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Abstract In this paper, we study the case of independent sums in multi-risk model. Assume
that there exist k types of variables. The ith are denoted by {X;;,j > 1}, which are i.i.d.
with common density function f;(z) € OR and finite mean, i = 1, ..., k. We investigate local
large deviations for partial sums ZLI S, = Zle Ty Xij
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1. Introduction

Mainstream research on precise large deviation probabilities has been concentrated on the
study of the asymptotic relation P(S, — ES,, > x) ~ nF(x), which holds uniformly for some
z-region T;, as n — oo. Let S, = ZZL:I X;, where X; are a sequence of independent identically
distributed (i.i.d.) random variables (rv’s). X; (i > 1) have a common density function f(z) of
absolutely continuous distribution function (d.f.) F(x) =1 — F(«) and a finite mean u = EX;.
See [1-5] for more details. Furthermore, Wang and Wang [6] extended the results to multi-risk
model. Lu [7] studied lower and upper bounds of large deviation for sums of subexponential
claims in a multi-risk model. In addition, Lu [8] extended the results to long-tailed class and
studied lower bounds of large deviation for sums of long-tailed claims in a multi-risk model.
Recently, more and more researchers concentrate on the local precise large deviations, which is
about the large deviation probabilities P(z < S,, — ES,, < x + T). Doney [9] investigated the
probabilities of large deviations for i.i.d. integer-valued rv’s. Yang et al.[10] studied the local
precise large deviation for i.i.d. rv’s supported on (—oo, 00) with some regularly varying density
f(z), see Yang et al.[10] for more details on the local precise large deviations.

Let A(n,z) and B(n,x) be two positive functions (n = 1,2,...;2 € R). We say A(n,z) <
B(n,z) holds uniformly for x € A as n — oo, if limsup,,_, . sup,ca A(n,2)/B(n,z) < 1.
Furthermore, we denote A(n,z) ~ B(n,z) uniformly for z € A as n — oo, if limsup,,_, . sup e a
|A(n,z)/B(n,z) — 1] = 0.
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A measurable function f : R — [0,00) is O-regularly varying (f € OR), if f(x) is positive
for sufficiently large x and limsup,_, . f(zy)/f(x) < oo for every fixed y > 0, or equivalently,
for every fixed y > 1, 0 < liminf, . f(zy)/f(x) < limsup,_,. f(zy)/f(z) < co. A measurable
function f : R — [0, 00) belongs to the class L, if f(x) is positive for sufficiently large « and for ev-
ery fixed y > 0, lim, o f(z+y)/f(x) = 1. A measurable function f : R — [0, c0) belongs to the
class C, if f(x) is positive for sufficiently large x, lim o liminf, o inf(1 _oyo<.<qe)e f(2)/f(2) =
lime jo im sup, oo SUP(1 _c)p<2<(140)x £(2)/f(¥) = 1. We have the following inclusion relation-
ship: C € LN OR. A measurable function f : R — [0,00) is almost decreasing, if limsup,_, .
P F(0)/ (2) < 0.

A distribution function F with support on (—oco, o0) belongs to D, if limsup, . F(zy)/F(z)
< o0, for any y € (0, 1) (or equivalently, for y = 1/2). A distribution function F' with support on
(—o0, 00) belongs to C, if limyq liminf, .o F(2y)/F(z) =1 or equivalently, lim; limsup,_, .
Foy)/F(z) = 1.

Set y(y) := liminf, o F(zy)/F(z) and v := —lim,_,~{logv(y)/logy}. In Tang [11], v
is called the upper Matuszewska index of a d.f. F.

These results motivate our study. In this paper, we investigate the local large deviations
for Zle Sp, = Zle 25;1 Xi;, where {X;;,7 > 1} are i.i.d. rv’s (i = 1,...,k). The rest of
the paper is organized as follows. In Section 2, we present some useful propositions. The main

results are given in Section 3. Finally, the proof of the main results are presented in Section 4.

2. Preliminaries

In this section, we introduce some useful propositions which will be used in the proof of the

main results in our paper.

