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Abstract In this paper, the authors study the strong law of large numbers for partial sums

of pairwise negatively quadrant dependent (NQD) random variables. The results obtained

improve the corresponding theorems of Hu et al. (2013), and Qiu and Yang (2006) under some

weaker conditions.
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1. Introduction

The following concept of negatively quadrant dependent (NQD) random variables was in-
troduced by Lehmann [1].

Definition 1.1 Two random variables X and Y are said to be NQD if

P (X ≤ x, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y) for all x and y ∈ R.

A finite or infinite sequence of random variables is said to be pairwise NQD if every two
random variables in the sequence are NQD.

Sequences of pairwise NQD random variables are a family of very wide scope, which con-
tain sequences of negatively associated (NA, Joag and Proschan [2]) random variable, negatively
orthant dependent (NOD, Ebrahimi and Ghosh [3]) random variables and linearly negative quad-
rant dependent (LNQD, Newman [4]) random variables. As we know, pairwise independent class
is the most important and special case of pairwise NQD class, which has been investigated in
many literature and attracted extensive attentions. Therefore, it is very significant to study prob-
abilistic properties of this wider pairwise NQD class. Years after the appearance of Lehmann [1],
many literature of investigation concerning the convergence properties of pairwise NQD random
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variables has emerged. Matula [5], Wan [6] and Li and Yang [7] obtained some results on the Kol-
mogorov strong law of large numbers, Wu [8] investigated the Kolmogorov-Chung type strong law
of large numbers, Wu and Jiang [9] and Hu et al. [10] studied the Marcinkiewicz-Zygmund strong
law of large number, Gan and Chen [11] discussed the strong stability of Jamison’s weighted sums,
Wu and Guan [12] presented the weak laws of large numbers.

The purpose of this article is to investigate the strong law of large numbers for sequences
of pairwise NQD random variables.

Definition 1.2 A sequence of random variables {Xn, n ≥ 1} is said to be stochastically domi-

nated by a random variable X if there exists a constant C > 0 such that

sup
n≥1

P (|Xn| > x) ≤ CP (|X| > x) for all x ≥ 0.

The above concept of stochastic domination is a generalization of the concept of identical
distributions. Stochastic dominance of {Xn, n ≥ 1} by the random variable X implies E|Xn|p ≤
CE|X|p if the p-moment of |X| exists, i.e., if E|X|p < ∞.

Hu et al. [10] studied the strong law of large numbers for sequences of pairwise NQD random
variables and obtained the following theorem.

Theorem 1.1 ([10]) Let {Xn, n ≥ 1} be a pairwise NQD sequence with EXn = 0 for all n ≥ 1.

Suppose that {Xn, n ≥ 1} is stochastically dominated by a random variable X. If there exist

constants 1 ≤ r < 2 and α > r + 1 such that

E(|X|r logα |X|) < ∞, (1.1)

then

lim
n→∞

n−1/r
n∑

k=1

Xk = 0 a.s. (1.2)

Remark 1.1 It is well known that E|X|r < ∞ (1 < r < 2) and (1.2) are equivalent in i.i.d
case [13]. To some extent, Theorem 1.1 generalizes the sufficient parts of the Kolmogorov and
Marcinkiewicz-Zygmund SLLN for i.i.d case to pairwise NQD case. However, (1.1) is stronger
than the optimal condition.

Qiu and Yang [14] studied the strong law of large numbers for weighted sums of NA random
variables and obtained the following theorem.

Theorem 1.2 ([14]) Suppose 1/r = 1/α + 1/β for 1 < α, β < ∞ and 1 < r < 2. Let

{X, Xn, n ≥ 1} be a sequence of NA random variables with indentical distributions, and let

{ani, 1 ≤ i ≤ n, n ≥ 1} be an array of constants satisfying

Aα = lim
n→∞

supAα,n < ∞, Aα
α,n =

n∑

i=1

|ani|α/n. (1.3)

If E|X|β < ∞ and EX = 0, then

n−1/r
n∑

i=1

aniXi → 0 a.s. (1.4)
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In this work, we obtain some results on the strong law of large numbers for sequences of
pairwise NQD random variables, which improve and extend Theorems 1.1 and 1.2 under some
weaker conditions. We point out that the method used in this article differs from that in Hu et
al. [10] or Qiu and Yang [14].

Throughout this paper, the symbol C is used to represent positive constants whose values
may change from one place to another.

