Generalized Stability of Multi-Quadratic Mappings

Peisheng JI ${ }^{1, *}$, Weiqing QI 2, Xiaojing ZHAN ${ }^{1}$

1. College of Mathematics, Qingdao University, Shandong 266071, P. R. China;
2. College of Information Engineering, Qingdao University, Shandong 266071, P. R. China

Abstract

In this paper we unify the system of functional equations defining multi-quadratic mappings to a single equation, find out the general solution of it and prove its generalized Hyers-Ulam stability.

Keywords Hyers-Ulam stability; multi-quadratic mapping; functional equation.
MR(2010) Subject Classification 39B52; 39B82

1. Introduction

Throughout this paper, let X and Y be vector spaces over \mathcal{Q}, the field of rational numbers, and $n \geq 2$ be an integer. A mapping $g: X \longrightarrow Y$ is called quadratic if g satisfies the functional equation $g(x+y)+g(x-y)=2 g(x)+2 g(y)$ for all $x, y \in X$.

A mapping $f: X^{n} \longrightarrow Y$ is called multi-quadratic or n-quadratic if it is quadratic in each variable; that is,

$$
\begin{align*}
& f\left(x_{1}, \ldots, x_{i-1}, x_{i}+x_{i}^{\prime}, x_{i+1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{i-1}, x_{i}-x_{i}^{\prime}, x_{i+1}, \ldots, x_{n}\right) \\
& \quad=2 f\left(x_{1}, \ldots, x_{n}\right)+2 f\left(x_{1}, \ldots, x_{i-1}, x_{i}^{\prime}, x_{i+1}, \ldots, x_{n}\right) \tag{1.1}
\end{align*}
$$

for all $i \in\{1, \ldots, n\}$ and all $x_{1}, \ldots, x_{i-1}, x_{i}, x_{i}^{\prime}, x_{i+1}, \ldots, x_{n} \in X$.
For a mapping $f: X^{n} \longrightarrow Y$, consider the functional equation

$$
\begin{align*}
& \sum_{i_{1}, \ldots, i_{n} \in\{0,1\}} f\left(x_{11}+(-1)^{i_{1}} x_{12}, \ldots, x_{n 1}+(-1)^{i_{n}} x_{n 2}\right) \\
= & 2^{n} \sum_{j_{1}, \ldots, j_{n} \in\{1,2\}} f\left(x_{1 j_{1}}, \ldots, x_{n j_{n}}\right) \tag{1.2}
\end{align*}
$$

for all $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$.
In this paper we reduce system (1.1) to equation (1.2), establish the general solution of (1.2) and prove its generalized Hyers-Ulam stability.

The theory of Hyers-Ulam's type stability is a very popular subject of investigations. For the historical background on it, we refer to $[1,2]$ and the references therein. Recently, some

[^0]mathematicians established the general solution and investigated the stability of some multivariable functional equations. In particular, Ciepliński [3] established the solution of multi-additive functional equation, and the stability of it was proved in [4, 5]. In [6], Prager and Schwaiger got the solution of multi-Jensen equation, and the stability of it was recently investigated in [7-12].

The stability of 2-quadratic mappings were studied in [13]. In [14], K. Ciepliński proved the stability of the system (1.1) of equations defining the multi-quadratic mappings. So the result of this paper generalizes the result of [13].

2. Solutions of Eq. (1.2)

We start with the following lemma.
Lemma 2.1 A function $f: X^{n} \longrightarrow Y$ satisfies (1.2) for all $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$ if and only if f is n-quadratic.

Proof Assume that $f: X^{n} \longrightarrow Y$ satisfies (1.2). First, we use induction to show that $f\left(x_{1}, \ldots, x_{n}\right)=0$ for any $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ with at least one component which is equal to zero.

