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Abstract In this paper, weighted estimates with general weights are established for the

multilinear singular integral operator defined by

TAf(x) = p. v.

∫

Rn

Ω(x− y)

|x− y|n+1

(
A(x)−A(y)−∇A(y)(x− y)

)
f(y)dy,

where Ω is homogeneous of degree zero, has vanishing moment of order one, and belongs to

Lipγ(Sn−1) with γ ∈ (0, 1], A has derivatives of order one in BMO(Rn).

Keywords multilinear singular integral operator; weighted norm inequality; sharp function

estimate; BMO.
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1. Introduction

We will work on Rn, n ≥ 1. For a point x ∈ Rn, we denote by xj the j-th variable of x.
Let Ω be homogeneous of degree zero, integrable on the unit sphere Sn−1, and have vanishing
moment of order one which means that for each j with 1 ≤ j ≤ n,

∫

Sn−1
Ω(x′)x′jdσ(x′) = 0.

Let A be a function on Rn having derivatives of order one in BMO(Rn). Define the multilinear
singular integral operator TA by

TAf(x) = p. v.

∫

Rn

Ω(x− y)
|x− y|n+1

(
A(x)−A(y)−∇A(y)(x− y)

)
f(y)dy. (1.1)

This operator was first considered by Cohen [1] and is closely related to the Calderón commutator.
A well known result of Cohen states that if Ω ∈ Lipγ(Sn−1) with γ ∈ (0, 1], then for p ∈ (1, ∞)
and u ∈ Ap(Rn), TA is a bounded operator on Lp(Rn, u) with bound C(n, p)‖∇A‖BMO(Rn),
here Ap(Rn) denotes the weight function class of Muckenhoupt [3]. Hofmann [4] proved that
Ω ∈ ∪1<q≤∞Lq(Sn−1) is a sufficient condition such that TA is a bounded operator on Lp(Rn)
for p ∈ (1, ∞). Hu and Yang [8] considered the weighted estimate with general weights for TA,
and proved that if p ∈ (1, ∞), Ω ∈ Lipγ(Sn−1) with γ ∈ (0, 1], then for any δ > 0, any weight
w, bounded function f with compact support,

‖TAf‖Lp(Rn, w) . ‖f‖Lp(Rn, M
L(log L)2p−1+δ w), (1.2)
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and for any λ > 0,

w({x ∈ Rn : |TAf(x)| > λ}) .
∫

Rn

|f(x)|
λ

log
(
2 +

|f(x)|
λ

)
ML(log L)1+δw(x)dx, (1.3)

here and in the following, for a weight w, we mean w is nonnegative and locally integrable in
Rn. For other works about the operator TA, see [5–7] and the reference therein.

As it is well known, for a standard Calderón-Zygmund T , Pérez proved that if p ∈ (1, ∞),
then for any δ > 0, any bounded function f with compact support and any weight w,

‖Tf‖Lp(Rn, w) . ‖f‖Lp(Rn, M
L(log L)p−1+δ w), (1.4)

and for any λ > 0,

w({x ∈ Rn : |Tf(x)| > λ}) . λ−1

∫

Rn

|f(x)|ML(log L)δw(x)dx. (1.5)

Comparing the inequalities (1.2) and (1.4) ((1.3) and (1.5), respectively), we may ask if the weight
ML(log L)2p−1+δw in the right hand side of the inequality (1.2) can be replaced by ML(log L)p−1+δw,
and the weight ML(log L)1+δw in the right hand side of the inequality (1.3) can be replaced by
ML(log L)δw. The purpose of this paper is to consider this question. Our main result can be
stated as follows.

Theorem 1.1 Let Ω be homogeneous of degree zero, have vanishing moment of order one and

belong to Lipγ(Sn−1) with γ ∈ (0, 1]. Let A be a function on Rn with derivatives of order one

in BMO(Rn) and TA be the operator defined by (1.1). Then

(i) For p ∈ (1, ∞), any weight w and bounded function f with compact support,

‖TAf‖Lp(Rn, w) . ‖∇A‖BMO(Rn)‖f‖Lp(Rn, M
L(log L)p−1+δ w); (1.6)

(ii) For any weight w and bounded function f with compact support,

w({x ∈ Rn : |TAf(x)| > λ})
. Φ(‖∇A‖BMO(Rn))

∫

Rn

|f(x)|
λ

log
(
e +

|f(x)|
λ

)
ML(log L)δw(x)dx

where Φ(t) = t log(e + t) for t > 0.

