Journal of Mathematical Research with Applications Mar., 2014, Vol. 34, No. 2, pp. 209–215 DOI:10.3770/j.issn:2095-2651.2014.02.010 Http://jmre.dlut.edu.cn

Generalized Stability of Multi-Quadratic Mappings

Peisheng JI^{1,*}, Weiqing QI², Xiaojing ZHAN¹

1. College of Mathematics, Qingdao University, Shandong 266071, P. R. China;

2. College of Information Engineering, Qingdao University, Shandong 266071, P. R. China

Abstract In this paper we unify the system of functional equations defining multi-quadratic mappings to a single equation, find out the general solution of it and prove its generalized Hyers-Ulam stability.

Keywords Hyers-Ulam stability; multi-quadratic mapping; functional equation.

MR(2010) Subject Classification 39B52; 39B82

1. Introduction

Throughout this paper, let X and Y be vector spaces over Q, the field of rational numbers, and $n \ge 2$ be an integer. A mapping $g: X \longrightarrow Y$ is called quadratic if g satisfies the functional equation g(x + y) + g(x - y) = 2g(x) + 2g(y) for all $x, y \in X$.

A mapping $f: X^n \longrightarrow Y$ is called multi-quadratic or *n*-quadratic if it is quadratic in each variable; that is,

$$f(x_1, \dots, x_{i-1}, x_i + x'_i, x_{i+1}, \dots, x_n) + f(x_1, \dots, x_{i-1}, x_i - x'_i, x_{i+1}, \dots, x_n)$$

= $2f(x_1, \dots, x_n) + 2f(x_1, \dots, x_{i-1}, x'_i, x_{i+1}, \dots, x_n)$ (1.1)

for all $i \in \{1, ..., n\}$ and all $x_1, ..., x_{i-1}, x_i, x'_i, x_{i+1}, ..., x_n \in X$.

For a mapping $f: X^n \longrightarrow Y$, consider the functional equation

$$\sum_{\substack{i_1,\dots,i_n\in\{0,1\}\\ = 2^n \sum_{j_1,\dots,j_n\in\{1,2\}}} f(x_{1j_1},\dots,x_{nj_n})$$
(1.2)

for all $x_{11}, x_{12}, \ldots, x_{n1}, x_{n2} \in X$.

In this paper we reduce system (1.1) to equation (1.2), establish the general solution of (1.2) and prove its generalized Hyers-Ulam stability.

The theory of Hyers-Ulam's type stability is a very popular subject of investigations. For the historical background on it, we refer to [1, 2] and the references therein. Recently, some

Received April 17, 2013; Accepted November 12, 2013

* Corresponding author

Supported by the National Natural Science Foundation of China (Grant No. 10971117).

E-mail address: jipeish@sina.com (Peisheng JI)

mathematicians established the general solution and investigated the stability of some multivariable functional equations. In particular, Ciepliński [3] established the solution of multi-additive functional equation, and the stability of it was proved in [4, 5]. In [6], Prager and Schwaiger got the solution of multi-Jensen equation, and the stability of it was recently investigated in [7–12].

The stability of 2-quadratic mappings were studied in [13]. In [14], K. Ciepliński proved the stability of the system (1.1) of equations defining the multi-quadratic mappings. So the result of this paper generalizes the result of [13].

2. Solutions of Eq. (1.2)

We start with the following lemma.

Lemma 2.1 A function $f : X^n \longrightarrow Y$ satisfies (1.2) for all $x_{11}, x_{12}, \ldots, x_{n1}, x_{n2} \in X$ if and only if f is n-quadratic.

Proof Assume that $f : X^n \longrightarrow Y$ satisfies (1.2). First, we use induction to show that $f(x_1, \ldots, x_n) = 0$ for any $(x_1, \ldots, x_n) \in X^n$ with at least one component which is equal to zero.

Putting $x_{11} = x_{12} = \cdots = x_{n1} = x_{n2} = 0$ in (1.2), we get

$$2^{n} f(0, \dots, 0) = 2^{n} \times 2^{n} f(0, \dots, 0),$$

and consequently $f(0, \ldots, 0) = 0$.