2. Preliminaries and main results

To prove our main results, we need some technical lemmas.

Lemma 2.1 ([1]) Let {Xn, n ≥ 1} be a sequence of pairwise NQD random variables. Let

{fn, n ≥ 1} be a sequence of increasing functions. Then {fn(Xn), n ≥ 1} is a sequence of

pairwise NQD random variables.

Lemma 2.2 ([8]) Let {Xn, n ≥ 1} be a sequence of pairwise NQD random variables with mean

zero and EX2
n < ∞, n ≥ 1, and let Tj(k) =

∑j+k
i=j+1 Xi, j ≥ 0, k ≥ 1. Then

E max
1≤k≤n

(Tj(k))2 ≤ C log2 n

j+n∑

i=j+1

EX2
i , n ≥ 1.

Lemma 2.3 ([15]) Let {Xn, n ≥ 1} be a sequence of random variables which is stochastically

dominated by a random variable X. Then there exists a constant C such that, for all q > 0 and

x > 0,

(i) E(|Xk|qI(|Xk| ≤ x)) ≤ C{E(|X|qI(|X| ≤ x)) + xqP (|X| > x)},
(ii) E(|Xk|qI(|Xk| > x)) ≤ CE(|X|qI(|X| > x)).
Now we state our main results and the proofs will be presented in next section.

Theorem 2.1 Let {Xn, n ≥ 1} be a sequence of pairwise NQD random variables with EXn = 0
and be stochastically dominated by a random variable X. If there exist constants 1 ≤ r < 2 such

that

E(|X|r log2 |X|) < ∞, (2.1)

then for all ε > 0,
∞∑

n=1

n−1P
(

max
1≤j≤n

∣∣
j∑

k=1

Xk

∣∣ > n1/rε
)

< ∞. (2.2)

Corollary 2.1 Under the conditions of Theorem 2.1, (1.2) holds.

Remark 2.1 Since (2.1) is weaker than (1.1) and since (2.2) implies (1.2) as will be shown in
the proof of Corollary 2.1, Theorem 2.1 and Corollary 2.1 improve Theorem 1.1. Though (2.1)
is weaker than (1.1), it is not desirable compared with the moment condition E|X|r < ∞ (1 <

r < 2) for i.i.d case. It is still unknown whether Theorem 2.1 or Corollary 2.1 remains true by
replacing (2.1) with E|X|r < ∞. Despite our efforts to solve this problem, it is still an open
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problem.

Theorem 2.2 Suppose 1/r = 1/α+1/β for 1 < α, β < ∞ and 1 < r < 2. Let {Xn, n ≥ 1} be a

sequence of pairwise NQD random variables with EXn = 0 and be stochastically dominated by

a random variable X, and let {ani, 1 ≤ i ≤ n, n ≥ 1} be an array of constants satisfying (1.3). If

E|X|β < ∞, then for all ε > 0,

∞∑
n=1

n−1P
(

max
1≤j≤n

∣∣
j∑

i=1

aniXi

∣∣ > n1/rε
)

< ∞. (2.3)

Corollary 2.2 Under the conditions of Theorem 2.2, (1.4) holds.

Remark 2.2 Since NA implies pairwise NQD and since (2.3) implies (1.4) as will be shown
in the proof of Corollary 2.2, Theorem 2.2 and Corollary 2.2 improve Theorem 1.2. The proof
of Corollary 2.2 is similar to that of Corollary 2.1, and we will omit the details. In addition, it
should be noted that the moment condition in Theorems 1.2 and 2.2 is not so good as that of
results by Chow and Lai [16].

3. The proofs of main results

In this section, we state the proofs of our main results.

Proof of Theorem 2.1 For fixed n ≥ 1, let

Ynk =− n1/rI(Xk < −n1/r) + XkI(|Xk| ≤ n1/r) + n1/rI(Xk > n1/r),

Znk =(Xk + n1/r)I(Xk < −n1/r) + (Xk − n1/r)I(Xk > n1/r).

Then Ynk + Znk = Xk, and it follows by Lemma 2.1 that {Ynk, k ≥ 1} is a sequence of pairwise
NQD random variables. Then

∞∑
n=1

n−1P
(

max
1≤j≤n

∣∣
j∑

k=1

Xk

∣∣ > n1/rε
)

≤
∞∑

n=1

n−1P
(

max
1≤j≤n

∣∣
j∑

k=1

(Znk − EZnk)
∣∣ > n1/rε/2

)
+

∞∑
n=1

n−1P
(

max
1≤j≤n

∣∣
j∑

k=1

(Ynk − EYnk)
∣∣ > n1/rε/2

)

=: I1 + I2.