Putting $x_{11}=x_{12}=\cdots=x_{n 1}=x_{n 2}=0$ in (1.2), we get

$$
2^{n} f(0, \ldots, 0)=2^{n} \times 2^{n} f(0, \ldots, 0)
$$

and consequently $f(0, \ldots, 0)=0$.
Now we assume that $f\left(x_{1}, \ldots, x_{n}\right)=0$ for any $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ with at most $i(0 \leq i \leq$ $n-2$) components which are not equal to zero. Fix $1 \leq k_{1} \leq \cdots \leq k_{i+1} \leq n$ and put $x_{j 2}=0$ for all $j \in\{1, \ldots, n\}$ and $x_{j 1}=0$ for $j \in\{1, \ldots, n\} \backslash\left\{k_{1}, \ldots, k_{i+1}\right\}$. By assumption, we have $f\left(0, \ldots, x_{k_{1} j_{k_{1}}}, 0, \ldots, x_{k_{i+1} j_{k_{i+1}}}, 0, \ldots, 0\right)=0$ if $j_{k_{1}}, \ldots, j_{k_{i+1}} \in\{1,2\}$ and at least one is 2 . Then, by (1.2)

$$
\begin{aligned}
& 2^{n} f\left(0, \ldots, x_{k_{1} 1}, 0, \ldots, x_{k_{i+1}}, 0, \ldots, 0\right) \\
&= 2^{n}\left(2^{n-i-1} f\left(0, \ldots, x_{k_{1} 1}, 0, \ldots, x_{k_{i+1} 1}, 0, \ldots, 0\right)+\right. \\
& 2^{n-i-1} \sum\left\{f\left(0, \ldots, x_{k_{1} j_{k_{1}}}, 0, \ldots, x_{k_{i+1} j_{k_{i+1}}}, 0, \ldots, 0\right):\right. \\
&\left.\left.j_{k_{1}}, \ldots, j_{k_{i+1}} \in\{1,2\} \text { and at least one is } 2\right\}\right),
\end{aligned}
$$

and thus $f\left(0, \ldots, x_{k_{1} 1}, 0, \ldots, x_{k_{i+1} 1}, 0, \ldots, 0\right)=0$. By induction, we have $f\left(x_{1}, \ldots, x_{n}\right)=0$ for any $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ with at least one component which is equal to zero.

Next, fix an $i \in\{1, \ldots, n\}$. Putting $x_{j 2}=0$ for $j \in\{1, \ldots, n\} \backslash\{i\}$ in (1.2), we have

$$
\begin{aligned}
& 2^{n-1} f\left(x_{11}, \ldots, x_{(i-1) 1}, x_{i 1}+x_{i 2}, x_{(i+1) 1}, \ldots, x_{n 1}\right)+ \\
& 2^{n-1} f\left(x_{11}, \ldots, x_{(i-1) 1}, x_{i 1}-x_{i 2}, x_{(i+1) 1}, \ldots, x_{n 1}\right) \\
&= 2^{n}\left(\sum_{j_{1}, \ldots, j_{i-1}, j_{i+1}, \ldots, j_{n} \in\{1,2\}} f\left(x_{1 j_{1}}, \ldots, x_{(i-1) j_{i-1}}, x_{i 1}, x_{(i+1) j_{i+1}}, \ldots, x_{n j_{n}}\right)+\right. \\
&\left.\quad \sum_{j_{1}, \ldots, j_{i-1}, j_{i+1}, \ldots, j_{n} \in\{1,2\}} f\left(x_{1 j_{1}}, \ldots, x_{(i-1) j_{i-1}}, x_{i 2}, x_{(i+1) j_{i+1}}, \ldots, x_{n j_{n}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & 2^{n}\left(f\left(x_{11}, \ldots, x_{(i-1) 1}, x_{i 1}, x_{(i+1) 1}, \ldots, x_{n 1}\right)+\right. \\
& \left.f\left(x_{11}, \ldots, x_{(i-1) 1}, x_{i 2}, x_{(i+1) 1}, \ldots, x_{n 1}\right)\right)
\end{aligned}
$$