Now we assume that $f(x_1, \ldots, x_n) = 0$ for any $(x_1, \ldots, x_n) \in X^n$ with at most i $(0 \le i \le n-2)$ components which are not equal to zero. Fix $1 \le k_1 \le \cdots \le k_{i+1} \le n$ and put $x_{j2} = 0$ for all $j \in \{1, \ldots, n\}$ and $x_{j1} = 0$ for $j \in \{1, \ldots, n\} \setminus \{k_1, \ldots, k_{i+1}\}$. By assumption, we have $f(0, \ldots, x_{k_1j_{k_1}}, 0, \ldots, x_{k_{i+1}j_{k_{i+1}}}, 0, \ldots, 0) = 0$ if $j_{k_1}, \ldots, j_{k_{i+1}} \in \{1, 2\}$ and at least one is 2. Then, by (1.2)

$$2^{n} f(0, \dots, x_{k_{1}1}, 0, \dots, x_{k_{i+1}1}, 0, \dots, 0)$$

= $2^{n} (2^{n-i-1} f(0, \dots, x_{k_{1}1}, 0, \dots, x_{k_{i+1}1}, 0, \dots, 0) +$
 $2^{n-i-1} \sum \{ f(0, \dots, x_{k_{1}j_{k_{1}}}, 0, \dots, x_{k_{i+1}j_{k_{i+1}}}, 0, \dots, 0) :$
 $j_{k_{1}}, \dots, j_{k_{i+1}} \in \{1, 2\}$ and at least one is 2}),

and thus $f(0, \ldots, x_{k_11}, 0, \ldots, x_{k_{i+1}1}, 0, \ldots, 0) = 0$. By induction, we have $f(x_1, \ldots, x_n) = 0$ for any $(x_1, \ldots, x_n) \in X^n$ with at least one component which is equal to zero.

Next, fix an $i \in \{1, ..., n\}$. Putting $x_{j2} = 0$ for $j \in \{1, ..., n\} \setminus \{i\}$ in (1.2), we have

$$2^{n-1}f(x_{11},\ldots,x_{(i-1)1},x_{i1}+x_{i2},x_{(i+1)1},\ldots,x_{n1})+$$

$$2^{n-1}f(x_{11},\ldots,x_{(i-1)1},x_{i1}-x_{i2},x_{(i+1)1},\ldots,x_{n1})$$

$$=2^{n}\left(\sum_{j_{1},\ldots,j_{i-1},j_{i+1},\ldots,j_{n}\in\{1,2\}}f(x_{1j_{1}},\ldots,x_{(i-1)j_{i-1}},x_{i1},x_{(i+1)j_{i+1}},\ldots,x_{nj_{n}})+\right)$$

$$\sum_{j_{1},\ldots,j_{i-1},j_{i+1},\ldots,j_{n}\in\{1,2\}}f(x_{1j_{1}},\ldots,x_{(i-1)j_{i-1}},x_{i2},x_{(i+1)j_{i+1}},\ldots,x_{nj_{n}})\right)$$

Generalized stability of multi-quadratic mappings

$$= 2^{n} (f(x_{11}, \dots, x_{(i-1)1}, x_{i1}, x_{(i+1)1}, \dots, x_{n1}) + f(x_{11}, \dots, x_{(i-1)1}, x_{i2}, x_{(i+1)1}, \dots, x_{n1})).$$

Thus $f(x_{11}, \ldots, x_{(i-1)1}, x_{i1} + x_{i2}, x_{(i+1)1}, \ldots, x_{n1}) + f(x_{11}, \ldots, x_{(i-1)1}, x_{i1} - x_{i2}, x_{(i+1)1}, \ldots, x_{n1}) = 2(f(x_{11}, \ldots, x_{(i-1)1}, x_{i1}, x_{(i+1)1}, \ldots, x_{n1}) + f(x_{11}, \ldots, x_{(i-1)1}, x_{i2}, x_{(i+1)1}, \ldots, x_{n1}))$ for all $i \in \{1, 2, \ldots, n\}$ and all $x_{11}, \ldots, x_{(i-1)1}, x_{i1}, x_{i2}, x_{(i+1)1}, \ldots, x_{n1} \in X$, which proves that f is multiquadratic. The rest of the proof is clear.