To prove (2.2), it only needs to be shown that I1 < ∞ and I2 < ∞. Note that |Znk| ≤
|Xk|I(|Xk| > n1/r). By the Markov inequality, Lemma 2.3, and (2.1), we have

I1 ≤ C
∞∑

n=1

n−1−1/r
n∑

k=1

E|Znk − EZnk|

≤ C
∞∑

n=1

n−1−1/r
n∑

k=1

E
(|Xk|I(|Xk| > n1/r)

)
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≤ C
∞∑

n=1

n−1/r
∞∑

s=n

E
(|X|I(s < |X|r ≤ s + 1)

)

= C
∞∑

s=1

E
(|X|I(s < |X|r ≤ s + 1)

) s∑
n=1

n−1/r

≤





C
∞∑

s=1

log sE(|X|I(s < |X| ≤ s + 1)) for r = 1

C
∞∑

s=1

s1−1/rE(|X|I(s < |X|r ≤ s + 1)) for 1 < r < 2

≤
{

CE|X| log |X| < ∞ for r = 1

CE|X|r < ∞ for 1 < r < 2.

Next we prove I2 < ∞. By the Markov inequality, Lemmas 2.2, and 2.3, we have

I2 ≤C
∞∑

n=1

n−1−2/r log2 n
n∑

k=1

EY 2
nk

≤C

∞∑
n=1

n−1−2/r log2 n

n∑

k=1

EX2
kI(|Xk| ≤ n1/r) + C

∞∑
n=1

n−1 log2 n

n∑

k=1

P (|Xk| > n1/r)

≤C
∞∑

n=1

n−2/r log2 nEX2I(|X| ≤ n1/r) + C
∞∑

n=1

log2 nP (|X| > n1/r)

=:I3 + I4.

Since the function log2 x is slowly varying at ∞, by applying Lemma 2.4(ii) of Zhou [17], we have

I3 =C
∞∑

n=1

n−2/r log2 n
n∑

s=1

EX2I(s− 1 < |X|r ≤ s)

=C
∞∑

s=1

EX2I(s− 1 < |X|r ≤ s)
∞∑

n=s

n−2/r log2 n

≤C
∞∑

s=1

s1−2/r log2 sEX2I(s− 1 < |X|r ≤ s)

≤CE
(|X|r log2 |X|)< ∞.

Finally we prove I4 < ∞. For 1 < r < 2, we have

I4 ≤C
∞∑

n=1

n−1/r log2 nE|X|I(|X| > n1/r)

=C
∞∑

n=1

n−1/r log2 n
∞∑

s=n

E|X|I(s < |X|r ≤ s + 1)

=C
∞∑

s=1

E|X|I(s < |X|r ≤ s + 1)
s∑

n=1

n−1/r log2 n

≤C
∞∑

s=1

E|X|I(s < |X|r ≤ s + 1)(log2 s)
s∑

n=1

n−1/r
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≤C
∞∑

s=1

s1−1/r log2 sE|X|I(s < |X|r ≤ s + 1)

≤CE
(|X|r log2 |X|)< ∞.

For r = 1, we have

I4 =C
∞∑

n=1

log2 n
∞∑

m=n

P (m < |X| ≤ m + 1)

=C
∞∑

m=1

P (m < |X| ≤ m + 1)
m∑

n=1

log2 n

≤C
∞∑

m=1

m log2 mP (m < |X| ≤ m + 1)

≤CE
(|X| log2 |X|)< ∞.

The proof is completed. ¤

Proof of Corollary 2.1 Let Sj =
∑j

k=1 Xk, j ≥ 1. From (2.2), we have for arbitrary ε > 0,

∞ >
∞∑

n=1

n−1P
(

max
1≤j≤n

∣∣Sj

∣∣ > n
1
r ε

)

=
∞∑

i=0

2i+1−1∑

n=2i

n−1P
(

max
1≤j≤n

∣∣Sj

∣∣ > n
1
r ε

)

≥1
2

∞∑

i=1

P
(

max
1≤j≤2i

∣∣Sj

∣∣ > 2
i+1

r ε
)
.