Proposition 2.1 ([12, Proposition 2.2.1]) Let f be positive. If f € OR, then for every 3 < 3(f),
there exist positive constants C1 g and Cs g, such that f(u)/f(z) > Cy g(u/z)P foru > x > Co g,
where B(f) = limy_.o log(liminf, . f(zy)/f(2))/logy.

Proposition 2.2 ([5, Lemma 2.1]) If F' € D is a distribution function with finite expectation,
1 < yp < o0, then for any p > g, there exist positive constants x¢ and B, such that for all
x>y >, F(y)/F(x) < Bla/y)".

Proposition 2.3 ([10, Lemma 4.3]) Let the function f(x) be a density function of some abso-
lutely continuous d.f. F(x). If f € OR, then F € C.

3. Main results
In this section, we give the main results using Propositions 2.1-2.3.

Theorem 3.1 Fori=1,...,k, let {X,;,j > 1} be i.i.d. rv’s with common almost decreasing
density function f;(z) and finite expectations yi;. Assume that E(X;)" < oo for some r; > 1,
and f;(x), fi(x) (i #j, 1 <4, j < k) satisfy that limsup,_, f;(x)/fi(x) < co. Let v and T be
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any fixed positive constants. If f; € OR, then we have

k k k k
ZLﬁnini(I + i) S P(x < ZSW — Z”z‘ﬂi < 9:+T) < ZL};mTfi(erui)

i=1 i=1 i=1 i=1
holds uniformly for all z > max{yny,...,ynp} =: A(k) asn; — oo (i =1,...,k), where
L7 = limliminf inf fi(z)/ fi(z), L f = lim lim sup sup fi(z)/ fi(zx).

Fi 7 elo zmoo (1-e)e<z<(14e)a el0 oo (1-e)a<z<(l4+e)s

With respect to Theorem 3.1, we have the following corollaries.

Corollary 3.2 If f, e ORNL (i =1,2,...,k) and all conditions of Theorem 3.1 are satisfied,
then

k k
ZL i (Fy(24+T)— Fy(x ))§P<x<25m—2mui§x+T> ZLMM S(x4T)—Fy(x))

=1 i=1

holds uniformly for all x > max{yni,...,yng} =: A(k) asn; - o0 (i =1,...,k).

Proof Using the relation of f; € OR N L, we can easily get that f;(z + ;) ~ fi(x). For any
fixed T,
~1

limsup(Tfi(x)/(Fi(w + T) — Fi(2))) < {lminf( _inf fiw)/fi@)} =1,

T—00 r—oo zrlulz+T
lim nf (T, (2)/(Fi(e + )~ Ei(@)) > {lmsup(_swpfi(w)/ )} =1
rz—oo zlulz+T

Combining Theorem 3.1 and the two inequalities, we get the desired result. [J

Corollary 3.3 If all conditions of Theorem 3.1 are satisfied, in addition, f; € C (i =1,2,...,k),
then
k k
P(z<ZS,Li—Zniui§x+T) an (x+T)— Fy(x))
i=1 i=1

holds uniformly for all x > max{yni,...,yni} = A(k) asn; — oo (i =1,...,k).

Proof By f; € C, we have L; = L; = 1. Corollary 3.3 follows immediately from Corollary 3.2.
O

4. Proof of Theorem 3.1

Now, we will give a proof of Theorem 3.1 in detail.
Proof Assume that y; = 0, ¢ = 1,...,k. Denote v = v(x) = —log(z:f:1 fi(x)). Due to
estimation (4.5) in Yang et al.[10] we have that = fi(z), zfo(x), ..., 2 fr(x) vanish as 2 — 400,
implying lim,_, 4o v(z) = +00. Thus, from the definition of OR and the fact that for any fixed
y >0, (X8, filey)/ (X5, fi(x)) < X5 (fi(xy)/fi(x)), we can obtain that v(z) is slowly
varying.