Theorem 2.2 A function $f: X^n \longrightarrow Y$ satisfies Eq. (1.2) for all $x_{11}, x_{12}, \ldots, x_{n1}, x_{n2} \in X$ if and only if there exists a function $F: X^{2n} \longrightarrow Y$ such that $f(x_1, \ldots, x_n) = F(x_1, x_1, \ldots, x_n, x_n)$ for all $x_1, \ldots, x_n \in X$, and F is additive in each variable and is symmetric about the (2i - 1)th variable and 2*i*th variable for $i = 1, \ldots, n$.

Proof If there exists a function $F: X^{2n} \longrightarrow Y$ such that $f(x_1, \ldots, x_n) = F(x_1, x_1, \ldots, x_n, x_n)$ for all $x_1, \ldots, x_n \in X$, and F is additive in each variable and is symmetric about the (2i - 1)th variable and 2ith variable for $i \in \{1, \ldots, n\}$, then it is obvious that f satisfies Eq. (1.2).

Conversely, we define a function $F: X^{2n} \longrightarrow Y$ by

$$F(x_{11}, x_{12}, \dots, x_{n1}, x_{n2}) = \frac{1}{4^n} \sum_{j_1, \dots, j_n \in \{0, 1\}} (-1)^{j_1 + \dots + j_n} f(x_{11} + (-1)^{j_1} x_{12}, \dots, x_{n1} + (-1)^{j_n} x_{n2})$$
(2.1)

for all $x_{11}, x_{12}, \ldots, x_{n1}, x_{n2} \in X$. Fix $i \in \{1, \ldots, n\}$ and $x_{kj_k}, k \in \{1, \ldots, n\} \setminus \{i\}, j_k \in \{1, 2\}$. Since f is quadratic in the *i*th variable, we see from [15, pp. 165–178] that the mapping

$$\begin{split} g_{x_{11}+(-1)^{j_1}x_{12},\ldots,x_{(i-1)1}+(-1)^{j_{i-1}}x_{(i-1)2},x_{(i+1)1}+(-1)^{j_{i+1}}x_{(i+1)2},\ldots,x_{n1}+(-1)^{j_n}x_{n2}}(x_{i1},x_{i2}) \\ &= \frac{1}{4} (f(x_{11}+(-1)^{j_1}x_{12},\ldots,x_{(i-1)1}+(-1)^{j_{i-1}}x_{(i-1)2}, x_{i1}+x_{i2},x_{(i+1)1}+(-1)^{j_{i+1}}x_{(i+1)2},\ldots,x_{n1}+(-1)^{j_n}x_{n2}) - f(x_{11}+(-1)^{j_1}x_{12},\ldots,x_{(i-1)1}+(-1)^{j_{i-1}}x_{(i-1)2}, x_{i1}-x_{i2},x_{(i+1)1}+(-1)^{j_{i+1}}x_{(i+1)2},\ldots,x_{n1}+(-1)^{j_n}x_{n2})) \end{split}$$

is additive in each variable and symmetric about x_{i1} and x_{i2} . Thus the function $F: X^{2n} \longrightarrow Y$, defined by

$$F(x_{11}, x_{12}, \dots, x_{n1}, x_{n2}) = \frac{1}{4^{n-1}} \sum_{j_1, \dots, j_{i-1}, j_{i+1}, j_n \in \{0, 1\}} (-1)^{j_1 + \dots + j_{i-1} + j_{i+1} + \dots + j_n}$$
$$g_{x_{11} + (-1)^{j_1} x_{12}, \dots, x_{(i-1)1} + (-1)^{j_{i-1}} x_{(i-1)2}, x_{(i+1)1} + (-1)^{j_{i+1}} x_{(i+1)2}, \dots, x_{n1} + (-1)^{j_n} x_{n2}} (x_{i1}, x_{i2}),$$

is additive in each variable and symmetric about x_{i1} and x_{i2} , i.e., $F(x_{11}, x_{12}, \dots, x_{i1}, x_{i2}, \dots, x_{n1}, x_{n2}) = F(x_{11}, x_{12}, \dots, x_{i2}, x_{i1}, \dots, x_{n1}, x_{n2})$, for all $i \in \{1, \dots, n\}$.

