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1. Introduction

Throughout this paper, all rings are associative with identity and all modules are unitary.

Denote by MR(RM) a right(left) R-module, and by Rm×n the set of all m× n matrices over R.

We write N ≤ M when N is a submodule of M . For A ∈ Rm×n, AT denotes the transpose of

A. We write Rn = R1×n, Rn = Rn×1. If X ∈ Rn, Y ∈ Rn, C ∈ Rn×n, define rRn(X) = {s ∈
Rn : Xs = 0}, lRn(Y ) = {s ∈ Rn : sY = 0}, lRn(C) = {s ∈ Rn : sC = 0}. For singletons

{x} and {a}, we abbreviate to rR(x) and lR(a). As usual, J(R), N(R), Z(RR), Soc(RR) denote

the Jacobson radical, the set of nilpotent elements, the right singular ideal, the right socle of R,

respectively. N |M denotes that N is a direct summand of M .

It is known to all that generalizations of injectivity have been discussed in many papers. R

is called a P -injective ring [1], if every right R-homomorphism from aR to R can be extended

to an endomorphism of R, where a ∈ R. In [2], P -injective rings were extended to AP -injective

rings and AGP -injective rings. A ring R is called right AP -injective, if, for any a ∈ R, there

exists a left ideal Xa of R such that lr(a) = Ra ⊕Xa. A ring R is called right AGP -injective,

if, for any 0 ̸= a ∈ R, there exists a positive integer n = n(a) and a left ideal Xa of R such

that an ̸= 0 and lr(an) = Ran ⊕ Xa. Clearly, AP -injectivity and AGP -injectivity are the

generalizations of P -injectivity, and they have many meaningful properties [2]. In [3], a ring R

is called PS-injective, if every R-homomorphism f : I → R, for every principally small right

ideal I, can be extended to R. In [4], PS-injectivity was extended to APS-injectivity. A ring
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R is called right APS-injective if, for any a ∈ J(R), there exists a left ideal Xa of R such that

lr(a) = Ra ⊕Xa. In [5], a ring R is called right nil-injective, if, for any a ∈ N(R), lr(a) = Ra.

A ring R is called right wnil-injective, if for any a ∈ N(R), there exists a positive integer n such

that an ̸= 0 and lr(an) = Ran. In [6], nil n-injectivity has been studied. A ring R is called

right nil n-injective, if for any α ∈ Rn such that lRnrRn(α) = Rα, where every component of α

is nilpotent. So, in this paper, we study the almost wnil-injectivity and almost nil n-injectivity

which are the generalizations of nil-injectivity.

In the second section, we prove that: (1) Let R be a ring. For any 0 ̸= a ∈ N(R), there

exists a positive integer n and a left ideal Xan of R such that an ̸= 0 and lr(an) = Ran ⊕Xan

⇔ for any 0 ̸= a ∈ N(R), b ∈ R, there exists a positive integer n such that (ab)n ̸= 0 and

l(bR∩ r((ab)n−1a)) = (X(ab)n : b)l+R(ab)n−1a with ab ∈ N(R), and (X(ab)n : b)l∩R(ab)n−1a ⊆
l(b), where (X(ab)n : b)l = {x ∈ R : xb ∈ X(ab)n}; (2) If R is a commutative ring whose

every simple singular right R-module is almost wnil-injective, then J(R) ∩ N(R) = 0; (3) If

aR, a ∈ N(R) is a commutative right almost wnil-injective ring, then R is right noetherian ⇔ R

is right artinian.

In the third section, we prove that: (1) If Mn(R) is right almost wnil-injective, and R has

no non-zero zero divisor except nilpotent elements, then R is right almost nil n-injective; (2) If

R ∝ R is right almost wnil-injective, then R is right AP -injective.

2. Almost wnil-injective rings

We begin with the following definition.

Definition 2.1 A moduleMR is called right almost wnil-injective, if for any 0 ̸= a ∈ N(R), there

exists a positive integer n and an S-submodule Xa such that an ̸= 0 and lMrR(a
n) = Man⊕Xan .

If RR is an almost wnil-injective module, then we call R a right almost wnil-injective ring.

Similarly, we can define a left almost wnil-injective ring.

In [7], almost nil-injective rings are defined and studied. A ring R is called almost nil-

injective [7], if for any k ∈ N(R), there exists an S-submodule Xk of M such that lMrR(k) =

Mk ⊕Xk as left S-modules. Obviously, almost nil-injective rings are almost wnil-injective. Of

course, AP -injective rings and AGP -injective rings are also almost wnil-injective.