Denote X; = Xilix,<opory (0= 1,...,k), X’ij = Xijlix,;<e/vty (3 = 1,2,...,n;), and
Sp, = Z 1 Xij

(i=1,...,k). Let n= n(nl,nz, ..., g, x) be the number of summands X;; (i =
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Lk; 1 <4 < ny) in the sum Zle Sp; = Zle Z;“:l Xij, such that X;; > z/v?, ie.,
n= 0 S Ix, saputy- We have Pz < Y0 Sy, < o+ T) = Wo + Wi+ Wa, W; = Pz <
S S <z+Tn=1i),i=0,1and Wy = P(z <3¢ | S, <ax+T,n>2).
Estimation of Wy. For any h > 0, we obtain that

k k i
Wy < P(Z S, > x) <ehw H(Ethi)”i. (1)

i=1 i=1

Using the inequality e* — 1 < ue* (u € R), for i = 1,...,k, we have that

Ee"%i = F, (%) JF/I4 M fi(u)du

x

14 /f(&u — 1) fi(w)du

o0

0 ey
<1 +/ (" = 1) fi(u)du + / hue™ f;(u)du
0

—00

hu . .
For positive h and real wu, w < |u| and, since p; is finite, 'y, = EX;I{x,>0}, p° =

EXilix,<0y (1 =1,...,k) are finite. Therefore, using the dominated convergence theorem, we
get

l}gl&h/ 1) fi(u du—hm/ f(u)du—l—;ﬁ_:,ul_, i=1,...,k.
Hence,

0
/ (" — 1) fy(u)du = (1+ 7(h))hpit

where 7;(h) - 0ash—0,i=1,... k.
By the fact

.:s‘“

/oﬂ hueh“fi(u)dughe%ﬂi, i=1,...,k

and using 1 4+ z < e*, we obtain that for h > 0,

k
. < e—hatv H(l 4 (1 + Ti(h))h/ti_ + h,ev%ﬂzr)m
;fi@?) =t

Wo

k
< exp{ —hx +v+ th[(l +7i(h))ut + e%ui] }
i=1

The function v(z) is slowly varying, so v(x)/x vanishes as x — 0. Setting h = h(z) = 2v(z)/z,

we get

W, k
—— <exp{ v vix > [+ m(r)ut + et ] |
-Z,lfi(x) =t

holds uniformly for = > A(k).



244 Jinghai FENG, Panpan ZHAO and Libin JIAO
Fori=1,...,k, we have

lim (14 7;(h))u’ + ev%,ufF =pu' +pul =0,

and we get
. Wo
2, filz)
4% 1 Wi k 1
By the fact that T L}rifqui(m) < s T st c}i(w) (>, T;), we have
Wi
lim sup —0 =0. (3)

N2, e 00 5> A (k) Z L+nszZ( )

=1

Next, we estimate Wy. We show that Wy < anzl Wamm + 2 1 <mei<i Wami, where

W- = P(Jc < S, <z +T, max X > max max X > 2)
Zmm z; + 1< i<, ™ NEml<I<k 1<j<n < 4’77 =)
1
K T
W- :P<x< Sp;, <z+T, max X > max X —)
2ml + 1<j<ny, ™ 4 1<5<m, >

i=1

Since {X,,;,j > 1} are i.i.d., applying the similar arguments in (5.8) in Yang et al. [10] gives

k
Womm € > P@ <Y S, S0+ T, Xons > 5, Xpny > 7) <2 TFu(-=) sup fin(u).
»_ v v u>z /vt
1<s<t<n, =1 2
Using Proposition 2.3, from f; € OR, we get F; € C C D or equivalently, yr, < oo. Denote
q := max{—0;(fi),vr,,t = 1,...,k} + 1 < oo, by Proposition 2.2, for large =, we have that
Fo(z/vY) = O(w*F,,(z)), m = 1,...,k. Since f,, is almost decreasing and f,, € OR, we
obtain that sup, s, /,a fm(u) = O(fm(x/v?)) = O(W frn(x)), m=1,... k.
By the arguments above, we obtain that for some positive constant C' and large =z,

< WQmm/anfm(x) < Onmvgqpm(x)'

Thus, we have that
v8e
sup ——————— < — sup ——— sup " Fp(x). (4)
xTm—
z>A(k) Z T fi(x) Y z>A(k) z>A(k)

