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Abstract In this paper we unify the system of functional equations defining multi-quadratic

mappings to a single equation, find out the general solution of it and prove its generalized
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1. Introduction

Throughout this paper, let X and Y be vector spaces over Q, the field of rational numbers,
and n ≥ 2 be an integer. A mapping g : X −→ Y is called quadratic if g satisfies the functional
equation g(x + y) + g(x− y) = 2g(x) + 2g(y) for all x, y ∈ X.

A mapping f : Xn −→ Y is called multi-quadratic or n-quadratic if it is quadratic in each
variable; that is,

f(x1, . . . , xi−1, xi + x′i, xi+1, . . . , xn) + f(x1, . . . , xi−1, xi − x′i, xi+1, . . . , xn)

= 2f(x1, . . . , xn) + 2f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn) (1.1)

for all i ∈ {1, . . . , n} and all x1, . . . , xi−1, xi, x
′
i, xi+1, . . . , xn ∈ X.

For a mapping f : Xn −→ Y , consider the functional equation
∑

i1,...,in∈{0,1}
f(x11 + (−1)i1x12, . . . , xn1 + (−1)inxn2)

= 2n
∑

j1,...,jn∈{1,2}
f(x1j1 , . . . , xnjn

) (1.2)

for all x11, x12, . . . , xn1, xn2 ∈ X.

In this paper we reduce system (1.1) to equation (1.2), establish the general solution of (1.2)
and prove its generalized Hyers-Ulam stability.

The theory of Hyers-Ulam’s type stability is a very popular subject of investigations. For
the historical background on it, we refer to [1, 2] and the references therein. Recently, some
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mathematicians established the general solution and investigated the stability of some multivari-
able functional equations. In particular, Ciepliński [3] established the solution of multi-additive
functional equation, and the stability of it was proved in [4, 5]. In [6], Prager and Schwaiger got
the solution of multi-Jensen equation, and the stability of it was recently investigated in [7–12].

The stability of 2-quadratic mappings were studied in [13]. In [14], K. Ciepliński proved the
stability of the system (1.1) of equations defining the multi-quadratic mappings. So the result
of this paper generalizes the result of [13].

2. Solutions of Eq. (1.2)

We start with the following lemma.

Lemma 2.1 A function f : Xn −→ Y satisfies (1.2) for all x11, x12, . . . , xn1, xn2 ∈ X if and

only if f is n-quadratic.

Proof Assume that f : Xn −→ Y satisfies (1.2). First, we use induction to show that
f(x1, . . . , xn) = 0 for any (x1, . . . , xn) ∈ Xn with at least one component which is equal to
zero.

Putting x11 = x12 = · · · = xn1 = xn2 = 0 in (1.2), we get

2nf(0, . . . , 0) = 2n × 2nf(0, . . . , 0),

and consequently f(0, . . . , 0) = 0.
Now we assume that f(x1, . . . , xn) = 0 for any (x1, . . . , xn) ∈ Xn with at most i (0 ≤ i ≤

n − 2) components which are not equal to zero. Fix 1 ≤ k1 ≤ · · · ≤ ki+1 ≤ n and put xj2 = 0
for all j ∈ {1, . . . , n} and xj1 = 0 for j ∈ {1, . . . , n}\{k1, . . . , ki+1}. By assumption, we have
f(0, . . . , xk1jk1

, 0, . . . , xki+1jki+1
, 0, . . . , 0) = 0 if jk1 , . . . , jki+1 ∈ {1, 2} and at least one is 2. Then,

by (1.2)

2nf(0, . . . , xk11, 0, . . . , xki+11, 0, . . . , 0)

= 2n(2n−i−1f(0, . . . , xk11, 0, . . . , xki+11, 0, . . . , 0)+

2n−i−1
∑

{f(0, . . . , xk1jk1
, 0, . . . , xki+1jki+1

, 0, . . . , 0) :

jk1 , . . . , jki+1 ∈ {1, 2} and at least one is 2}),
and thus f(0, . . . , xk11, 0, . . . , xki+11, 0, . . . , 0) = 0. By induction, we have f(x1, . . . , xn) = 0 for
any (x1, . . . , xn) ∈ Xn with at least one component which is equal to zero.