Thus $f\left(x_{11}, \ldots, x_{(i-1) 1}, x_{i 1}+x_{i 2}, x_{(i+1) 1}, \ldots, x_{n 1}\right)+f\left(x_{11}, \ldots, x_{(i-1) 1}, x_{i 1}-x_{i 2}, x_{(i+1) 1}, \ldots, x_{n 1}\right)=$ $2\left(f\left(x_{11}, \ldots, x_{(i-1) 1}, x_{i 1}, x_{(i+1) 1}, \ldots, x_{n 1}\right)+f\left(x_{11}, \ldots, x_{(i-1) 1}, x_{i 2}, x_{(i+1) 1}, \ldots, x_{n 1}\right)\right)$ for all $i \in$ $\{1,2, \ldots, n\}$ and all $x_{11}, \ldots, x_{(i-1) 1}, x_{i 1}, x_{i 2}, x_{(i+1) 1}, \ldots, x_{n 1} \in X$, which proves that f is multiquadratic. The rest of the proof is clear.

Theorem 2.2 A function $f: X^{n} \longrightarrow Y$ satisfies Eq. (1.2) for all $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$ if and only if there exists a function $F: X^{2 n} \longrightarrow Y$ such that $f\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{1}, x_{1}, \ldots, x_{n}, x_{n}\right)$ for all $x_{1}, \ldots, x_{n} \in X$, and F is additive in each variable and is symmetric about the $(2 i-1)$ th variable and $2 i$ th variable for $i=1, \ldots, n$.

Proof If there exists a function $F: X^{2 n} \longrightarrow Y$ such that $f\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{1}, x_{1}, \ldots, x_{n}, x_{n}\right)$ for all $x_{1}, \ldots, x_{n} \in X$, and F is additive in each variable and is symmetric about the $(2 i-1)$ th variable and $2 i$ th variable for $i \in\{1, \ldots, n\}$, then it is obvious that f satisfies Eq. (1.2).

Conversely, we define a function $F: X^{2 n} \longrightarrow Y$ by

$$
\begin{align*}
& F\left(x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}\right) \\
& \quad=\frac{1}{4^{n}} \sum_{j_{1}, \ldots, j_{n} \in\{0,1\}}(-1)^{j_{1}+\cdots+j_{n}} f\left(x_{11}+(-1)^{j_{1}} x_{12}, \ldots, x_{n 1}+(-1)^{j_{n}} x_{n 2}\right) \tag{2.1}
\end{align*}
$$

for all $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$. Fix $i \in\{1, \ldots, n\}$ and $x_{k j_{k}}, k \in\{1, \ldots, n\} \backslash\{i\}, j_{k} \in\{1,2\}$. Since f is quadratic in the i th variable, we see from $[15, \mathrm{pp} .165-178]$ that the mapping

$$
\begin{aligned}
& g_{x_{11}+(-1)^{j_{1} x_{12}, \ldots, x_{(i-1) 1}}}+(-1)^{j_{i-1}} x_{(i-1) 2}, x_{(i+1) 1}+(-1)^{j_{i+1} x_{(i+1) 2}, \ldots, x_{n 1}+(-1)^{j_{n} x_{n 2}}}{ }\left(x_{i 1}, x_{i 2}\right) \\
& =\frac{1}{4}\left(f \left(x_{11}+(-1)^{j_{1}} x_{12}, \ldots, x_{(i-1) 1}+(-1)^{j_{i-1}} x_{(i-1) 2}\right.\right. \\
& \left.\quad x_{i 1}+x_{i 2}, x_{(i+1) 1}+(-1)^{j_{i+1}} x_{(i+1) 2}, \ldots, x_{n 1}+(-1)^{j_{n}} x_{n 2}\right)- \\
& \quad f\left(x_{11}+(-1)^{j_{1}} x_{12}, \ldots, x_{(i-1) 1}+(-1)^{j_{i-1}} x_{(i-1) 2}\right. \\
& \left.\left.\quad x_{i 1}-x_{i 2}, x_{(i+1) 1}+(-1)^{j_{i+1}} x_{(i+1) 2}, \ldots, x_{n 1}+(-1)^{j_{n}} x_{n 2}\right)\right)
\end{aligned}
$$

is additive in each variable and symmetric about $x_{i 1}$ and $x_{i 2}$. Thus the function $F: X^{2 n} \longrightarrow Y$, defined by

