots,$$

 $g(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \le g(12, 4, 2, 4) = 0.995 \cdots,$

a contradiction.

This completes the proof of Theorem 1.1 \square

References

- [1] H. L. ABBOTT, C. E. AULL, E. BROWN, et al. Corrections to the paper: "Quasiperfect numbers". Acta Arith., 1976, 29(4): 427–428.
- [2] A. ANAVI, P. POLLACK, C. POMERANCE. On congrunces of the form $\sigma(n) \equiv a \pmod{n}$. Int. J. Number Theory, 2013, $\mathbf{9}(1)$: 115–124.
- [3] P. CATTANEO. Sui numeri quasiperfetti. Boll. Un. Mat. Ital., 1951, 6: 59-62.
- [4] G. L. COHEN. On odd perfect numbers. II. Multiperfect numbers and quasiperfect numbers. J. Austral. Math. Soc. Ser. A, 1980, 29(3): 369–384.
- [5] G. L. COHEN. The nonexistence of quasiperfect numbers of certain forms. Fibonacci Quart., 1982, 20(1): 81–84.
- [6] P. HAGIS, G. L. COHEN. Some results concerning quasiperfect numbers. J. Austral. Math. Soc. Ser. A, 1982, 33(2): 275–286.
- [7] M. KISHORE. Odd integers n with five distinct prime factors for which $2-10^{-12}<\sigma(n)/n<2+10^{-12}$. Math. Comp., 1978, **32**(141): 303–309.
- [8] M. KISHORE. On odd perfect, quasiperfect, and odd almost perfect numbers. Math. Comp., 1981, 36(154): 583-586.
- [9] Min TANG, Meng LI. On the congrunce $\sigma(n) \equiv 1 \pmod{n}$. J. Math. Res. Appl., 2012, **32**(6): 673–676.