Remark 1.2 In [8], to obtain the estimate (1.2), the authors first established a variant sharp
function estimate for TA, from which they deduced that for 0 < p < ∞ and bounded function f ,

‖TAf‖Lp(Rn, u) . ‖∇A‖BMO(Rn)‖M2f‖Lp(Rn, u)

provided that u ∈ A∞(Rn), where and in the following, A∞(Rn) = ∪p≥1Ap(Rn). This, via
a duality argument and the weighted estimates with general weights for the commutator of
the Calderón-Zygmund operator [10], leads to (1.2). The argument in this paper is somewhat
different from that used in [8]. We will first establish a variant estimate for the operator T ∗A,
defined by

T ∗Af(x) = p. v.

∫

Rn

Ω(x− y)
|x− y|n+1

(
A(x)−A(y)−∇A(x)(x− y)

)
f(y)dy. (1.7)
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This, together with the relation of the operator TA and some Calderón-Zygmund operators, and
the ideas used in [9], leads to our result (1.6). For details, see Section 2.

Remark 1.3 Theorem 1.1 is of interest since it implies that the singularity of TA is the same
as that of the classical Calderón-Zygmund operator.

We now make some conventions. Throughout this paper, we denote by C a positive constant
which is independent of the main parameters, but may vary from line to line. The symbol f . g

means that there exists a positive constant C such that f ≤ Cg. For any subset E ⊂ Rn, χE

denotes the characteristic function of E.

2. Proof of Theorem 1.1

We begin with a preliminary lemma.

Lemma 2.1 Let b be a function on Rn with derivatives of order one in Lq(Rn) for some q with

n < q ≤ ∞. Then

|b(x)− b(y)| . |x− y|
n∑

k=1

( 1

|Q̃(x, y)|

∫

Q̃(x, y)

|Dkb(z)|qdz
)1/q

,

where Q̃(x, y) is the cube centered at x and having side length 5
√

n|x− y|.
For the proof of Lemma 2.1, see [1].

For each fixed k with 1 ≤ k ≤ n, let Tk be the operator defined by

Tkf(x) = p. v.

∫

Rn

Ω(x− y)
|x− y|n+1

(xk − yk)f(y)dy. (2.1)

Under the hypothesis of Theorem 1.1, Tk is a Calderón-Zygmund operator. For a function
b ∈ BMO(Rn), define the commutator [b, Tk] as

[b, Tk]f(x) = b(x)Tf(x)− T (bf)(x).

It is well known that

‖[b, Tk]f‖Lp(Rn, u) . ‖b‖BMO(Rn)‖f‖Lp(Rn, u), p ∈ (1, ∞), u ∈ Ap(Rn).

Note that

T ∗Af(x) = TAf(x)−
n∑

j=1

[DjA, Tj ]f(x),

where T ∗A is the operator defined by (1.7). Thus, under the hypothesis of Theorem 1.1,

‖T ∗Af‖Lp(Rn, u) . ‖∇A‖BMO(Rn)‖f‖Lp(Rn, u), p ∈ (1, ∞), u ∈ Ap(Rn). (2.2)

Also, we have that

Lemma 2.2 Let Ω ∈ Lipγ(Sn−1) for some γ ∈ (0, 1). Then T ∗A is bounded from L1(Rn) to

L1,∞(Rn), namely, for any λ > 0,

|{x ∈ Rn : T ∗Af(x)| > λ}| . λ−1‖f‖L1(Rn).
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Proof Without loss of generality, we assume that ‖∇A‖BMO(Rn) = 1. For each fixed λ > 0 and
f ∈ L1(Rn), applying the Calderón-Zygmund decomposition to f at level λ, we then obtain a
sequence of cubes {Qj}j with disjoint interiors, such that

λ <
1
|Qj |

∫

Qj

|f(y)|dy ≤ 2nλ,

and
|f(x)| ≤ λ, a. e. x ∈ Rn\( ∪j Qj

)
.

Set
g(x) = f(x)χRn\∪jQj

(x) +
∑

j

mQj
(f)χQj

(x),

h(x) =
∑

j

(f −mQj (f))χQj (x) =
∑

j

hj(x).

By the L2(Rn) boundedness of T ∗A, we know that

|{x ∈ Rn : |T ∗Ag(x)| > λ}| . λ−2‖T ∗Ag‖L2(Rn) . λ−1‖f‖L1(Rn).

