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On the Congruence o(n) =1 (mod n), IT
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Abstract Let k > 2 be an integer, and let o(n) denote the sum of the positive divisors of
an integer n. We call n a quasi-multiperfect number if o(n) = kn + 1. In this paper, we give
some necessary properties of quasi-multiperfect numbers with four different prime divisors.
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1. Introduction

For a positive integer n, let ¢(n), w(n) and o(n) denote the Euler function of n, the number
of distinct prime factors of n and the sum of the positive divisors of n, respectively. We call
n a quasi-multiperfect(QM) number if o(n) = kn + 1 with £ > 2. In particular, we call n a
quasiperfect number if o(n) = 2n + 1, n a quasi-triperfect(QT) number if o(n) = 3n 4+ 1. Up to
now, no quasi-multiperfect numbers are known, but necessary properties of them are described
in many papers [1-8]. Recently, Anavi, Pollack and Pomerance [2] showed that the number of
composite solutions n < x to the congruence o(n) = a (mod n) is at most 22101 The authors
of this paper [9] gave some necessary properties of quasi-multiperfect numbers with three different
prime divisors.

In this paper, we obtain the following result.

Theorem 1.1 Ifn is a QM and w(n) = 4, then n is QT and has the form n = 2%13%2p®3g*4

where s are even.

Remark We can show that if n is QM and w(n) = 4, then prime factor p in Theorem 1.1 must
satisfy p > 23.

2. Lemmas

In this section, we prepare several lemmas.

Lemma 2.1 ([6, Theorem 3]) Ifn is a quasiperfect number, then w(n) > 7.

Lemma 2.2 ([9, Theorem 1]) If n is QM and odd, then w(n) > 7. If n is QM and even, then
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w(n) > 3.
Lemma 2.3 Ifn is an even QT, then n is a square number.

Proof Let n = 2% H§:1p?i be the standard factorization of n. Since n is a QT, we have
(0(n),3) = 1. Thus 2%+ —1 =1 (mod 3), g =0 (mod 2).
Moreover,

t t

o) =" —D)[[a+pi+-+pM) =[Jlai+1) =1 (mod 2),

i=1 i=1
thus a; =0 (mod 2), 1 <i < t.
This completes the proof of Lemma 2.3. O

Lemma 2.4 Ifo(n) = 4n+ 1, then either n = m? with (m,2) = 1, or n = 2m? with (m,6) = 1.

t
Proof Letn=2T]] pj* be the standard factorization of n. By
i=1

t t
on) = -D][A+pi+ -+ =[[(i + 1) =1 (mod 2),
i=1

i=1
we have o; =0 (mod 2). Thus n = m? with (m,2) =1, or n = 29m? with (m,2) = 1.
Suppose that n = 22¢m?2, where a > 0 and m is odd. Then for any prime divisor ¢ of o(n),
we have
on)=4n+1=2*"2m? 4+ 1=0 (mod q).

Thus (_71) =1,¢g=1 (mod4). If a > 1, then 0(2%¢) = 22¢*1 — 1 = 3 (mod 4), which is
impossible. Hence a = 0.
Suppose that n = 22¢t1m?2 where a > 0 and m is odd. Then for any prime divisor ¢ of
o(n), we have
o(n)=4n+1=22""m)> +1=0 (mod q).
Thus (_72) =1,¢=1,3 (mod 8). If a > 1, then ¢(22¢*!) = 229*2 — 1 = 7 (mod 8), which is

also impossible. Hence a = 0, n = 2m?, o(n) = 30(m?) = 8m? + 1, we have (m, 3) = 1.

This completes the proof of Lemma 2.4. [J

Lemma 2.5 Ifn is a QM and w(n) = 4, then we know that n is a QT and n must be one of
the following forms:

(i) n =2%13%2p*sq*  where p, q are odd primes;

(ii) n =2%15*27%p* where p € {11,13,17,19, 23,29, 31}.

Proof Since w(n) = 4, by Lemma 2.2 we have n is even. Assume that n = 2% pJ?py®ps*. If
p1 > 7, then

Lo 3
6 10 12
thus k£ = 2, n is a quasiperfect number. By Lemma 2.1, this is impossible. Hence p; = 3 or

p1=29.
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Case 1 p; = 3. Then

o< =2 _
n

W | ot

> <
4 10 12 ’
thus k = 2, n is a quasiperfect number. By Lemma 2.1, this is impossible. Hence p; = 7. If

p3 > 37, we have

1

— <
n n () —1 4 6 36
thus k = 2, n is a quasiperfect number. By Lemma 2.1, this is impossible. Thus n = 2*15%27%3p%4
where p € {11,13,17,19,23,29,31}. In these cases, we have

2<k=—>=>—-—-<——X<

- n n < o(n) —

thus k = 2 or 3. By Lemma 2.1, we have o(n) = 3n + 1.
This completes the proof of Lemma 2.5. O

on) 1 n 2 5 7
2.2, 0.2 2390...
1 4 6 320 ’

3. Proof of Theorem 1.1

By Lemma 2.5, it suffices to show that if afs are even and p € {11,13,17,19,23, 29,31},
then n = 2915%*27*p* jgs not a QT. Assume that n = 2*15*27*p* is a QT. Then
5a2+1 -1 7a3+1 _ 1 pa4+1 _ 1