Example 2.2 The three examples of [2, Example 1.5(1)] are almost nil-injective, but they are

not nil-injective (or wnil-injective).

Theorem 2.3 Let R be a commutative right almost wnil-injective ring. Then the following

statements hold.

(1) J(R) ∩N(R) ⊆ Z(RR) ∩N(R).

(2) Soc(RR) ⊆ r(J).

Proof Let a ∈ N(R)∩J(R). If a /∈ Z(RR), then r(a)∩I = 0 for some 0 ̸= I ⊆ RR. Take an s ∈ I

such that as ̸= 0. Since R is commutative, as ∈ N(R). Then there exists a positive integer n

and a left ideal X(as)n of R such that (as)n ̸= 0 and lr((as)n) = R(as)n⊕X(as)n . For any x ∈ R,
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if (as)nx = 0, then s(as)n−1x ∈ r(a) ∩ I = 0, implying rR((as)
n) = rR(s(as)

n−1). Note that

s(as)n−1 ∈ lr(s(as)n−1) = lr((as)n) = R(as)n⊕X(as)n . Write s(as)n−1 = d(as)n+y, y ∈ X(as)n ,

then (1−da)s(as)n−1 = y, and so s(as)n−1 = (1−da)−1y. Then (as)n = a(1−da)−1y ∈ X(as)n ,

a contradiction. Hence J(R) ∩N(R) ⊆ Z(RR) ∩ J(R).

(2) Let tR ⊆ R be simple. Suppose jt ̸= 0 for some j ∈ N(R). Then r(jt) = r(t). Since R is

right almost wnil-injective and (jt)2 = 0, there is a left ideal Xjt such that lr(jt) = R(jt)⊕Xjt.

Note that t ∈ lr(jt). Write t = rjt+x, where x ∈ Xjt. Then (1− rj)t = x, so t = (1− rj)−1x ∈
Xjt. This means that jt ∈ Xjt, a contradiction. �

Corollary 2.4 Let R be commutative semiperfect and right almost wnil-injective. Then J(R)∩
N(R) = Z(RR) ∩N(R).

Proof Since R is semiperfect, Z(RR) + Z(RR) ⊆ J(R) by [8, Lemma 2]. Then Z(RR) ∩
N(R) +Z(RR) ∩N(R) ⊆ J(R)∩N(R), so Z(RR)∩N(R) ⊆ J(R) ∩N(R). By Theorem 2.3(1),

J(R) ∩N(R) = Z(RR) ∩N(R). �

Theorem 2.5 If R is right almost wnil-injective, so is eRe for all e2 = e ∈ R satisfying

ReR = R.

Proof Write S = eRe, and let k ∈ N(S), so k ∈ N(R). By the assumption, there exists

a positive integer n and a left ideal Xkn of R such that kn ̸= 0 and lr(kn) = Rkn ⊕ Xkn .

It is easy to see that elr(kn) = lSrS(k
n), eRkn = eRekn and eX is a left ideal of eRe, then

lSrS(k
n) = (eRe)kn ⊕ eXkn , so eRe is right almost wnil-injective. �

Remark 2.6 The condition that ReR = R in Theorem 2.5 is needed. Let F be a field,

R =



F F 0 0 0 0

0 F 0 0 0 0

0 0 F F 0 0

0 0 0 F 0 0

0 0 0 0 F F

0 0 0 0 0 F


.

By [9, Example 9], R is a QF -ring, then R is right almost wnil-injective. Let e = e11 + e22 +

e44 + e55 be a sum of canonical matrix units. Then e is an idempotent of R such that ReR ̸= R

and eRe ∼= S =

(
F F

0 F

)
. Then S is not right almost wnil-injective. In fact, for any

d̄ =

(
0 d

0 0

)
∈ N(S), by [4, Remark 2.17], there does not exist a left ideal X of S such that

lSrS(d̄) = Sd̄⊕X.

Corollary 2.7 If the matrix ring Mn(R) over a ring R is right almost wnil-injective (n ≥ 1),
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then so is R.

Proof Suppose S = Mn(R) is right almost wnil-injective. Since Se11S = S and R ∼= e11Se11,

R is right almost wnil-injective by Theorem 2.5, where eij is the matrix unit. �

Theorem 2.8 The following conditions are equivalent for a ring R.