Set Eλ = ∪j2
√

nQj . It is obvious that |Eλ| . λ−1‖f‖L1(Rn). Thus, the proof of Lemma 2.2 is
now reduced to proving that

|{x ∈ Rn\Eλ : |T ∗Ah(x)| > λ}| . λ−1. (2.3)

We now prove (2.3). For each fixed j, set Aj(y) = A(y)−mQj (∇A)y. It is obvious that for
x, y ∈ Rn,

Aj(x)−Aj(y)−∇Aj(x)(x− y) = A(x)−A(y)−∇A(y)(x− y)

and so

T ∗Ah(x) =
∑

j

∫

Rn

Ω(x− y)
|x− y|n+1

(Aj(x)−Aj(y))hj(y)dy+

∑

j

n∑

k=1

(
DkA(x)−mQj

(DkA)
) ∫

Rn

Ω(x− y)
|x− y|n+1

(xk − yk)hj(y)dy

:=T ∗, IA h(x) +
∑

j

T ∗, IIA hj(x).

As pointed out in [8, p. 765],

|{x ∈ Rn\Eλ : |T ∗, IA h(x)| > λ/2}| . λ−1‖f‖L1(Rn).

For each fixed j and k with 1 ≤ k ≤ n, and each fixed x ∈ Rn\Eλ, by the vanishing moment of
hj and the regularity condition of Ω, we have

|T ∗, IIA hj(x)| .
n∑

k=1

|DkA(x)−mQj
(DkA)| |y − y0

j |γ
|x− y0

j |n+γ
‖hj‖L1(Rn),

where y0
j is the center of Qj . On the other hand, a straightforward computation leads to that

∫

Rn\2√nQj

|DkA(x)−mQj (DkA)| {`(Qj)}γ

|x− y0
j |n+γ

dx
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.
∞∑

l=1

{`(Qj)}γ

{2l`(Qj)}n+γ

∫

2l+1
√

nQj

|DkA(x)−m2l+1Qj
(DkA)|dx+

∞∑

l=1

{`(Qj)}γ

{2l`(Qj)}γ
|mQj

(DkA)−m2l+1Qj
(DkA)|

. 1,

where `(Qj) denotes the side length of Qj . Therefore,

|{x ∈ Rn\Eλ :
∑

j

|T ∗, IA hj(x)| > λ/2}|

. λ−1
∑

j

‖hj‖L1(Rn)

n∑

k=1

∫

Rn\2√nQj

|DkA(x)−mQj
(DkA)| {`(Qj)}γ

|x− y0
j |n+γ

dx

. λ−1‖f‖L1(Rn).

This lead to (2.3) and then completes the proof of Lemma 2.2. ¤
To prove Theorem 1.1, we will also use a sharp function estimate for T ∗A. Let r ∈ (0, ∞).

Define the operator M ]
r for by

M ]
rf(x) = sup

Q3x
inf
c∈C

( 1
|Q|

∫

Q

|f(y)− c|rdy
)1/r

,

where the sup is taken over all cube containing x. Obviously, for the case of r ∈ (0, 1],

{M ](|f |r)(x)}1/r . M ]
rf(x).

Also, M ]
1 , which will be denoted by M ] for simplicity, is just the sharp maximal operator of

Fefferman-Stein.

Lemma 2.3 Let 0 < r < s < 1. Under the hypothesis of Theorem 2.1, for any bounded

function f with compact support,

M ]
r(T ∗Af)(x) . ‖∇A‖BMO(Rn)

( n∑

k=1

Ms(Tkf)(x) + Mf(x)
)
,

where Tk is the operator defined by (2.1).

Proof Let f be a bounded function with compact support. For each fixed x ∈ Rn and each
cube Q containing x, decompose f as

f(y) = f(y)χ3Q(y) + f(y)χRn\3Q(y) := f1(y) + f2(y).

Let
AQ(y) = A(y)−mQ(∇A)y

and for y ∈ Q,

RQ(y) =
∫

Rn

Ω(y − z)
|y − z|n+1

(
AQ(y)−AQ(z)

)
f2(z)dz.

Observe that for any k with 1 ≤ k ≤ n,
∫

3Q

|DkA(y)−mQ(DkA)||Tkf2(y)|dy
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.
( ∫

3Q

|DkA(y)−mQ(DkA)|2dy
)1/2

‖Tkf2‖L2(Rn).

