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Abstract Let G be a connected graph on n vertices with chromatic number k, and let ρ(G)

be the distance signless Laplacian spectral radius of G. We show that ρ(G) ≥ 2n+ 2⌊n
k
⌋ − 4,

with equality if and only if G is a regular Turán graph.
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1. Introduction

Let G be a connected simple graph with vertex set V (G) and edge set E(G). The distance

between two vertices u, v of G, denoted by duv, is defined as the length of the shortest path

between u and v in G. The distance matrix of G, denoted by D(G), is defined by D(G) =

(duv)u,v∈V (G). The transmission Tr(v) of a vertex v is defined to be the sum of the distances

from v to all other vertices in G, i.e., Tr(v) =
∑

u∈V (G) duv. The distance matrix is very useful

in different fields, including the design of communication networks [1], graph embedding theory

[2–4] as well as molecular stability [5, 6]. Balaban et al. [7] proposed the use of the distance

spectral radius as a molecular descriptor. Gutman et al. [8] used the distance spectral radius

to infer the extent of branching and model boiling points of an alkane. Therefore, maximizing

or minimizing the distance spectral radius over a given class of graphs is of great interest and

significance. Recently, the maximal (minimal) distance spectral radius of a given class of graphs

has been studied extensively [9–18].

Similarly to the Laplacian or signless Laplacian of graphs, Aouchiche and Hanse [19] defined

the distance Laplacian of a connected graph G as the matrix DL(G) = Diag(Tr)−D(G), where
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Diag(Tr) denotes the diagonal matrix of the vertex transmissions in G. Along this line, they

[20] defined the distance signless Laplacian of a connected graph G to be DQ(G) = Diag(Tr) +

D(G). Since DQ(G) is symmetric, its eigenvalues are all real. In addition, as DQ(G) is positive,

by Perron-Frobenius Theorem, the spectral radius ρ(G) of DQ(G), called the distance signless

Laplacian spectral radius of G, is exactly the largest eigenvalue of DQ(G) with multiplicity one;

and there exists a unique (up to a multiple) positive eigenvector corresponding to this eigenvalue,

called the Perron vector of DQ(G).

Recall that the chromatic number of a connected graph G is the smallest number of colors

needed to color the vertices of G such that any two adjacent vertices have different colors. A

subset of vertices assigned to the same color is called a color class; every such class forms an

independent set. The Turán graph Tn,k is a complete k-partite graph on n vertices for which the

numbers of vertices of vertex classes are as equal as possible.

In this paper we prove that Tn,k is the unique graph with minimum distance signless Lapla-

cian spectral radius in the class of simple connected graphs with n vertices and chromatic number

k, and give an lower bound of distance signless Laplacian spectral radius of graphs in terms of

chromatic number.

2. Main results

Given a graph G on n vertices, a vector x ∈ Rn is considered as a function defined on G, if

there is a 1-1 map φ from V (G) to the entries of x; simply written xu = φ(u) for each u ∈ V (G).

If x is an eigenvector of DQ(G), then it is naturally defined on V (G), i.e., xu is the entry of x

corresponding to the vertex u. One can find that

xTDQ(G)x =
∑

{u,v}⊆V (G)

duv(xu + xv)
2, (2.1)

and λ is an eigenvalue of DQ(G) corresponding to the eigenvector x if and only if x ̸= 0 and

[λ− Tr(v)]xv =
∑

u∈V (G)

duvxu, for each vertex v ∈ V (G). (2.2)

In addition, for an arbitrary unit vector x ∈ Rn,

xTDQ(G)x ≤ ρ(G), (2.3)

with the equality holding if and only if x is a Perron vector of DQ(G).

Let e = uv be an edge of G such that G − e is also connected. The removal of e does not

decrease distance, while it does increase the distance by at least one distance, as the distance

between u and v is 1 in G and at least 2 in G − e. Similarly, adding a new edge to G does not

increase distances, while it does decrease the distance by at least one.