$$
\begin{aligned}
F\left(x_{11}, x_{12}\right. \\
\left., \ldots, x_{n 1}, x_{n 2}\right)=\frac{1}{4^{n-1}} \sum_{j_{1}, \ldots, j_{i-1}, j_{i+1}, j_{n} \in\{0,1\}}(-1)^{j_{1}+\cdots+j_{i-1}+j_{i+1}+\cdots+j_{n}} \\
g_{x_{11}+(-1)^{j_{1}} x_{12}, \ldots, x_{(i-1) 1}+(-1)^{j_{i-1}} x_{(i-1) 2}, x_{(i+1) 1}+(-1)^{j_{i+1}} x_{(i+1) 2}, \ldots, x_{n 1}+(-1)^{j_{n}} x_{n 2}}\left(x_{i 1}, x_{i 2}\right)
\end{aligned}
$$

is additive in each variable and symmetric about $x_{i 1}$ and $x_{i 2}$, i.e., $F\left(x_{11}, x_{12}, \ldots, x_{i 1}, x_{i 2}, \ldots, x_{n 1}, x_{n 2}\right)$ $=F\left(x_{11}, x_{12}, \ldots, x_{i 2}, x_{i 1}, \ldots, x_{n 1}, x_{n 2}\right)$, for all $i \in\{1, \ldots, n\}$.

Since f is quadratic in each variable, we have $f\left(x_{1}, \ldots, x_{n}\right)=0$ for any $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ with at least one component which is equal to zero, and $f\left(2 x_{1}, \ldots, 2 x_{n}\right)=4^{n} f\left(x_{1}, \ldots, x_{n}\right)$. Choosing $x_{i 1}=x_{i 2}$ for all $i \in\{1, \ldots, n\}$ in Eq. (2.1), we get

$$
F\left(x_{11}, x_{11}, \ldots, x_{n 1}, x_{n 1}\right)=\frac{1}{4^{n}} f\left(2 x_{11}, \ldots, 2 x_{n 1}\right)+
$$

$$
\frac{1}{4^{n}} \sum\left\{f\left(x_{11}+(-1)^{j_{1}} x_{11}, \ldots, x_{n 1}+(-1)^{j_{n}} x_{n 1}\right): j_{1}, \ldots, j_{n} \in\{0,1\}\right.
$$

$$
\text { and at least one is } 1\}=\frac{1}{4^{n}} f\left(2 x_{11}, \ldots, 2 x_{n 1}\right)=f\left(x_{11}, \ldots, x_{n 1}\right)
$$

3. Stability of Eq. (1.2): The direct method

From now on, let X and Y be vector space and Banach space, respectively.
Theorem 3.1 Let $\phi: X^{2 n} \longrightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\tilde{\phi}\left(x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}\right)=\sum_{k=0}^{\infty} \frac{1}{4^{n(k+1)}} \phi\left(2^{k} x_{11}, 2^{k} x_{12}, \ldots, 2^{k} x_{n 1}, 2^{k} x_{n 2}\right)<\infty \tag{3.1}
\end{equation*}
$$

for all $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$. Suppose that a function $f: X^{n} \longrightarrow Y$ satisfies the inequality

$$
\begin{align*}
& \| \sum_{i_{1}, \ldots, i_{n} \in\{0,1\}} f\left(x_{11}+(-1)^{i_{1}} x_{12}, \ldots, x_{n 1}+(-1)^{i_{n}} x_{n 2}\right)- \\
& 2^{n} \sum_{j_{1}, \ldots, j_{n} \in\{1,2\}} f\left(x_{1 j_{1}}, \ldots, x_{n j_{n}}\right) \| \leq \phi\left(x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}\right) \tag{3.2}
\end{align*}
$$

for all $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$ and $f\left(x_{1}, \ldots, x_{n}\right)=0$ for any $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ with at least one component which is equal to zero. Then there exists a unique multi-quadratic function $Q: X^{n} \longrightarrow Y$ such that