Next, fix an i ∈ {1, . . . , n}. Putting xj2 = 0 for j ∈ {1, . . . , n} \ {i} in (1.2), we have

2n−1f(x11, . . . , x(i−1)1, xi1 + xi2, x(i+1)1, . . . , xn1)+

2n−1f(x11, . . . , x(i−1)1, xi1 − xi2, x(i+1)1, . . . , xn1)

= 2n
( ∑

j1,...,ji−1,ji+1,...,jn∈{1,2}
f(x1j1 , . . . , x(i−1)ji−1 , xi1, x(i+1)ji+1 , . . . , xnjn

)+

∑

j1,...,ji−1,ji+1,...,jn∈{1,2}
f(x1j1 , . . . , x(i−1)ji−1 , xi2, x(i+1)ji+1 , . . . , xnjn)

)
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= 2n(f(x11, . . . , x(i−1)1, xi1, x(i+1)1, . . . , xn1)+

f(x11, . . . , x(i−1)1, xi2, x(i+1)1, . . . , xn1)).

Thus f(x11, . . . , x(i−1)1, xi1+xi2, x(i+1)1, . . . , xn1)+f(x11, . . . , x(i−1)1, xi1−xi2, x(i+1)1, . . . , xn1) =
2(f(x11, . . . , x(i−1)1, xi1, x(i+1)1, . . . , xn1) + f(x11, . . . , x(i−1)1, xi2, x(i+1)1, . . . , xn1)) for all i ∈
{1, 2, . . . , n} and all x11, . . . , x(i−1)1, xi1, xi2, x(i+1)1, . . . , xn1 ∈ X, which proves that f is multi-
quadratic. The rest of the proof is clear.

Theorem 2.2 A function f : Xn −→ Y satisfies Eq. (1.2) for all x11, x12, . . . , xn1, xn2 ∈ X if

and only if there exists a function F : X2n −→ Y such that f(x1, . . . , xn) = F (x1, x1, . . . , xn, xn)
for all x1, . . . , xn ∈ X, and F is additive in each variable and is symmetric about the (2i− 1)th
variable and 2ith variable for i = 1, . . . , n.

Proof If there exists a function F : X2n −→ Y such that f(x1, . . . , xn) = F (x1, x1, . . . , xn, xn)
for all x1, . . . , xn ∈ X, and F is additive in each variable and is symmetric about the (2i− 1)th
variable and 2ith variable for i ∈ {1, . . . , n}, then it is obvious that f satisfies Eq. (1.2).

Conversely, we define a function F : X2n −→ Y by

F (x11, x12, . . . , xn1, xn2)

=
1
4n

∑

j1,...,jn∈{0,1}
(−1)j1+···+jnf(x11 + (−1)j1x12, . . . , xn1 + (−1)jnxn2) (2.1)

for all x11, x12, . . . , xn1, xn2 ∈ X. Fix i ∈ {1, . . . , n} and xkjk
, k ∈ {1, . . . , n} \ {i}, jk ∈ {1, 2}.

Since f is quadratic in the ith variable, we see from [15, pp. 165–178] that the mapping

gx11+(−1)j1x12,...,x(i−1)1+(−1)ji−1x(i−1)2,x(i+1)1+(−1)ji+1x(i+1)2,...,xn1+(−1)jn xn2
(xi1, xi2)

=
1
4
(f(x11 + (−1)j1x12, . . . , x(i−1)1 + (−1)ji−1x(i−1)2,

xi1 + xi2, x(i+1)1 + (−1)ji+1x(i+1)2, . . . , xn1 + (−1)jnxn2)−
f(x11 + (−1)j1x12, . . . , x(i−1)1 + (−1)ji−1x(i−1)2,

xi1 − xi2, x(i+1)1 + (−1)ji+1x(i+1)2, . . . , xn1 + (−1)jnxn2))

is additive in each variable and symmetric about xi1 and xi2. Thus the function F : X2n −→ Y ,
defined by