Since f is quadratic in each variable, we have $f(x_1, \ldots, x_n) = 0$ for any $(x_1, \ldots, x_n) \in X^n$ with at least one component which is equal to zero, and $f(2x_1, \ldots, 2x_n) = 4^n f(x_1, \ldots, x_n)$. Choosing $x_{i1} = x_{i2}$ for all $i \in \{1, \ldots, n\}$ in Eq. (2.1), we get

$$F(x_{11}, x_{11}, \dots, x_{n1}, x_{n1}) = \frac{1}{4^n} f(2x_{11}, \dots, 2x_{n1}) +$$

Peisheng JI, Weiqing QI and Xiaojing ZHAN

$$\frac{1}{4^n} \sum \left\{ f(x_{11} + (-1)^{j_1} x_{11}, \dots, x_{n1} + (-1)^{j_n} x_{n1}) : j_1, \dots, j_n \in \{0, 1\}, \right.$$

and at least one is $1 \right\} = \frac{1}{4^n} f(2x_{11}, \dots, 2x_{n1}) = f(x_{11}, \dots, x_{n1}).$

3. Stability of Eq. (1.2): The direct method

From now on, let X and Y be vector space and Banach space, respectively.

Theorem 3.1 Let $\phi: X^{2n} \longrightarrow [0,\infty)$ be a function such that

$$\tilde{\phi}(x_{11}, x_{12}, \dots, x_{n1}, x_{n2}) = \sum_{k=0}^{\infty} \frac{1}{4^{n(k+1)}} \phi(2^k x_{11}, 2^k x_{12}, \dots, 2^k x_{n1}, 2^k x_{n2}) < \infty$$
(3.1)

for all $x_{11}, x_{12}, \ldots, x_{n1}, x_{n2} \in X$. Suppose that a function $f: X^n \longrightarrow Y$ satisfies the inequality

$$\left\|\sum_{\substack{i_1,\dots,i_n\in\{0,1\}\\j_1,\dots,j_n\in\{1,2\}}} f(x_{11}+(-1)^{i_1}x_{12},\dots,x_{n1}+(-1)^{i_n}x_{n2})-\right\|$$

$$2^n\sum_{\substack{j_1,\dots,j_n\in\{1,2\}\\j_1,\dots,j_n\in\{1,2\}}} f(x_{1j_1},\dots,x_{nj_n})\right\| \le \phi(x_{11},x_{12},\dots,x_{n1},x_{n2})$$

$$(3.2)$$

for all $x_{11}, x_{12}, \ldots, x_{n1}, x_{n2} \in X$ and $f(x_1, \ldots, x_n) = 0$ for any $(x_1, \ldots, x_n) \in X^n$ with at least one component which is equal to zero. Then there exists a unique multi-quadratic function $Q: X^n \longrightarrow Y$ such that

$$\|f(x_1, \dots, x_n) - Q(x_1, \dots, x_n)\| \le \tilde{\phi}(x_1, x_1, \dots, x_n, x_n)$$
(3.3)

for all $x_1, \ldots, x_n \in X$.

Proof Choosing $x_{i1} = x_{i2} = x_i$ for all $i \in \{1, \ldots, n\}$ and dividing by 4^n in Eq. (3.2), we have

$$\left\|\frac{1}{4^n}f(2x_1,\ldots,2x_n) - f(x_1,\ldots,x_n)\right\| \le \frac{1}{4^n}\phi(x_1,x_1,\ldots,x_n,x_n)$$

for all $x_1, \ldots, x_n \in X$, using the assumption $f(x_1, \ldots, x_n) = 0$ for any $(x_1, \ldots, x_n) \in X^n$ with at least one component which is equal to zero. Replacing x_i by $2^k x_i$ for all $i \in \{1, \ldots, n\}$, respectively, and dividing by 4^{nk} in the above inequality, we get

$$\left\|\frac{1}{4^{n(k+1)}}f(2^{k+1}x_1,\ldots,2^{k+1}x_n) - \frac{1}{4^{nk}}f(2^kx_1,\ldots,2^kx_n)\right\| \le \frac{1}{4^{n(k+1)}}\phi(2^kx_1,2^kx_1,\ldots,2^kx_n,2^kx_n)$$

for all $x_1, \ldots, x_n \in X$. Hence

$$\begin{aligned} &|\frac{1}{4^{nm}}f(2^{m}x_{1},\ldots,2^{m}x_{n}) - \frac{1}{4^{nk}}f(2^{k}x_{1},\ldots,2^{k}x_{n})|| \\ &\leq \sum_{i=k}^{m-1}\frac{1}{4^{n(i+1)}}\phi(2^{i}x_{1},2^{i}x_{1},\ldots,2^{i}x_{n},2^{i}x_{n}) \end{aligned}$$
(3.4)