3

3

3
Q
I

As v = v(z) is slowly varying and 7, > 1, we have v8/2™~1 — 0. On the other hand,
E(X,})™™ < oo implies lim,_, o 2" F,,(z) = 0. Hence, both supremums in (4) tend to zero as
ni,n2,...,n, — oo. Then we have limp, 5, 0y —o0 SUPL>A (k) % = 0. Similarly, we

get that limp, n,, . ny—oco SUPZ> A (k) % = 0. Thus,

y Wy B
im sup ——————— =20
mn o ) Y, nTfi(a)
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Ws < 1 . Wo :
From the fact that L LimTfie) = mm(L], Ll Ll S nT i)’ we obtain that

lim sup S 0. (5)

k
M1,M2,0 N =00 S A (K
=1

Next, we consider the estimation of Wj.
By the Strong Law of Large Number for i.i.d. rv’s, there exist k sequences of positive numbers
Umn,,, 1 <m <k such that amp,, T 00, Gmn,, /Tm — 0, P(|Sn,,| > @mn,,,) — 0 as n, — oo.

Since {X,;,j > 1} are i.i.d. rv’s, for any fixed € € (0,1) we obtain that

k k
T T
Wy = Z nmP(x < ZS’m <z4+T, Xpmn,, > o 1§JII§1%§,—1ij < e
m=1 i=1
T
max max X;; < —4)
1<I<k,I#m 1<j<n, v
k
= (Wim1 + Wimz + Wims),
m=1
where Wi,,1 = n f_amnm_l_zgtgk’#m Y MpdQ, Wigms = n [ MpdQ
Iml — 'm J_0o P ) 1Im2 — Ttm _am"m—l_z1gt§k,t¢m atn, P ;
oo
Wims = nm fm MpdQ.
Here
T T
Q:=P(S,, -1+ Z Sn, < u, max  X,; < —,  max max X;; < —4)
1<j<nm,—1 V* 1<I<kl#Fm 1<j<n; v
1<t<k,t#m
T
Mp:=Plx—u<Xpmpn, <ct—u+T,Xmnn, > F)

We start to consider Wy,,1. Obviously, as v < —amp,,—1— > ain, < 0, for sufficiently

1<t<k,t£m
large z, we have x —u >z > 5. Thus, for large enough z, we get

Wimi < nmsup P(z < X, <2+ T)Q1 < np T sup frn(w)Q1 < np, TC frn () Q1.

z>T z2>T

here Q1 := P(Sp,,—1 + Z1gt§k,t¢m Spy S —Gmn,,—1 — Elgtgk,t;ém Qtn, )
The last inequality and C' follow from the definition of almost decreasing function. By

construction of the sequences a,y,,, we can obtain that W7 — 0 as n; — o0, 4 =1,2,...,k. So,
we have

k

Z Wlml

lim sup  — m=1 =0. (6)
n1,M2,...,NE—00 >A(k
A0S L T fon ()
m=1

Now, we consider Wims. Wims < @ = nmP(S’nm,l + Z1gt§k,t¢m Snt > ex). Using (1) and
(2), we have

P(Snm_1 + > Sn, > ex)

1<t<k,t£m

k
2:21 fm(ex)

— 0. (7)

lim sup
n1,MN2,...,M—00 QfZA(k)
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By the fact that

Wims
sup ——mM
z>A(k) Zlanfm(x)
P(Sn, -1+ X Sp >ex)
1 1<t<kt£m fm(ex) [s(ex) fs(x)
=T .5 — 2, (7 AR N v @)
m=1

According to Proposition 2.1, the fact limsup,_, . fj(z)/fi(z) < 0o, 1 <14,j < k and (7), we get
that

lim sup ! =0. (8)

ni,n2,...,NE—00 zZA(k)

Next, we show

k
> Wime
lim inf inf m=1 > 1, 9)
N1yeeny nk—0o0 z>A(k) k _
Z L manfm(x)
m=1
k
> Wime
hm sup sup % m=1 S 1 (10)
ni,..npg—00 z>A(k) Z L}i_manfm(x)
m=1