Thus, by the fact that T ∗Af2(y) is finite for a. e. y ∈ 3Q, we can choose yQ ∈ 3Q\2Q such that
RQ(yQ) is finite. Write

( 1
|Q|

∫

Q

|T ∗Af(y)−RQ(yQ)|rdy
)1/r

.
( 1
|Q|

∫

Q

|T ∗Af1(y)|rdy
)1/r

+
( 1
|Q|

∫

Q

|RQ(y)−RQ(yQ)|rdy
)1/r

+

n∑

k=1

( 1
|Q|

∫

Q

|DkA(y)−mQ(DkA)|r|Tkf2(y)|rdy
)1/r

:=
3∑

l=1

Il.

By Lemma 2.2 and the Kolmogrov inequality, we can verify that

I1 . 1
|3Q|

∫

3Q

|f(y)|dy . Mf(x).

Recall that Tk is bounded from L1(Rn) to L1,∞(Rn). The Hölder inequality together with the
Kolmogrov inequality, tells us that

I3 .
n∑

k=1

{( 1
|Q|

∫

Q

|Tkf(y)|sdy
)1/s

+
( 1
|Q|

∫

Q

|Tkf1(y)|sdy
)1/s}

.
n∑

k=1

Ms(Tkf)(x) +
1
|3Q|

∫

3Q

|f(y)|dy

.
n∑

k=1

Ms(Tkf)(x) + Mf(x).

It remains to consider the term I2. Let `(Q) be the side length of Q. By the regularity of
Ω, it follows that for each fixed y ∈ Q and z ∈ Rn\2√nQ,

∣∣∣ Ω(y − z)
|y − z|n+1

− Ω(yQ − z)
|yQ − z|n+1

∣∣∣ . {`(Q)}γ

|y − z|n+1+γ
.

On the other hand, for y ∈ Q and z ∈ 2j+1
√

nQ\2j
√

nQ with j a positive integer, it follows from
Lemma 2.1 that

|AQ(y)−AQ(z)| . |y − z|
n∑

k=1

( 1

|Q̃(y, z)|

∫

Q̃(y, z)

|DkA(z)−mQ(DkA)|qdz
)1/q

. j|y − z|.
Also, we deduce from Lemma 2.1 that for y ∈ Q,

|AQ(y)−AQ(yQ)| . `(Q).

Therefore, for each y ∈ Q,

|RQ(y)−RQ(yQ)| .
∫

Rn

∣∣∣ Ω(y − z)
|y − z|n+1

− Ω(yQ − z)
|yQ − z|n+1

∣∣∣
∣∣AQ(y)−AQ(z)

∣∣|f2(z)|dz



174 Rongqian WANG

+
∫

Rn

1
|y − z|n+1

∣∣AQ(y)−AQ(z)
∣∣|f2(z)|dz

.{`(Q)}γ
∞∑

j=1

j

∫

2j+1
√

nQ\2j
√

nQ

1
|y − z|n+γ

|f2(z)|dz

+ `(Q)
∫

Rn\2√nQ

1
|y − z|n+1

f(y)|dy

.Mf(x),

and so I2 . Mf(x). Combining the estimates for the terms I1, I2 and I3 leads to our desired
conclusion.

Proof of Theorem 1.1 Employing the argument used in [8], conclusion (ii) can be deduced
from conclusion (i). We omit the details. Note that we may view T ∗A as the dual operator of TA.
As pointed out in [9, p. 300], it suffices to prove that for p ∈ (1, ∞) and u ∈ A∞(Rn),

‖T ∗Af‖p, u . ‖∇A‖BMO(Rn)‖Mf‖p, u.

For a fixed u ∈ A∞(Rn) and p ∈ (1, ∞), we can choose r, s such that 0 < r < s < 1, and
u ∈ Ap/r(Rn). For any bounded function f with compact support, we know from the inequality
(2.2) that Mr(T ∗Af) ∈ Lp(Rn, u). It then follows from Lemma 2.3, the Coifman-Fefferman
inequality [2] and the inequality (2.2), that

‖T ∗Af‖Lp(Rn, u) . ‖M ]
r(T ∗Af)‖Lp(Rn, u)

. ‖Ms(Tkf)‖Lp(Rn, u) + ‖Mf‖Lp(Rn, u)

. ‖Mf‖Lp(Rn, u),

where the last inequality follows from the fact that

‖Tkf‖Lp(Rn, u) . ‖f‖Lp(Rn, u), 1 < p < ∞, u ∈ A∞(Rn),

which is just the inequality (16) in [9].
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