for all nonnegative integers k and m with k < m and all $x_1, \ldots, x_n \in X$. Therefore we conclude from (3.1) and (3.4) that $\{\frac{1}{4^{nk}}f(2^kx_1,\ldots,2^kx_n)\}$ is a Cauchy sequence in Y. Since Y is a Banach space, this sequence is convergent. We define $Q: X^n \longrightarrow Y$ by

$$Q(x_1,\ldots,x_n) = \lim_{k \to \infty} \frac{1}{4^{nk}} f(2^k x_1,\ldots,2^k x_n)$$

212

for all $x_1, \ldots, x_n \in X$. It follows from (3.2) and (3.1) that

$$\begin{split} &\|\sum_{i_1,\dots,i_n\in\{0,1\}} Q(x_{11}+(-1)^{i_1}x_{12},\dots,x_{n1}+(-1)^{i_n}x_{n2}) - 2^n \sum_{j_1,\dots,j_n\in\{1,2\}} Q(x_{1j_1},\dots,x_{nj_n})\| \\ &= \lim_{k \longrightarrow \infty} \frac{1}{4^{nk}} \Big| \sum_{i_1,\dots,i_n\in\{0,1\}} f(2^k x_{11}+(-1)^{i_1}2^k x_{12},\dots,2^k x_{n1}+(-1)^{i_n}2^k x_{n2}) - \\ & 2^n \sum_{j_1,\dots,j_n\in\{1,2\}} f(2^k x_{1j_1},\dots,2^k x_{nj_n}) \Big| \\ &\leq \lim_{k \longrightarrow \infty} \frac{1}{4^{nk}} \phi(2^k x_{11},2^k x_{12},\dots,2^k x_{n1},2^k x_{n2}) = 0 \end{split}$$

for all $x_{11}, x_{12}, \ldots, x_{n1}, x_{n2} \in X$. Hence, by Lemma 2.1, Q is multi-quadratic.

Choosing k = 0 and letting $m \longrightarrow \infty$ in (3.4), we obtain

$$\|Q(x_1,\ldots,x_n) - f(x_1,\ldots,x_n)\| \le \sum_{i=0}^{\infty} \frac{1}{4^{n(i+1)}} \phi(2^i x_1, 2^i x_1,\ldots,2^i x_n, 2^i x_n) = \tilde{\phi}(x_1,x_1,\ldots,x_n,x_n)$$

for all $x_1, \ldots, x_n \in X$.

It remains to show that Q is unique. Suppose that there eixsts another multi-quadratic function $\tilde{Q}: X^n \longrightarrow Y$ which satisfies (3.3). Since $Q(2^k x_1, \ldots, 2^k x_n) = 4^{nk}Q(x_1, \ldots, x_n)$ and $\tilde{Q}(2^k x_1, \ldots, 2^k x_n) = 4^{nk}\tilde{Q}(x_1, \ldots, x_n)$ for all $x_1, \ldots, x_n \in X$, we conclude that

$$\begin{split} \|\tilde{Q}(x_1,\ldots,x_n) - Q(x_1,\ldots,x_n)\| &= \frac{1}{4^{nk}} \|\tilde{Q}(2^k x_1,\ldots,2^k x_n) - Q(2^k x_1,\ldots,2^k x_n)\| \\ &\leq \frac{1}{4^{nk}} (\|\tilde{Q}(2^k x_1,\ldots,2^k x_n) - f(2^k x_1,\ldots,2^k x_n)\| + \|f(2^k x_1,\ldots,2^k x_n) - Q(2^k x_1,\ldots,2^k x_n)\|) \\ &\leq \frac{2}{4^{nk}} \tilde{\phi}(2^k x_1,2^k x_1,\ldots,2^k x_n,2^k x_n) \\ &\leq 2\sum_{i=0}^{\infty} \frac{1}{4^{n(k+i+1)}} \phi(2^{k+i} x_1,2^{k+i} x_1,\ldots,2^{k+i} x_n,2^{k+i} x_n) \\ &\leq 2\sum_{i=k}^{\infty} \frac{1}{4^{n(i+1)}} \phi(2^i x_1,2^i x_1,\ldots,2^i x_n,2^i x_n) \end{split}$$

for every nonnegative integer k and all $x_1, \ldots, x_n \in X$. Letting $k \longrightarrow \infty$ in this inequality, we have $\tilde{Q}(x_1, \ldots, x_n) = Q(x_1, \ldots, x_n)$ for all $x_1, \ldots, x_n \in X$, which gives the conclusion.