(1) For any 0 ̸= a ∈ N(R), there exists a positive integer n and a left ideal Xan of R such

that an ̸= 0 and lr(an) = Ran ⊕Xan .

(2) For any 0 ̸= a ∈ N(R), b ∈ R, there exists a positive integer n such that (ab)n ̸= 0 and

l(bR∩ r((ab)n−1a)) = (X(ab)n : b)l+R(ab)n−1a with ab ∈ N(R), and (X(ab)n : b)l∩R(ab)n−1a ⊆
l(b), where (X(ab)n : b)l = {x ∈ R : xb ∈ X(ab)n}.

Proof (1)⇒(2). For any a ∈ N(R), b ∈ R with ab ∈ N(R), by (1), there exists a positive integer

n and a left ideal Xan of R such that lr((ab)n) = R(ab)n ⊕X(ab)n . Let x ∈ l(bR ∩ r((ab)n−1a)).

Then r((ab)n) ⊆ r(xb) and so xb ∈ lr(xb) ⊆ lr((ab)n) = R(ab)n ⊕X(ab)n . Write xb = t(ab)n + y,

where t ∈ R, y ∈ X(ab)n . Then (x−t(ab)n−1a)b = y ∈ X(ab)n . Hence x−t(ab)n−1a ∈ (X(ab)n : b)l.

It follows that x ∈ (X(ab)n : b)l + R(ab)n−1a. Obviously, R(ab)n−1a ⊆ l(bR ∩ r((ab)n−1a)). If

y ∈ (X(ab)n : b)l, then yb ∈ X(ab)n ⊆ lr((ab)n). Let bs ∈ bR ∩ r((ab)n−1a). Then (ab)ns = 0.

Hence ybs = 0 since yb ∈ lr((ab)n). This follows that y ∈ l(bR ∩ r((ab)n−1a)). We have proved

that l(bR ∩ r((ab)n−1a)) = (X(ab)n : b)l + R(ab)n−1a. If s(ab)n−1a ∈ (X(ab)n : b)l ∩ R(ab)n−1a,

then s(ab)n ∈ X(ab)n ∩R(ab)n, showing that s(ab)n = 0. Hence s(ab)n−1a ∈ l(b).

(2)⇒(1). Let b = 1. �

In [10], a ring R is π-N-regular, if for any 0 ̸= a ∈ N(R), there exists a positive integer n

and b ∈ R such that an ̸= 0, and an = anban.

Theorem 2.9 Let R be a right nonsingular right almost wnil-injective ring, and l(I ∩ K) =

l(I) + l(K), where I and K are any right ideals of R. Then R is π-N-regular.

Proof For any 0 ̸= a ∈ N(R), since R is right almost wnil-injective, there exists a positive

integer n and a left ideal of R such that an ̸= 0, and lr(an) = Ran ⊕ Xan . Because R is

right nonsingular, r(an) is not essential in R. So there exists a nonzero right ideal L such

that r(an) ⊕ L is essential in R. By the assumption, l(r(an)) + l(L) = l(r(an) ∩ L) = R,

and lr(an) ∩ l(L) ⊆ l(r(an) + L). For any x ∈ l(r(an) + L), then x(r(an) + L) = 0, i.e.,

r(an) + L ⊆ r(x) ⊆ R, thus r(x) is essential in R, so x = 0 since R is right nonsingular.

Therefore lr(an) ∩ l(L) ⊆ l(r(an) + L) = 0, thus R = l(r(an)) ⊕ l(L) = anR ⊕ Xan ⊕ l(L),

so anR is a direct summand of R. Let anR = eR, e2 = e ∈ R. Then e = anr, r ∈ R, and

an = ean = anran, so R is π-N-regular. �

Recall that R is a right quasi-duo ring [11], if every maximal right ideal of R is a two-sided

ideal.

Theorem 2.10 Let R be a ring such that every simple right R-module is almost wnil-injective.

If R is right quasi duo, then R is reduced.
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Proof Let a2 = 0. Then a ∈ N(R). Suppose a ̸= 0. Then there exists a maximal right ideal M

of R containing r(a). Thus R/M is right almost wnil-injective, so l(R/M)rR(a) = (R/M)a⊕X.

Let f : aR → R/M be defined by f(ar) = r+M . Note that f is a well-defined R-homomorphism.