Then by the Borel-Cantelli Lemma and the arbitrariness of ε > 0,

lim
i→∞

2−
i+1

r max
1≤j≤2i

∣∣Sj

∣∣ = 0 a.s.

For all positive integers n, there exists a positive integer i0 such that 2i0−1 ≤ n < 2i0 . Then
i0 →∞ as n →∞ and

n−
1
r

∣∣Sn

∣∣ ≤ max
2i0−1≤j<2i0

j−
1
r

∣∣Sj

∣∣

≤2
2
r 2−

i0+1
r max

1≤j<2i0

∣∣Sj

∣∣ → 0 a.s. as n →∞.

The proof is completed. ¤

Proof of Theorem 2.2 Since ani = a+
ni − a−ni, without loss of generality, we may assume that

ani ≥ 0. From (1.3), we may assume that
∑n

i=1 |ani|α ≤ n. Then by the Hölder inequality, for
∀ 1 ≤ γ < α,

n∑

i=1

|ani|γ ≤
( n∑

i=1

|ani|γ
α
γ

) γ
α
( n∑

i=1

1
)α−γ

α ≤ n. (3.1)
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For ∀ γ ≥ α,
n∑

i=1

|ani|γ =
n∑

i=1

|ani|α|ani|γ−α ≤
n∑

i=1

|ani|α
( n∑

i=1

|ani|α
) γ−α

α ≤ n
γ
α . (3.2)

We let

Yni =− n1/rI(aniXi < −n1/r) + aniXiI(ani|Xi| ≤ n1/r) + n1/rI(aniXi > n1/r),

Zni =(aniXi + n1/r)I(aniXi < −n1/r) + (aniXi − n1/r)I(aniXi > n1/r).

Then it follows by Lemma 2.1 that {Yni, i ≥ 1, n ≥ 1} and {Zni, i ≥ 1, n ≥ 1} are both pairwise
NQD. Hence we have

∞∑
n=1

n−1P
(

max
1≤j≤n

∣∣
j∑

i=1

aniXi

∣∣ > n1/rε
)

≤
∞∑

n=1

n−1
n∑

i=1

P
(
ani|Xi| > n1/r

)
+

∞∑
n=1

n−1P
(

max
1≤j≤n

∣∣
j∑

i=1

Yni

∣∣ > n1/rε
)

=: I5 + I6.

By Definition 1.2,
∑n

i=1 |ani|α ≤ n and 1/r = 1/α + 1/β, we have

I5 ≤
∞∑

n=1

n−1
n∑

i=1

P
(|X|α > nα/ra−α

ni

)

≤
∞∑

n=1

n−1
n∑

i=1

P
(
|X|α > nα/r

( n∑

i=1

|ani|α
)−1)

≤
∞∑

n=1

n−1
n∑

i=1

P
(|X| > n1/r−1/α

)

=
∞∑

n=1

P
(|X| > n1/β

) ≤ E|X|β < ∞.

Then we prove I6 < ∞. From (3.1) and (3.2), we get
∑n

i=1 aβ
ni ≤ nmax{1, β/α}. Noting that

|Zni| ≤ ani|Xi|I(ani|Xi| > n1/r). Then by EXi = 0, Lemma 2.3, β > r and −β/r + β/α = −1,
we get

n−1/r max
1≤j≤n

∣∣
j∑

i=1

EYni

∣∣ = n−1/r max
1≤j≤n

∣∣
j∑

i=1

EZni

∣∣

≤ n−1/r
n∑

i=1

aniE|Xi|I(ani|Xi| > n1/r)

≤ C n−β/r
n∑

i=1

aβ
niE|X|βI(ani|X| > n1/r)

≤ C n−β/r+max{1, β/α}E|X|β → 0 as n →∞. (3.3)

From (3.3), we know that while n is sufficiently large, max1≤j≤n

∣∣∑j
i=1 EYni

∣∣ < n1/rε/2. Then
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by the Markov inequality, Lemmas 2.2 and 2.3, we have

I6 ≤
∞∑

n=1

n−1P

(
max

1≤j≤n

∣∣∣∣
j∑

i=1

(Yni − EYni)
∣∣∣∣ > n1/rε/2

)

≤C

∞∑
n=1

n−1−2/rE max
1≤j≤n

∣∣∣∣
j∑

i=1

(Yni − EYni)
∣∣∣∣
2

≤C

∞∑
n=1

n−1−2/r log2 n

n∑

i=1

E|Yni|2

=C
∞∑

n=1

n−1−2/r log2 n
n∑

i=1

a2
niE|Xi|2I(ani|Xi| ≤ n1/r)+

C
∞∑

n=1

n−1 log2 n
n∑

i=1

P (ani|Xi| > n1/r)

≤C
∞∑

n=1

n−1−2/r log2 n
n∑

i=1

a2
niE|X|2I(ani|X| ≤ n1/r)+

C
∞∑

n=1

n−1 log2 n
n∑

i=1

P (ani|X| > n1/r)

=:I7 + I8.