Now we deal with the lower bound. Denote

A ::{ — Gmn,, -1 — Z Gtn, < Sp,,—1+ Z S, < ex,

1<t<k,t#m 1<t<k,t#£m
x x
max Xp; < —» _ax max X;; < <
1<j<nm—1 v 1<i<hk l#m 1< <n v
Since ampn,, /Mm — 0 as n, — oo, for any fixed 0 < & < 1, and sufficiently large nq,...,ng, we
get amn,,—1 < €N < %, Gmn,, < ENm < % Thus, for large nq,...,n, and z > A(k), we have

that in B = ((1 — €)@, % + Gmn, -1 + Do1<pcp pozm Un,)s Wima satisfies

Wime = nm P(A) in}fB Plu< Xmn,, <u+T), (11)
ue
where
u+T
inf Plu< Xpn, <u+T)> inf / m(z)dz > T inf m(u) (12
ueB ( m ) (1—s)z<u§(1+%)m w f ( ) (l—é)xguf(l-i-é):cf ( ) ( )

T 2k
with & = max{2e, == }.
Besides that
P(A) ZP(Snm—l + Z Snt > —QAmn,,—1 — Z atnt) - 1+

1<t<k,t#m 1<t<k,t#m

x T
P( max  Xp,; < —,  max max X;; < —4>7
1<j<n;,—1 U 1<ISk I#Fm 1<j<n; v
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P(S’nm,1 + Z Snt > &r).
1<t<k,t#m
Here, by construction of the sequences am,y,,, we obtain that
lim P(Snmfl + Z Snf, > —Qmn,,—1 — Z atnt) =1.
N1,M2,... N —> 0O
1<t<k,t#m 1<t<k,t#m

For > A(k) and sufficiently large ni,na, ..., ng, we have

k
P( max X, < %, max max Xj; < ﬁ) > H (17Fm(£)) "

1<j<nm—1 v4 7 1<i<k, l#m 1< <n, vt et vt
k k 4
- T C,, v
= H (1 B ;Fm(ﬁ)) 2 H (1 B 5 x’“mﬂ)
m=1 m=1
Hence, we obtain that
. x T
lim P( max Xp,; < —, max max X;; < —) =1.
N1,M2,ee =00 1<j<nm—1 vt 1<i<k,l#m 1<<n, vt
Obviously, using (7), we get that
lim sup P(Sn, 1+ Z Sy, >ex)=0.
TR0 2> A(K) 1<t<k,t#m
Then,
lim inf inf P(A)=1.
ni,ng,...,nEg—00 x>A(k)
Combining (11), (12) and (13), we get that for every € € (0,1),
k k
W T inf
. . mz::1 2 . mZ::1 fim (1—5)3?SH1}§(1+€)3: Jm(u)
lim inf inf > liminf
MN1yeeny ng—00 wZA(k) k _ T—00 k _
> Lfmanfm(x) > Lfmanfm(a:)
m=1 m=1
According to the definition of L , we obtain (9).
Next, for the upper bound, we have that
Wima < npsup Plu < Xpp,, <u+T) <ng,T sup fm(2).
u€EB (1-8)x<z<(1+48)x

From the argument above and the fact that f is almost decreasing, we have (10).
Combining (6), (8), (9) and (10), we get that
Wi Wi

lim inf inf >1, limsup sup <1.

N1, NEp—00 £ >A(k)

k _ N1y —00 2 >A(k k
X L7, T fn(2) LTk 00 22 A( )mzd LE T fm(@)

Combining (3), (5) and (14) completes the proof in the case of u; =0, i =1,... k.
Next, we deal with the case that p; #0, i =1,..., k. For any € € (0,1), we have

sup fi(z + pq) sup fi(2)
. (1-e)z<z<(1+e)z . (1—-2¢)y<z'<(1+2e)y
lim sup < lim sup

x—00 fz(x +,Ui) y—00 fi(y) 7

247

(13)

(14)
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inf : . inf i 2
.. (lfe)z%ES(IJrs)x filz + ) o (1-20)y<2 <(142e)y filz)
lim inf > lim inf

z—00 filx + ps) y—oo fi(y)
Obviously, using the relations above, we obtain the desired result. O
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