Thus f(a) = ca+M+x, c ∈ R, x ∈ X, and f(a) = 1+M , so (1−ca)+M = x ∈ (R/M)∩X = 0.

Since R is right quasi-duo, ca ∈ M . Hence 1 ∈ M , which is a contradiction. Therefore, a = 0, R

is reduced. �

Theorem 2.11 Let R be a ring. If every simple right R-module is almost wnil-injective, then

R is semiprime.

Proof Assume that a ∈ R such that aRa = 0. Then RaR ⊆ r(a). If a ̸= 0, then there exists

a maximal right ideal M containing r(a). By hypothesis, R/M is almost wnil-injective. Hence

lR/MrR(a) = (R/M)a⊕Xa. Define f : aR → R/M by f(ar) = r+M . Note that f is well-defined.

So there exists a c ∈ R such that 1 + M = f(a) = ca + M + x, where c ∈ R, x ∈ Xa. Hence

1 − ca +M = x ∈ (R/M) ∩Xa = 0, which implies 1 − ca ∈ M . Since ca ∈ RaR ⊆ r(a) ⊆ M ,

1 ∈ M , which is a contradiction. So a = 0 and then R is a semiprime ring. �
In [5], a ring R is callled n-regular if a ∈ aRa for all a ∈ N(R).

Theorem 2.12 If R is right quasi duo, then the following statements are equivalent.

(1) Every right R-module is almost wnil-injective.

(2) Every cyclic right R-module is almost wnil-injective.

(3) Every simple right R-module is almost wnil-injective.

(4) Every nilpotent element of R is strongly regular.

(5) R is n-regular.

Proof Obviously, (1)⇒(2)⇒(3) and (4)⇒(5). (5)⇒(1) is easy by [5, Theorem 2.18]. Thus it

remains to prove that (3) implies (4). By Theorem 2.10, R is reduced. For any 0 ̸= a ∈ N(R),

we will show that aR+ r(a) = R. Suppose not. Then there exists a maximal right ideal K of R

containing aR+r(a). Since R/K is right almost wnil-injective, l(R/K)rR(a) = (R/K)a⊕Xa. Let

f : aR → R/K be defined by f(ar) = r +K. Note that f is a well-defined R-homomorphism.

Thus f(a) = ca+K+x, c ∈ R, x ∈ Xa, and f(a) = 1+K, and so 1−ca+K = x ∈ (R/K)∩Xa = 0,

1 − ca ∈ K. Since R is right quasi-duo, ca ∈ K, thus 1 ∈ K, which is a contradiction. Hence

aR+ r(a) = R. So R is strongly regular. �

Corollary 2.13 If R is right quasi-duo, then the following statements are equivalent.

(1) R is n-regular.

(2) Every right R-module is almost nil-injective.

(3) Every cyclic right R-module is almost nil-injective.

(4) Every simple right R-module is almost nil-injective.

(5) Every right R-module is almost wnil-injective.

(6) Every cyclic right R-module is almost wnil-injective.

(7) Every simple right R-module is almost wnil-injective.



Generalizations of nil-injective rings 283

(8) Every right R-module is nil-injective.

(9) Every cyclic right R-module is nil-injective.

(10) Every simple right R-module is nil-injective.

Theorem 2.14 If R is a ring whose every simple singular right R-module is almost wnil-injective,

then J(R) ∩ Z(RR) contains no nonzero nilpotent elements.

Proof Take any b ∈ J(R) ∩ Z(RR) with b2 = 0. If b ̸= 0, then RbR + r(b) is an essential

right ideal of R. We will show that RbR + r(b) = R. If not, there exists a maximal right

ideal M of R containing RbR + r(b). By assumption, R/M is right almost wnil-injective, and

l(R/M)rR(b) = (R/M)b⊕Xb. Let f : bR → R/M be defined by f(br) = r +M . Then 1 +M =

f(b) = cb+M + x, 1− cb+M = x ∈ (R/M) ∩Xb = 0, thus 1− cb ∈ M , since cb ∈ M , 1 ∈ M ,

which is a contradiction. Hence RbR+ r(b) = R, and thus b = bd, d ∈ RbR ⊆ J(R). This implies

b = 0, which is a required contradiction. �

Corollary 2.15 If R is a commutative ring whose every simple singular right R-module is

almost wnil-injective, then J(R) ∩N(R) = 0.

Proof By Theorem 2.3, J(R)∩N(R) ⊆ J(R)∩Z(RR), so J(R)∩N(R) = J(R)∩Z(RR)∩N(R).