Similarly, one can prove the following theorem.

Theorem 3.2 Let $\phi: X^{2n} \longrightarrow [0,\infty)$ be a function such that

$$\tilde{\phi}(x_{11}, x_{12}, \dots, x_{n1}, x_{n2}) = \sum_{k=0}^{\infty} 4^{nk} \phi(\frac{x_{11}}{2^{k+1}}, \frac{x_{12}}{2^{k+1}}, \dots, \frac{x_{n1}}{2^{k+1}}, \frac{x_{n2}}{2^{k+1}}) < \infty$$

for all $x_{11}, x_{12}, \ldots, x_{n1}, x_{n2} \in X$. Suppose that a function $f: X^n \longrightarrow Y$ satisfies the inequality

$$\|\sum_{i_1,\dots,i_n\in\{0,1\}} f(x_{11} + (-1)^{i_1} x_{12},\dots,x_{n1} + (-1)^{i_n} x_{n2}) - 2^n \sum_{j_1,\dots,j_n\in\{1,2\}} f(x_{1j_1},\dots,x_{nj_n})\| \le \phi(x_{11},x_{12},\dots,x_{n1},x_{n2})$$

for all $x_{11}, x_{12}, \ldots, x_{n1}, x_{n2} \in X$ and $f(x_1, \ldots, x_n) = 0$ for any $(x_1, \ldots, x_n) \in X^n$ with at least one component which is equal to zero. Then there exists a unique multi-quadratic function $Q: X^n \longrightarrow Y$ such that

$$||f(x_1,...,x_n) - Q(x_1,...,x_n)|| \le \phi(x_1,x_1,...,x_n,x_n)$$

for all $x_1, \ldots, x_n \in X$.

4. Stability of Eq.(1.2): The fixed point method

Apart from the direct method applied by Hyers, the fixed point method introduced by Radu [16] is effective in the investigations of the stability of functional equations. Some further applications of fixed point theorems to the Hyers-Ulam stability of functional equations can be found in [17]. Applying Radu's method, one can prove the following two results.

Theorem 4.1 Let $\phi: X^{2n} \longrightarrow [0,\infty)$ be a function such that

$$\phi(2x_{11}, 2x_{12}, \dots, 2x_{n1}, 2x_{n2}) \le 4^n L \phi(x_{11}, x_{12}, \dots, x_{n1}, x_{n2})$$

$$(4.1)$$

for an $L \in (0,1)$ and all $x_{11}, x_{12}, \ldots, x_{n1}, x_{n2} \in X$. Suppose that a function $f : X^n \longrightarrow Y$ satisfies the inequality

$$\left\| \sum_{i_1,\dots,i_n \in \{0,1\}} f(x_{11} + (-1)^{i_1} x_{12},\dots,x_{n1} + (-1)^{i_n} x_{n2}) - 2^n \sum_{j_1,\dots,j_n \in \{1,2\}} f(x_{1j_1},\dots,x_{nj_n}) \right\| \\ \leq \phi(x_{11},x_{12},\dots,x_{n1},x_{n2})$$

$$(4.2)$$

for all $x_{11}, x_{12}, \ldots, x_{n1}, x_{n2} \in X$ and $f(x_1, \ldots, x_n) = 0$ for any $(x_1, \ldots, x_n) \in X^n$ with at least one component which is equal to zero. Then there exists a unique multi-quadratic function $Q: X^n \longrightarrow Y$ such that

$$\|f(x_1,\ldots,x_n) - Q(x_1,\ldots,x_n)\| \le \frac{1}{4^n(1-L)}\phi(x_1,x_1,\ldots,x_n,x_n)$$
(4.3)

for all $x_1, \ldots, x_n \in X$.