$$
\begin{equation*}
\left\|f\left(x_{1}, \ldots, x_{n}\right)-Q\left(x_{1}, \ldots, x_{n}\right)\right\| \leq \tilde{\phi}\left(x_{1}, x_{1}, \ldots, x_{n}, x_{n}\right) \tag{3.3}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in X$.
Proof Choosing $x_{i 1}=x_{i 2}=x_{i}$ for all $i \in\{1, \ldots, n\}$ and dividing by 4^{n} in Eq. (3.2), we have

$$
\left\|\frac{1}{4^{n}} f\left(2 x_{1}, \ldots, 2 x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)\right\| \leq \frac{1}{4^{n}} \phi\left(x_{1}, x_{1}, \ldots, x_{n}, x_{n}\right)
$$

for all $x_{1}, \ldots, x_{n} \in X$, using the assumption $f\left(x_{1}, \ldots, x_{n}\right)=0$ for any $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ with at least one component which is equal to zero. Replacing x_{i} by $2^{k} x_{i}$ for all $i \in\{1, \ldots, n\}$, respectively, and dividing by $4^{n k}$ in the above inequality, we get
$\left\|\frac{1}{4^{n(k+1)}} f\left(2^{k+1} x_{1}, \ldots, 2^{k+1} x_{n}\right)-\frac{1}{4^{n k}} f\left(2^{k} x_{1}, \ldots, 2^{k} x_{n}\right)\right\| \leq \frac{1}{4^{n(k+1)}} \phi\left(2^{k} x_{1}, 2^{k} x_{1}, \ldots, 2^{k} x_{n}, 2^{k} x_{n}\right)$
for all $x_{1}, \ldots, x_{n} \in X$. Hence

$$
\begin{align*}
& \left\|\frac{1}{4^{n m}} f\left(2^{m} x_{1}, \ldots, 2^{m} x_{n}\right)-\frac{1}{4^{n k}} f\left(2^{k} x_{1}, \ldots, 2^{k} x_{n}\right)\right\| \\
& \quad \leq \sum_{i=k}^{m-1} \frac{1}{4^{n(i+1)}} \phi\left(2^{i} x_{1}, 2^{i} x_{1}, \ldots, 2^{i} x_{n}, 2^{i} x_{n}\right) \tag{3.4}
\end{align*}
$$

for all nonnegative integers k and m with $k<m$ and all $x_{1}, \ldots, x_{n} \in X$. Therefore we conclude from (3.1) and (3.4) that $\left\{\frac{1}{4^{n k}} f\left(2^{k} x_{1}, \ldots, 2^{k} x_{n}\right)\right\}$ is a Cauchy sequence in Y. Since Y is a Banach space, this sequence is convergent. We define $Q: X^{n} \longrightarrow Y$ by

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\lim _{k \longrightarrow \infty} \frac{1}{4^{n k}} f\left(2^{k} x_{1}, \ldots, 2^{k} x_{n}\right)
$$

for all $x_{1}, \ldots, x_{n} \in X$. It follows from (3.2) and (3.1) that

$$
\begin{aligned}
& \left\|\sum_{i_{1}, \ldots, i_{n} \in\{0,1\}} Q\left(x_{11}+(-1)^{i_{1}} x_{12}, \ldots, x_{n 1}+(-1)^{i_{n}} x_{n 2}\right)-2^{n} \sum_{j_{1}, \ldots, j_{n} \in\{1,2\}} Q\left(x_{1 j_{1}}, \ldots, x_{n j_{n}}\right)\right\| \\
& = \\
& \left.\lim _{k \longrightarrow \infty} \frac{1}{4^{n k}} \right\rvert\, \sum_{i_{1}, \ldots, i_{n} \in\{0,1\}} f\left(2^{k} x_{11}+(-1)^{i_{1}} 2^{k} x_{12}, \ldots, 2^{k} x_{n 1}+(-1)^{i_{n}} 2^{k} x_{n 2}\right)- \\
& \quad 2^{n} \sum_{j_{1}, \ldots, j_{n} \in\{1,2\}} f\left(2^{k} x_{1 j_{1}}, \ldots, 2^{k} x_{n j_{n}}\right) \mid \\
& \leq \\
& \lim _{k \longrightarrow \infty} \frac{1}{4^{n k}} \phi\left(2^{k} x_{11}, 2^{k} x_{12}, \ldots, 2^{k} x_{n 1}, 2^{k} x_{n 2}\right)=0
\end{aligned}
$$