F (x11, x12, . . . , xn1, xn2) =
1

4n−1

∑

j1,...,ji−1,ji+1,jn∈{0,1}
(−1)j1+···+ji−1+ji+1+···+jn

gx11+(−1)j1x12,...,x(i−1)1+(−1)ji−1x(i−1)2,x(i+1)1+(−1)ji+1x(i+1)2,...,xn1+(−1)jn xn2
(xi1, xi2),

is additive in each variable and symmetric about xi1 and xi2, i.e., F (x11, x12, . . . , xi1, xi2, . . . , xn1, xn2)
= F (x11, x12, . . . , xi2, xi1, . . . , xn1, xn2), for all i ∈ {1, . . . , n}.

Since f is quadratic in each variable, we have f(x1, . . . , xn) = 0 for any (x1, . . . , xn) ∈ Xn

with at least one component which is equal to zero, and f(2x1, . . . , 2xn) = 4nf(x1, . . . , xn).
Choosing xi1 = xi2 for all i ∈ {1, . . . , n} in Eq. (2.1), we get

F (x11, x11, . . . , xn1, xn1) =
1
4n

f(2x11, . . . , 2xn1)+
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1
4n

∑ {
f(x11 + (−1)j1x11, . . . , xn1 + (−1)jnxn1) : j1, . . . , jn ∈ {0, 1},

and at least one is 1
}

=
1
4n

f(2x11, . . . , 2xn1) = f(x11, . . . , xn1).

3. Stability of Eq. (1.2): The direct method

From now on, let X and Y be vector space and Banach space, respectively.

Theorem 3.1 Let φ : X2n −→ [0,∞) be a function such that

φ̃(x11, x12, . . . , xn1, xn2) =
∞∑

k=0

1
4n(k+1)

φ(2kx11, 2kx12, . . . , 2kxn1, 2kxn2) < ∞ (3.1)

for all x11, x12, . . . , xn1, xn2 ∈ X. Suppose that a function f : Xn −→ Y satisfies the inequality
∥∥ ∑

i1,...,in∈{0,1}
f(x11 + (−1)i1x12, . . . , xn1 + (−1)inxn2)−

2n
∑

j1,...,jn∈{1,2}
f(x1j1 , . . . , xnjn)

∥∥ ≤ φ(x11, x12, . . . , xn1, xn2) (3.2)

for all x11, x12, . . . , xn1, xn2 ∈ X and f(x1, . . . , xn) = 0 for any (x1, . . . , xn) ∈ Xn with at least

one component which is equal to zero. Then there exists a unique multi-quadratic function

Q : Xn −→ Y such that

‖f(x1, . . . , xn)−Q(x1, . . . , xn)‖ ≤ φ̃(x1, x1, . . . , xn, xn) (3.3)

for all x1, . . . , xn ∈ X.

Proof Choosing xi1 = xi2 = xi for all i ∈ {1, . . . , n} and dividing by 4n in Eq. (3.2), we have

‖ 1
4n

f(2x1, . . . , 2xn)− f(x1, . . . , xn)‖ ≤ 1
4n

φ(x1, x1, . . . , xn, xn)

for all x1, . . . , xn ∈ X, using the assumption f(x1, . . . , xn) = 0 for any (x1, . . . , xn) ∈ Xn with
at least one component which is equal to zero. Replacing xi by 2kxi for all i ∈ {1, . . . , n},
respectively, and dividing by 4nk in the above inequality, we get

‖ 1
4n(k+1)

f(2k+1x1, . . . , 2k+1xn)− 1
4nk

f(2kx1, . . . , 2kxn)‖ ≤ 1
4n(k+1)

φ(2kx1, 2kx1, . . . , 2kxn, 2kxn)

for all x1, . . . , xn ∈ X. Hence

‖ 1
4nm

f(2mx1, . . . , 2mxn)− 1
4nk

f(2kx1, . . . , 2kxn)‖

≤
m−1∑

i=k

1
4n(i+1)