By
∑n

i=1 aβ
ni ≤ nmax{1, β/α}, β > r and −β/r + β/α = −1, we have

I8 ≤C
∞∑

n=1

n−1−β/r log2 n
n∑

i=1

aβ
niE|X|βI(ani|X| > n1/r)

≤C
∞∑

n=1

n−1−β/r+max{1, β/α} log2 nE|X|β < ∞.

Finally we prove I7 < ∞. From 1/r = 1/α + 1/β and 1 < r < 2, we know that α ≤ 2 and β ≤ 2
will not hold simultaneously. Hence we need only to consider the following three cases.

Case 1 α < 2 < β. By (3.2) and 1/r = 1/α + 1/β, we have

I7 ≤ C
∞∑

n=1

n−1−2/r+2/α log2 nE|X|2 = C
∞∑

n=1

n−1−2/β log2 nE|X|2 < ∞.

Case 2 β < 2 < α. By (3.1) and β > r, we have

I7 ≤C
∞∑

n=1

n−1−β/r log2 n
n∑

i=1

aβ
niE|X|βI(ani|X| ≤ n1/r)

≤C
∞∑

n=1

n−β/r log2 nE|X|β < ∞.

Case 3 β ≥ 2, α ≥ 2 and αβ 6= 4. By (3.1) and r < 2, we have

I7 ≤ C
∞∑

n=1

n−2/r log2 nE|X|2 < ∞.

The proof is completed. ¤



A note on strong law of large numbers for partial sums of pairwise NQD random variables 239

Acknowledgements We thank the referees for carefully reading the manuscript and for pro-
viding some comments and suggestions which led to improvements in the paper.

References

[1] E. L. LEHMANN. Some concepts of dependence. Ann. Math. Statist., 1966, 37(5): 1137–1153.

[2] K. JOAG-DEV, F. PROSCHAN. Negative association of random variables. Ann. Statist., 1983, 11(1):

286–295.

[3] N. EBRAHIMI, M. GHOSH. Multivariate negative dependence. Commun. Stat., Theory Methods, 1981,

10(4): 307–337.

[4] C. M. NEWMAN. Asymptotic independence and limit theorems for positively and negatively dependent

random variables. Inst. Math. Statist., Hayward, CA, 1984.

[5] P. MATULA. A note on the almost sure convergence of sums of negatively dependent random variables.

Statist. Probab. Lett., 1992, 15(3): 209–213.

[6] Chenggao WAN. Law of large numbers and complete convergence for pairwise NQD random sequences. Acta

Math. Appl. Sin., 2005, 28(2): 253–261. (in Chinese)

[7] Rui LI, Weiguo YANG. Strong convergence of pairwise NQD random sequences. J. Math. Anal. Appl.,

2008, 344(2): 741–747.

[8] Qunying WU. Convergence properties of pairwise NQD random sequences. Acta Math. Sinica (Chin. Ser.),

2002, 45(3): 617–624. (in Chinese)

[9] Qunying WU, Yuanying JIANG. The strong law of large numbers for pairwise NQD random variables. J.

Syst. Sci. Complex., 2011, 24(2): 347–357.

[10] Shuhe HU, Xiaotao LIU, Xinghui WANG, et al. Strong law of large numbers of partial sums for pairwise

NQD sequences. J. Math. Res. Appl., 2013, 33(1): 111–116.

[11] Shixin GAN, Pingyan CHEN. Some limit theorems for sequences of pairwise NQD random variables. Acta

Math. Sci. Ser. B Engl. Ed., 2008, 28(2): 269–281.

[12] Yongfeng WU, Mei GUAN. Mean convergence theorems and weak laws of large numbers for weighted sums

of dependent random variables. J. Math. Anal. Appl., 2011, 377(2): 613–623.
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