for all $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$. Hence, by Lemma 2.1, Q is multi-quadratic.
Choosing $k=0$ and letting $m \longrightarrow \infty$ in (3.4), we obtain
$\left\|Q\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)\right\| \leq \sum_{i=0}^{\infty} \frac{1}{4^{n(i+1)}} \phi\left(2^{i} x_{1}, 2^{i} x_{1}, \ldots, 2^{i} x_{n}, 2^{i} x_{n}\right)=\tilde{\phi}\left(x_{1}, x_{1}, \ldots, x_{n}, x_{n}\right)$ for all $x_{1}, \ldots, x_{n} \in X$.

It remains to show that Q is unique. Suppose that there eixsts another multi-quadratic function $\tilde{Q}: X^{n} \longrightarrow Y$ which satisfies (3.3). Since $Q\left(2^{k} x_{1}, \ldots, 2^{k} x_{n}\right)=4^{n k} Q\left(x_{1}, \ldots, x_{n}\right)$ and $\tilde{Q}\left(2^{k} x_{1}, \ldots, 2^{k} x_{n}\right)=4^{n k} \tilde{Q}\left(x_{1}, \ldots, x_{n}\right)$ for all $x_{1}, \ldots, x_{n} \in X$, we conclude that

$$
\begin{aligned}
& \left\|\tilde{Q}\left(x_{1}, \ldots, x_{n}\right)-Q\left(x_{1}, \ldots, x_{n}\right)\right\|=\frac{1}{4^{n k}}\left\|\tilde{Q}\left(2^{k} x_{1}, \ldots, 2^{k} x_{n}\right)-Q\left(2^{k} x_{1}, \ldots, 2^{k} x_{n}\right)\right\| \\
& \quad \leq \frac{1}{4^{n k}}\left(\left\|\tilde{Q}\left(2^{k} x_{1}, \ldots, 2^{k} x_{n}\right)-f\left(2^{k} x_{1}, \ldots, 2^{k} x_{n}\right)\right\|+\left\|f\left(2^{k} x_{1}, \ldots, 2^{k} x_{n}\right)-Q\left(2^{k} x_{1}, \ldots, 2^{k} x_{n}\right)\right\|\right) \\
& \quad \leq \frac{2}{4^{n k}} \tilde{\phi}\left(2^{k} x_{1}, 2^{k} x_{1}, \ldots, 2^{k} x_{n}, 2^{k} x_{n}\right) \\
& \quad \leq 2 \sum_{i=0}^{\infty} \frac{1}{4^{n(k+i+1)}} \phi\left(2^{k+i} x_{1}, 2^{k+i} x_{1}, \ldots, 2^{k+i} x_{n}, 2^{k+i} x_{n}\right) \\
& \quad \leq 2 \sum_{i=k}^{\infty} \frac{1}{4^{n(i+1)}} \phi\left(2^{i} x_{1}, 2^{i} x_{1}, \ldots, 2^{i} x_{n}, 2^{i} x_{n}\right)
\end{aligned}
$$

for every nonnegative integer k and all $x_{1}, \ldots, x_{n} \in X$. Letting $k \longrightarrow \infty$ in this inequality, we have $\tilde{Q}\left(x_{1}, \ldots, x_{n}\right)=Q\left(x_{1}, \ldots, x_{n}\right)$ for all $x_{1}, \ldots, x_{n} \in X$, which gives the conclusion.