By Theorem 2.14, J(R) ∩ Z(RR) ∩N(R) = 0, hence J(R) ∩N(R) = 0. �

Theorem 2.16 Let R be a commutative right almost wnil-injective ring. For any a ∈ N(R), b ∈
R, aR ⊆ bR|R, then aR is a direct summand of R.

Proof Let a ∈ N(R) such that a ∈ bR = eR, where e = e2, and that σ : aR → bR is an

R-isomorphism. We want to show that aR is a direct summand of R. There exists c ∈ R such

that σ(ac) = e and hence acR = aR. Since R is commutative, ac ∈ N(R). Hence there exists a

positive integer n such that (ac)n ̸= 0 and lr((ac)n) = R(ac)n ⊕X(ac)n for some left ideal X(ac)n

of R. We write (ac)0 = e and we have σ((ac)i+1R) = σ(ac)(ac)iR = e(ac)iR = (ac)iR for i =

0, 1, . . . , n − 1. This implies that (ac)iR|(ac)i−1R ⇔ σ((ac)i+1R)|σ((ac)iR) ⇔ (ac)i+1R|(ac)iR
for i = 1, 2, . . . , n− 1. Therefore, we have acR|eR ⇔ (ac)2R|acR ⇔ · · · ⇔ (ac)nR|(ac)n−1R. So,

to show (ac)R|R, it suffices to show that (ac)nR|R. We note that (ac)nR ∼= (ac)n−1R ∼= · · · ∼=
aR ∼= eR, that is to say σn : (ac)nR → eR is an isomorphism, and σn((ac)n) = e. Then we can

conclude that (ac)nR is a direct summand of R by [9, Theorem 2.8]. �

Recall that a ring R is right GC2 (see [12]), if every right ideal that is isomorphic to R is

itself a direct summand of R.

Corollary 2.17 If R = aR, a ∈ N(R), and R is a commutative almost wnil-injective ring, then

J(R) = Z(RR).

Proof By Theorem 2.16, R is right GC2, so Z(RR) ⊆ J(R) by [12, Proposition 2.6]. By the

proof of Theorem 2.3, J(R) ⊆ Z(RR). Hence J(R) = Z(RR). �

Corollary 2.18 If R = aR, a ∈ N(R), and R is a commutative almost wnil-injective ring:
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(1) If RR has finite Goldie dimension, then R is semilocal;

(2) R is right noetherian if and only if R is right artinian.

Proof (1) By Theorem 2.16, RR satisfies GC2. Since RR has finite Goldie dimension, it is

semilocal by [13, Lemma 1.1].

(2) Let R be right noetherian. Then R is semilocal by (1). Further, since R has ACC on

right annihilators, Z(RR) is nilpotent by [14, Lemma 3.29]. By Corollary 2.17, J(R) = Z(RR).

Hence R is right noetherian and semiprimary, and therefore R is right artinian. The converse is

clear. �

Lemma 2.19 If R = aR, a ∈ N(R), and R is a commutative almost wnil-injective ring. If

b /∈ J(R), then the inclusion r(b) ⊂ r(b− bdb) is strict for some d ∈ R.

Proof By Corollary 2.17, r(b) is not essential in RR, and so there exists a nonzero right ideal

I of R such that r(b) ⊕ I is essential in RR. Take 0 ̸= c ∈ I, then bc ̸= 0. It is easy to see

that bc ∈ N(R), and there exists a positive integer n and a left ideal X(bc)n of R such that

(bc)n ̸= 0 and lr((bc)n) = R(bc)n ⊕ X(bc)n . We claim that r((bc)n) = r(c(bc)n−1). In fact,

if (bc)nx = 0, then c(bc)n−1x ∈ r(b) ∩ I = 0, so r((bc)n) ⊆ r(c(bc)n−1). Thus, c(bc)n−1 ∈
lr(c(bc)n−1) = lr((bc)n) = R(bc)n ⊕ X(bc)n . Hence there exists d ∈ R, y ∈ X(bc)n such that

c(bc)n−1 = d(bc)n + y, bc(bc)n−1 = bd(bc)n + by, (1− bd)(bc)n = by ∈ R(bc)n ∩X(bc)n = 0, then

c(bc)n−1 ∈ r(b− bdb), and (bc)n ̸= 0, c(bc)n−1 /∈ r(b). So r(b) ⊂ r(b− bdb) is strict. �

Theorem 2.20 Let R = aR(a ∈ N(R)) be a commutative almost wnil-injective ring. Then the

following statements are equivalent.