φ(2ix1, 2ix1, . . . , 2ixn, 2ixn) (3.4)

for all nonnegative integers k and m with k < m and all x1, . . . , xn ∈ X. Therefore we conclude
from (3.1) and (3.4) that { 1

4nk f(2kx1, . . . , 2kxn)} is a Cauchy sequence in Y . Since Y is a Banach
space, this sequence is convergent. We define Q : Xn −→ Y by

Q(x1, . . . , xn) = lim
k−→∞

1
4nk

f(2kx1, . . . , 2kxn)
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for all x1, . . . , xn ∈ X. It follows from (3.2) and (3.1) that
∥∥ ∑

i1,...,in∈{0,1}
Q(x11 + (−1)i1x12, . . . , xn1 + (−1)inxn2)− 2n

∑

j1,...,jn∈{1,2}
Q(x1j1 , . . . , xnjn)

∥∥

= lim
k−→∞

1
4nk

∣∣ ∑

i1,...,in∈{0,1}
f(2kx11 + (−1)i12kx12, . . . , 2kxn1 + (−1)in2kxn2)−

2n
∑

j1,...,jn∈{1,2}
f(2kx1j1 , . . . , 2

kxnjn
)
∣∣

≤ lim
k−→∞

1
4nk

φ(2kx11, 2kx12, . . . , 2kxn1, 2kxn2) = 0

for all x11, x12, . . . , xn1, xn2 ∈ X. Hence, by Lemma 2.1, Q is multi-quadratic.

Choosing k = 0 and letting m −→∞ in (3.4), we obtain

‖Q(x1, . . . , xn)−f(x1, . . . , xn)‖ ≤
∞∑

i=0

1
4n(i+1)

φ(2ix1, 2ix1, . . . , 2ixn, 2ixn) = φ̃(x1, x1, . . . , xn, xn)

for all x1, . . . , xn ∈ X.

It remains to show that Q is unique. Suppose that there eixsts another multi-quadratic
function Q̃ : Xn −→ Y which satisfies (3.3). Since Q(2kx1, . . . , 2kxn) = 4nkQ(x1, . . . , xn) and
Q̃(2kx1, . . . , 2kxn) = 4nkQ̃(x1, . . . , xn) for all x1, . . . , xn ∈ X, we conclude that

‖Q̃(x1, . . . , xn)−Q(x1, . . . , xn)‖ =
1

4nk
‖Q̃(2kx1, . . . , 2kxn)−Q(2kx1, . . . , 2kxn)‖

≤ 1
4nk

(‖Q̃(2kx1, . . . , 2kxn)− f(2kx1, . . . , 2kxn)‖+ ‖f(2kx1, . . . , 2kxn)−Q(2kx1, . . . , 2kxn)‖)

≤ 2
4nk

φ̃(2kx1, 2kx1, . . . , 2kxn, 2kxn)

≤ 2
∞∑

i=0

1
4n(k+i+1)

φ(2k+ix1, 2k+ix1, . . . , 2k+ixn, 2k+ixn)

≤ 2
∞∑

i=k

1
4n(i+1)

φ(2ix1, 2ix1, . . . , 2ixn, 2ixn)

for every nonnegative integer k and all x1, . . . , xn ∈ X. Letting k −→ ∞ in this inequality, we
have Q̃(x1, . . . , xn) = Q(x1, . . . , xn) for all x1, . . . , xn ∈ X, which gives the conclusion.

Similarly, one can prove the following theorem.

Theorem 3.2 Let φ : X2n −→ [0,∞) be a function such that

φ̃(x11, x12, . . . , xn1, xn2) =
∞∑

k=0

4nkφ(
x11

2k+1
,

x12

2k+1
, . . . ,

xn1

2k+1
,

xn2

2k+1
) < ∞

for all x11, x12, . . . , xn1, xn2 ∈ X. Suppose that a function f : Xn −→ Y satisfies the inequality

‖
∑

i1,...,in∈{0,1}
f(x11 + (−1)i1x12, . . . , xn1 + (−1)inxn2)−

2n
∑

j1,...,jn∈{1,2}
f(x1j1 , . . . , xnjn)‖ ≤ φ(x11, x12, . . . , xn1, xn2)
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for all x11, x12, . . . , xn1, xn2 ∈ X and f(x1, . . . , xn) = 0 for any (x1, . . . , xn) ∈ Xn with at least

one component which is equal to zero. Then there exists a unique multi-quadratic function

Q : Xn −→ Y such that

‖f(x1, . . . , xn)−Q(x1, . . . , xn)‖ ≤ φ̃(x1, x1, . . . , xn, xn)

for all x1, . . . , xn ∈ X.