Similarly, one can prove the following theorem.
Theorem 3.2 Let $\phi: X^{2 n} \longrightarrow[0, \infty)$ be a function such that

$$
\tilde{\phi}\left(x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}\right)=\sum_{k=0}^{\infty} 4^{n k} \phi\left(\frac{x_{11}}{2^{k+1}}, \frac{x_{12}}{2^{k+1}}, \ldots, \frac{x_{n 1}}{2^{k+1}}, \frac{x_{n 2}}{2^{k+1}}\right)<\infty
$$

for all $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$. Suppose that a function $f: X^{n} \longrightarrow Y$ satisfies the inequality

$$
\begin{aligned}
& \| \sum_{\substack{i_{1}, \ldots, i_{n} \in\{0,1\}}} f\left(x_{11}+(-1)^{i_{1}} x_{12}, \ldots, x_{n 1}+(-1)^{i_{n}} x_{n 2}\right)- \\
& \quad 2^{n} \sum_{j_{1}, \ldots, j_{n} \in\{1,2\}} f\left(x_{1 j_{1}}, \ldots, x_{n j_{n}}\right) \| \leq \phi\left(x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}\right)
\end{aligned}
$$

for all $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$ and $f\left(x_{1}, \ldots, x_{n}\right)=0$ for any $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ with at least one component which is equal to zero. Then there exists a unique multi-quadratic function $Q: X^{n} \longrightarrow Y$ such that

$$
\left\|f\left(x_{1}, \ldots, x_{n}\right)-Q\left(x_{1}, \ldots, x_{n}\right)\right\| \leq \tilde{\phi}\left(x_{1}, x_{1}, \ldots, x_{n}, x_{n}\right)
$$

for all $x_{1}, \ldots, x_{n} \in X$.

4. Stability of Eq.(1.2): The fixed point method

Apart from the direct method applied by Hyers, the fixed point method introduced by Radu [16] is effective in the investigations of the stability of functional equations. Some further applications of fixed point theorems to the Hyers-Ulam stability of functional equations can be found in [17]. Applying Radu's method, one can prove the following two results.

Theorem 4.1 Let $\phi: X^{2 n} \longrightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\phi\left(2 x_{11}, 2 x_{12}, \ldots, 2 x_{n 1}, 2 x_{n 2}\right) \leq 4^{n} L \phi\left(x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}\right) \tag{4.1}
\end{equation*}
$$

for an $L \in(0,1)$ and all $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$. Suppose that a function $f: X^{n} \longrightarrow Y$ satisfies the inequality

$$
\begin{align*}
& \| \sum_{i_{1}, \ldots, i_{n} \in\{0,1\}} f\left(x_{11}+(-1)^{i_{1}} x_{12}, \ldots, x_{n 1}+(-1)^{i_{n}} x_{n 2}\right)- \\
& \quad 2^{n} \sum_{j_{1}, \ldots, j_{n} \in\{1,2\}} f\left(x_{1 j_{1}}, \ldots, x_{n j_{n}}\right) \| \\
& \leq \phi\left(x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}\right) \tag{4.2}
\end{align*}
$$

for all $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$ and $f\left(x_{1}, \ldots, x_{n}\right)=0$ for any $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ with at least one component which is equal to zero. Then there exists a unique multi-quadratic function $Q: X^{n} \longrightarrow Y$ such that

$$
\begin{equation*}
\left\|f\left(x_{1}, \ldots, x_{n}\right)-Q\left(x_{1}, \ldots, x_{n}\right)\right\| \leq \frac{1}{4^{n}(1-L)} \phi\left(x_{1}, x_{1}, \ldots, x_{n}, x_{n}\right) \tag{4.3}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in X$.
Theorem 4.2 Let $\phi: X^{2 n} \longrightarrow[0, \infty)$ be a function such that

$$
\phi\left(x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}\right) \leq \frac{L}{4^{n}} \phi\left(2 x_{11}, 2 x_{12}, \ldots, 2 x_{n 1}, 2 x_{n 2}\right)
$$

for an $L \in(0,1)$ and all $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$. Suppose that a function $f: X^{n} \longrightarrow Y$ satisfies the inequality

$$
\begin{aligned}
& \| \sum_{i_{1}, \ldots, i_{n} \in\{0,1\}} f\left(x_{11}+(-1)^{i_{1}} x_{12}, \ldots, x_{n 1}+(-1)^{i_{n}} x_{n 2}\right)- \\
& \quad 2^{n} \sum_{j_{1}, \ldots, j_{n} \in\{1,2\}} f\left(x_{1 j_{1}}, \ldots, x_{n j_{n}}\right) \| \leq \phi\left(x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2}\right)
\end{aligned}
$$