(1) R is right perfect;

(2) The ascending chain r(a1) ⊆ r(a2a1) ⊆ r(a3a2a1) ⊆ · · · terminates for every sequence

{a1, a2, . . .} ⊆ R.

Proof By Lemma 2.19 and [15, Theorem 3.11], it is easy to be proved. �

3. Almost nil n-injective rings

In [6], a ring R is called right nil n-injective, if lRnrRn(α) = Rα for any α = (a1, a2, . . . , an),

where a1, a2, . . . , an ∈ N(R). Hence we give the following definition.

Definition 3.1 A ring R is called right almost nil n-injective, if for any α = (a1, a2, . . . , an),

lRnrRn(α) = Rα⊕Xα, where a1, a2, . . . , an ∈ N(R), Xα is a left ideal of R.

Lemma 3.2 Let MR be a module, S = EndR(R) and α ∈ R and every component of α be

nilpotent.

(1) If lRnrRn(α) = Rα⊕Xα for some Xα ⊆ Rn as left S-modules, then HomR(αR
n, R) =

HomR(R,R)⊕ Γ as left S-modules, where Γ = {f ∈ HomR(αRn, R) : f(α) ∈ Xα}.
(2) If HomR(αRn, R) = HomR(R,R)⊕ Y as left S-modules, then lRnrRn(α) = Rα⊕X as

left S-modules, where X = {f(α) : f ∈ Y }.
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(3) Rα is a direct summand of lRnrRn(α) as left S-modules if and only if HomR(R,R) is a

direct summand of HomR(αRn, R) as left S-modules.

Proof The proof is similar to that of [2, Lemma 1.2]. �

Theorem 3.3 If Mn(R) is right almost wnil-injective, and R has no non-zero zero divisor except

nilpotent elements, then R is right almost nil n-injective.

Proof Let I = a1R + · · · + anR, where ai ∈ N(R), and write A =


a1 a2 · · · an

0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

.

Then A is nilpotent. Since Mn(R) is right almost wnil-injective, there is a positive integer m

such that Am ̸= 0, and lr(Am) = Mn(R)Am ⊕XAm . Let

Γ = {α ∈ HomR(I,R) :


α(a1) · · · α(an)

0 · · · 0

· · · · · · · · ·
0 · · · 0

 ∈ XAm}.

It can be verified that Γ is a left R-submodule of HomR(I,R). We claim that HomR(I,R) =

HomR(R,R)⊕Γ. In fact, for any α ∈ HomR(I,R), write B =


α(a1) · · · α(an)

0 · · · 0

· · · · · · · · ·
0 · · · 0

. Suppose

AmX = 0, for X = (aij) ∈ Mn(R). Since AmX =


am−1
1 (a1x11 + a2x21 + · · ·+ anxn1) · · · am−1

1 (a1x1n + a2x2n + · · ·+ anxnn)

0 · · · 0

· · · · · · · · ·
0 · · · 0

,

a1x11 + a2x21 + · · ·+ anxn1 = 0, . . . , a1x1n + a2x2n + · · ·+ anxnn = 0. It follows that BX = 0.

Hence B ∈ lr(Am) = Mn(R)Am⊕XAm . Write B = (cij)A
m+(dij), where (cij) ∈ Mn(R), (dij) ∈

XAm . Let β : R → R by β(r) = c11a
m−1
1 r and γ : I → R by γ(a1r1 + · · · + anrn) =

d11r1 + · · · + dnnrn. Then β ∈ HomR(R,R) and α = β + γ. Note that


d11 · · · d1n

0 · · · 0

· · · · · · · · ·
0 · · · 0

 =
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
1 · · · 0

0 · · · 0

· · · · · · · · ·
0 · · · 0

(dij) ∈ XAm . So γ ∈ Γ. thus HomR(I,R) = HomR(R,R) + Γ. Suppose

γ ∈ Γ ∩ HomR(R,R). Then there exists c1 ∈ R such that (γ(a1), . . . , γ(an)) = (c1, 0, . . . , 0)A
m.

Therefore,


γ(a1) · · · γ(an)

0 · · · 0

· · · · · · · · ·
0 · · · 0

 =


c1 0 · · · 0

0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

Am ∈ Mn(R)Am ∩ XAm = 0.