Theorem 4.2 Let $\phi: X^{2n} \longrightarrow [0,\infty)$ be a function such that

$$\phi(x_{11}, x_{12}, \dots, x_{n1}, x_{n2}) \le \frac{L}{4^n} \phi(2x_{11}, 2x_{12}, \dots, 2x_{n1}, 2x_{n2})$$

for an $L \in (0,1)$ and all $x_{11}, x_{12}, \ldots, x_{n1}, x_{n2} \in X$. Suppose that a function $f : X^n \longrightarrow Y$ satisfies the inequality

$$\left\|\sum_{i_1,\dots,i_n\in\{0,1\}} f(x_{11}+(-1)^{i_1}x_{12},\dots,x_{n1}+(-1)^{i_n}x_{n2})-2^n\sum_{j_1,\dots,j_n\in\{1,2\}} f(x_{1j_1},\dots,x_{nj_n})\right\| \le \phi(x_{11},x_{12},\dots,x_{n1},x_{n2})$$

for all $x_{11}, x_{12}, \ldots, x_{n1}, x_{n2} \in X$ and $f(x_1, \ldots, x_n) = 0$ for any $(x_1, \ldots, x_n) \in X^n$ with at least

one component which is equal to zero. Then there exists a a unique multi-quadratic function $Q: X^n \longrightarrow Y$ such that

$$||f(x_1,\ldots,x_n) - Q(x_1,\ldots,x_n)|| \le \frac{L}{4^n(1-L)}\phi(x_1,x_1,\ldots,x_n,x_n)$$

for all $x_1, \ldots, x_n \in X$.

Acknowledgments The authors would like to thank the anonymous referees for the constructive comments and suggestions which helped to improve the quality of this paper.

References

- N. BRILLOUĚT-BELLOUT, J. BRZDEK, K. CIEPLIŃSKI. On some recent developments in Ulam's type stability. Abstr. Appl. Anal., 2012, Art. ID 716936, 41 pp.
- [2] S. M. JUNG. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer Optimization and Its Applications, 48. Springer, New York, 2011.
- [3] K. CIEPLIŃSKI. Generalized stability of multi-additive mappings. Appl. Math. Letters, 2010, 23: 1291– 1294.
- K. CIEPLIŃSKI. Stability of multi-additive mappings in non-Archimedean normed spaces. J. Math. Anal. Appl., 2011, 373: 376–383.
- [5] K. CIEPLIŃSKI. Stability of multi-additive mappings in β-Banach spaces. Nonlinear Anal., 2012, 75: 4205–4212.
- [6] W. PRAGER, J. SCHWAIGER. Multi-affine and multi-Jensen functions and their connection with generalized polynomials. Aequationes Math., 2005, 69(1-2): 41–57.
- [7] W. PRAGER, J. SCHWAIGER. Stability of the multi-Jensen equation. Bull. Korean Math. Soc., 2008, 45(1): 133-142.
- [8] K. CIEPLIŃSKI. On multi-Jensen functions and Jensen difference. Bull. Korean Math. Soc., 2008, 45(4): 729–737.
- [9] K. CIEPLIŃSKI. Stability of multi-Jenssen equation. J. Math. Anal. Appl., 2010, 363: 249-254.
- [10] K. CIEPLIŃSKI. Stability of Multi-Jensen Mappings in Non-Archimedean Normed Spaces. Sringer Optim. Appl., 52, Springer, New York, 2012.
- [11] Tianzhou XU. On the stability of multi-Jensen mappings in β-Banach spaces. Appl. Math. Lett., 2012, 25(11): 1866–1870.
- [12] Tianzhou XU. Stability of multi-Jensen mappings in non-Archimedean normed spaces. J. Math. Phys., 2012, 53(2): 1–9.
- [13] J. H. BAE, W. G. PARK. On a bi-quadratic functional equation and its stability. Nonlinear Anal., 2005, 62(4): 643–654.
- [14] K. CIEPLIŃSKI. On the generalized Hyers-Ulam stability of multi-quadratic mappings. Comput. Math. Appl., 2011, 62(9): 3418–3426.
- [15] J. ACZEL, J. DHOMBRES. Functional Equations in Several Variables. Cambridge University Press, Cambridge, 1989.
- [16] V. RADU. The fixed point alternative and the stability of functional equations. Fixed Point Theory, 2003, 4(1): 91–96.
- [17] K. CIEPLIŃSKI. Applications of fixed point theorems to the Hyers-Ulam stability of functional equations-a survey. Ann. Funct. Anal., 2012, 3(1): 151–164.