for all $x_{11}, x_{12}, \ldots, x_{n 1}, x_{n 2} \in X$ and $f\left(x_{1}, \ldots, x_{n}\right)=0$ for any $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ with at least
one component which is equal to zero. Then there exists a a unique multi-quadratic function $Q: X^{n} \longrightarrow Y$ such that

$$
\left\|f\left(x_{1}, \ldots, x_{n}\right)-Q\left(x_{1}, \ldots, x_{n}\right)\right\| \leq \frac{L}{4^{n}(1-L)} \phi\left(x_{1}, x_{1}, \ldots, x_{n}, x_{n}\right)
$$

for all $x_{1}, \ldots, x_{n} \in X$.
Acknowledgments The authors would like to thank the anonymous referees for the constructive comments and suggestions which helped to improve the quality of this paper.

References

[1] N. BRILLOUĔT-BELLOUT, J. BRZDEK, K. CIEPLIŃSKI. On some recent developments in Ulam's type stability. Abstr. Appl. Anal., 2012, Art. ID 716936, 41 pp.
[2] S. M. JUNG. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer Optimization and Its Applications, 48. Springer, New York, 2011.
[3] K. CIEPLIŃSKI. Generalized stability of multi-additive mappings. Appl. Math. Letters, 2010, 23: 12911294.
[4] K. CIEPLIŃSKI. Stability of multi-additive mappings in non-Archimedean normed spaces. J. Math. Anal. Appl., 2011, 373: 376-383.
[5] K. CIEPLIŃSKI. Stability of multi-additive mappings in β-Banach spaces. Nonlinear Anal., 2012, 75: 42054212.
[6] W. PRAGER, J. SCHWAIGER. Multi-affine and multi-Jensen functions and their connection with generalized polynomials. Aequationes Math., 2005, 69(1-2): 41-57.
[7] W. PRAGER, J. SCHWAIGER. Stability of the multi-Jensen equation. Bull. Korean Math. Soc., 2008, 45(1): 133-142.
[8] K. CIEPLIŃSKI. On multi-Jensen functions and Jensen difference. Bull. Korean Math. Soc., 2008, 45(4): 729-737.
[9] K. CIEPLIŃSKI. Stability of multi-Jenssen equation. J. Math. Anal. Appl., 2010, 363: 249-254.
[10] K. CIEPLIŃSKI. Stability of Multi-Jensen Mappings in Non-Archimedean Normed Spaces. Sringer Optim. Appl., 52, Springer, New York, 2012.
[11] Tianzhou XU. On the stability of multi-Jensen mappings in β-Banach spaces. Appl. Math. Lett., 2012, 25(11): 1866-1870.
[12] Tianzhou XU. Stability of multi-Jensen mappings in non-Archimedean normed spaces. J. Math. Phys., 2012, 53(2): 1-9.
[13] J. H. BAE, W. G. PARK. On a bi-quadratic functional equation and its stability. Nonlinear Anal., 2005, 62(4): 643-654.
[14] K. CIEPLINSKI. On the generalized Hyers-Ulam stability of multi-quadratic mappings. Comput. Math. Appl., 2011, 62(9): 3418-3426.
[15] J. ACZEL, J. DHOMBRES. Functional Equations in Several Variables. Cambridge University Press, Cambridge, 1989.
[16] V. RADU. The fixed point alternative and the stability of functional equations. Fixed Point Theory, 2003, 4(1): 91-96.
[17] K. CIEPLIŃSKI. Applications of fixed point theorems to the Hyers-Ulam stability of functional equations-a survey. Ann. Funct. Anal., 2012, 3(1): 151-164.

[^0]: Received April 17, 2013; Accepted November 12, 2013
 Supported by the National Natural Science Foundation of China (Grant No. 10971117).

 * Corresponding author

 E-mail address: jipeish@sina.com (Peisheng JI)