Therefore HomR(I,R) = HomR(R,R)⊕Γ. Then by Lemma 3.2, R is right almost nil n-injective.

�

In Theorem 3.3, let n = 1. We have the following corollary.

Corollary 3.4 Assume that R has no non-zero zero divisor except nilpotent elements, then R

is right almost wnil-injective if and only if R is right almost nil-injective.

Theorem 3.5 Let R be a commutative ring and n ≥ 1. If Mn(R) is right almost nil-injective,

then for any right R-module I = α1R+ α2R+ · · ·+ αnR, where αi ∈ Rn and every component

of αi (i = 1, 2, . . . , n) is nilpotent, HomR(R
n, R) is a direct summand of HomR(I,R).

Proof Let S = Mn(R) and let I = α1R + · · · + αnR, where αi ∈ Rn and every component

of αi (i = 1, 2, . . . , n) is nilpotent. Write ((α1)
T , . . . , (αn)

T ) = A. Since R is commutative,

A ∈ N(S). By hypothesis, we have lSrS(A) = SA⊕XA for some left ideal XA of S. Let

Γ = {f ∈ HomR(I,R) :


f(α1) · · · f(αn)

0 · · · 0

· · · · · · · · ·
0 · · · 0

 ∈ XA}.

It is easy to verify that Γ is a left R-submodule of HomR(I,R). We claim that HomR(I,R) =

HomR(R
n, R)⊕Γ as leftR-modules. In fact, for any g ∈ HomR(I,R), writeB =


g(α1) · · · g(αn)

0 · · · 0

· · · · · · · · ·
0 · · · 0

.

Then B ∈ lSrS(A), and hence B = (cij)A + (dij), where (cij) ∈ S and (dij) ∈ XA. Let

h : Rn → R,
∑n

i=1 eiri 7→
∑n

i=1 c1iri, where ei is the standard basis of Rn over R, and let
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k : I → R,
∑n

i=1 αiri 7→
∑n

i=1 d1iri. Then g = h + k. Note that


d11 · · · d1n

0 · · · 0

· · · · · · · · ·
0 · · · 0

 =


1 · · · 0

0 · · · 0

· · · · · · · · ·
0 · · · 0

(dij) ∈ XA. So k ∈ Γ. Therefore, we have HomR(I,R) = HomR(R
n, R) + Γ.

Suppose l ∈ HomR(R
n, R)∩Γ. Then there exists (c1, . . . , cn) ∈ Rn such that (l(α1), . . . , l(αn)) =

(c1, . . . , cn)A. Thus,


l(α1) · · · l(αn)

0 · · · 0

· · · · · · · · ·
0 · · · 0

 =


c1 · · · cn

0 · · · 0

· · · · · · · · ·
0 · · · 0

A ∈ SA ∩ XA = 0. There-

fore, HomR(I,R) = HomR(R
n, R)⊕ Γ. �

Let R be a ring and M a bimodule over R. The trivial extension of R and M is R ∝
M = {(a, x) : a ∈ R, x ∈ M} with addition defined componentwise and multiplication defined

by (a, x)(b, y) = (ab, ay + xb). In fact, R ∝ M is isomorphism to the subring {

(
a x

0 a

)
: a ∈

R, x ∈ M} of the formal 2× 2 upper triangular matrix ring

(
R M

0 R

)
.

Theorem 3.6 Let R be a ring. If R ∝ R is right almost wnil-injective, then R is right AP -

injective.

Proof Let S = R ∝ R. For any 0 ̸= a ∈ R, (0, a)(0, a) = (0, 0), so (0, a) ∈ N(S). Since S is right

almost wnil-injective, there exists a left ideal X(0,a) of S such that lSrS(0, a) = S(0, a)⊕X(0,a).

For any (b, c) ∈ lSrS(0, a), rS(0, a) ⊆ rS(b, c). Since (0, 1) ∈ rS(0, a), 0 = (b, c)(0, 1) = (0, b),

showing b = 0. If (m,n) ∈ S(0, a), then m = 0 by [4, Corollary 3.3]. So X(0,a) = 0 ∝ Xa, where

Xa is a left ideal of R. By [4, Proposition 3.1], lRrR(a) = Ra ⊕ Xa, proving that R is right

AP -injective. �

Corollary 3.7 Let R be a ring. If R ∝ R is right almost nil-injective, then R is right AP -

injective.
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