= (2t -1 =2%1.3.5%7%p 41, 1
o(n) = ( ) T P+ &)
et 1 1 1 1
flai,az,a3,04) = (1 - W)( - 5a2+1)( - 7a3+1)( - pa4+1)7
~36(p— 1) 233(p — 1)
glar, as,a3,a4) = 35p Qo1 F15a2+17as+1paa+l”

Thus f(a1, a2, as,a4) = g(ag, ag, as, ay). Noting that
1

f(2,06270[3,044) <1l- ? = 08757
36 x 10

9(2, e, a3, q) >
we know that oy > 4.
Case 1 p=11. Then
flag,ag,a3,a4) > f(4,2,2,2) =0.957 - - |
glan, oo, a3, 04) < g(4,2,2,2) =0.935- -,

a contradiction.
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Case 2 p =13. Then
flag,as, a3, a4) > f(4,2,2,2) =0.957 - - |
g(ag,an, a3,04) < g(4,2,2,2) =0.949 - - - |
a contradiction.
Case 3 p=17. By (1), we have
(200t —1)(5o2tt 1) (7ot — 1) (17T —1) = —1  (mod 7). (2)

Since a/s are even for 1 < i < 4, we have 2*171 —1=0,1,3 (mod 7), 5*2*1 -1 =2,4,5 (mod 7),
1724+l —1 =245 (mod 7). By (2), we have the following cases.

(a) 291 —1=1 (mod 7), 5% —1=2 (mod 7), 17t —1 =4 (mod 7). Thus oy =0
(mod 6), as =4 (mod 6), ay =4 (mod 6).

(b) 20t —1 =1 (mod 7), 5%t —1 =4 (mod 7), 17%*! —1 =2 (mod 7). Thus a; =0
(mod 6), g =0 (mod 6), ay =0 (mod 6).

Hence

flaq, s, a3,a4) > f(6,4,2,4) =0.988 - |

glan, az,a3,a4) < ¢(6,4,2,4) =0.968 - - -,
a contradiction.

Case 4 p=19. Noting that

1
.}[(470427a37014)<]-_27520.968"'7
36 X 18
4, ao, ag, >——— =0974---,

94, az,03,04) > 3579

we know that ay > 6. Hence
flag, g, a3, a4) > f(6,2,2,2) =0.981--- |
glag, ae, a3, aq4) < g(6,2,2,2) =0.974 - - -,
a contradiction.

Case 5 p = 23. Noting that

1
f(4704270637014) <1- 2*5 =0.968--- 5
36 x 22
4 ——— =0.983---
g( 70&2,0{3,0&4)> 35 % 23 5
we know that a; > 6. By (1), we have
200+ — )52+ — )79+ — 1)(23%F 1) =3 (mod 7). (3)

Since s are even for 1 < i < 4, we have 22171 -1 =0,1,3 (mod 7), 571 -1 =2,4,5 (mod 7),
2321+l —1=0,1,3 (mod 7). By (3), we have the following cases.
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(a) 2971 —1=1 (mod 7), 5% —1 =4 (mod 7), 23%Tt —1 =1 (mod 7). Thus a; =0
(mod 6), s =0 (mod 6), oy =0 (mod 6).
(b) 2211 —1 =3 (mod 7); 5°2*! —1 =2 (mod 7); 23%*1 —1 =3 (mod 7). Thus a; =4
(mod 6); ay =4 (mod 6); ay =4 (mod 6).
Hence
f(Oq, 9,3, (14) Z f(6, 6, 2, 6) =0.989--- s
g(ag, as, a3, a4) < g(6,6,2,6) =0.983- -,
a contradiction.
Case 6 p = 29. Noting that
1
f(4,0é2,0[37014) < f(6,0&2,0[37014) <1l- ? =0.992--- )
2
9(47 2, (3, Ck4) > 9(670423 Ck37O[4) > % =0.993--- 5
we know that «; > 8. Similarly, we have ay > 4. Hence
f(al, g, (3, a4) Z f(8, 4, 2, 2) =0.994--- 5
g(ag,an, a3,04) < g(8,4,2,2) =0.993- - -,
a contradiction.
Case 7 p = 31. Noting that
1
f(4,042,01370(4) < f(6,0<2,0[370(4) <1- ? =0.992--- )
9(47 a2, (3, 044) > 9(670523 Oég,a4) > % =0.99--- )
we know that a; > 8. By (1), we have
(200 —1)(5o2tt )79t —1)(31%F —1) = —1  (mod 7). (4)

Since os are even for 1 < i < 4, we have 2171 —1=0,1,3 (mod 7), 5*2*1 -1 =2,4,5 (mod 7),
314t —1=2.4,5 (mod 7). By (4), we have the following cases.

(a) 211 —1=1 (mod 7), 5% —1=2 (mod 7), 31%Tt —1 =4 (mod 7). Thus a; =0
(mod 6), az =4 (mod 6), ag =4 (mod 6).

(b) 21t —1 =1 (mod 7), 5°2*! —1 =4 (mod 7), 31%*T1 —1 =2 (mod 7). Thus oy =0
(mod 6), s =0 (mod 6), ag =0 (mod 6).

Hence

flag,ag, a3, a4) > f(12,4,2,4) = 0.996- - - |

glar,as, a3, 0q4) < g(12,4,2,4) =0.995- - -,

a contradiction.

This completes the proof of Theorem 1.1 [J
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