4. Stability of Eq.(1.2): The fixed point method

Apart from the direct method applied by Hyers, the fixed point method introduced by
Radu [16] is effective in the investigations of the stability of functional equations. Some further
applications of fixed point theorems to the Hyers-Ulam stability of functional equations can be
found in [17]. Applying Radu’s method, one can prove the following two results.

Theorem 4.1 Let φ : X2n −→ [0,∞) be a function such that

φ(2x11, 2x12, . . . , 2xn1, 2xn2) ≤ 4nLφ(x11, x12, . . . , xn1, xn2) (4.1)

for an L ∈ (0, 1) and all x11, x12, . . . , xn1, xn2 ∈ X. Suppose that a function f : Xn −→ Y

satisfies the inequality

∥∥ ∑

i1,...,in∈{0,1}
f(x11 + (−1)i1x12, . . . , xn1 + (−1)inxn2)−

2n
∑

j1,...,jn∈{1,2}
f(x1j1 , . . . , xnjn

)
∥∥

≤ φ(x11, x12, . . . , xn1, xn2) (4.2)

for all x11, x12, . . . , xn1, xn2 ∈ X and f(x1, . . . , xn) = 0 for any (x1, . . . , xn) ∈ Xn with at least

one component which is equal to zero. Then there exists a unique multi-quadratic function

Q : Xn −→ Y such that

‖f(x1, . . . , xn)−Q(x1, . . . , xn)‖ ≤ 1
4n(1− L)

φ(x1, x1, . . . , xn, xn) (4.3)

for all x1, . . . , xn ∈ X.

Theorem 4.2 Let φ : X2n −→ [0,∞) be a function such that

φ(x11, x12, . . . , xn1, xn2) ≤ L

4n
φ(2x11, 2x12, . . . , 2xn1, 2xn2)

for an L ∈ (0, 1) and all x11, x12, . . . , xn1, xn2 ∈ X. Suppose that a function f : Xn −→ Y

satisfies the inequality

∥∥ ∑

i1,...,in∈{0,1}
f(x11 + (−1)i1x12, . . . , xn1 + (−1)inxn2)−

2n
∑

j1,...,jn∈{1,2}
f(x1j1 , . . . , xnjn

)
∥∥ ≤ φ(x11, x12, . . . , xn1, xn2)

for all x11, x12, . . . , xn1, xn2 ∈ X and f(x1, . . . , xn) = 0 for any (x1, . . . , xn) ∈ Xn with at least
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one component which is equal to zero. Then there exists a a unique multi-quadratic function

Q : Xn −→ Y such that

‖f(x1, . . . , xn)−Q(x1, . . . , xn)‖ ≤ L

4n(1− L)
φ(x1, x1, . . . , xn, xn)

for all x1, . . . , xn ∈ X.

Acknowledgments The authors would like to thank the anonymous referees for the construc-
tive comments and suggestions which helped to improve the quality of this paper.

References
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[5] K. CIEPLIŃSKI. Stability of multi-additive mappings in β-Banach spaces. Nonlinear Anal., 2012, 75: 4205–

4212.

[6] W. PRAGER, J. SCHWAIGER. Multi-affine and multi-Jensen functions and their connection with general-

ized polynomials. Aequationes Math., 2005, 69(1-2): 41–57.

[7] W. PRAGER, J. SCHWAIGER. Stability of the multi-Jensen equation. Bull. Korean Math. Soc., 2008,

45(1): 133–142.
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