By Perron-Frobenius Theorem, we have the following lemma immediately.

Lemma 2.1 LetG be a connected graph with u, v ∈ V (G). If uv /∈ E(G), then ρ(G) > ρ(G+uv).

If uv ∈ E(G) such that G− uv is also connected, then ρ(G) < ρ(G− uv).
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According to Lemma 2.1, for a connected graph G on n vertices, we have ρ(G) ≥ 2n − 2,

with equality if and only if G = Kn; and ρ(G) ≤ ρ(TG), with equality if and only if G is a tree,

where TG is a spanning tree of G.

Let G be a graph and v be a vertex of G. Denote by N(v) the set of neighbors of v in the

graph G.

Lemma 2.2 Let G be a connected graph containing two vertices u, v.

(1) If N(u)\{v} = N(v)\{u}, then Tr(u) = Tr(v).

(2) If N(u)\{v} ( N(v)\{u}, then Tr(u) > Tr(v).

Proof For any w ∈ V (G) and w ̸= u, v. We prove the result (1) firstly. If w ∈ N(u)\{v} =

N(v)\{u}, then duw = dvw = 1. If w /∈ N(u)\{v} = N(v)\{u}, then there exists a shortest path

P connecting w and u. Let w1 be the vertex on the path P that is adjacent to u and let P ′ be

the remaining part of P connecting w1 and w. Then the union of P ′ and w1v connects w and

v, which implies that dvw ≤ duw. By the symmetry of u, v, we can show that duw ≤ dvw, and

hence dvw = duw.

(2) If w ∈ N(u)\{v}, then duw = dvw = 1. If w ∈ N(v)\{u} − N(u)\{v}, then duw > 1

and dvw = 1. If w /∈ N(v)\{u}, by what we have proved in (1), dvw ≤ duw. The result follows

by the above discussion. �
By Lemma 2.2, we can get the following result.

Lemma 2.3 Let G be a connected graph containing two vertices u, v, and let x be a Perron

vector of DQ(G).

(1) If N(u)\{v} = N(v)\{u}, then xu = xv.

(2) If N(u)\{v} ( N(v)\{u}, then xu > xv.

Proof Let ρ := ρ(G). By (2.2) we have

[ρ− Tr(u)]xu =
∑

w∈V (G)

duwxw = duvxv +
∑

w∈V (G)\{u,v}

duwxw, (2.4)

[ρ− Tr(v)]xv =
∑

w∈V (G)

dvwxw = duvxu +
∑

w∈V (G)\{u,v}

dvwxw. (2.5)

For the assertion (1), as N(u)\{v} = N(v)\{u}, by Lemma 2.2 we have Tr(u) = Tr(v), and

duw = dvw for each w ∈ V (G)\{u, v} by what we proved in Lemma 2.2(1). Thus

[ρ− Tr(u) + duv]xu = [ρ− Tr(v) + duv]xv.

By (2.4) and (2.5) we have ρ > max{Tr(u), T r(v)} as both right sides are positive. Therefore

xu = xv.

For the assertion (2), as N(u)\{v} ( N(v)\{u}, by Lemma 2.2 we have Tr(u) > Tr(v),

duw ≥ dvw for each w ∈ V (G)\{u, v}, and there exists at least one vertex w0 ∈ V (G)\{u, v} such

that duw0 > dvw0 . So

[ρ− Tr(u) + duv]xu > [ρ− Tr(v) + duv]xv,
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which implies xu > xv. �
For a connected graph G with n vertices and chromatic number k, if k = 1, then G is an

isolated vertex, and if k = n, then G is a complete graph. In the following, we consider the

graphs with 2 ≤ k ≤ n− 1.

Lemma 2.4 LetG be a connected graph with minimal distance signless Laplacian spectral radius

among all connected graphs with n vertices and chromatic number k, where 2 ≤ k ≤ n−1. Then

G is the unique graph Tn,k.

Proof Observe that V (G) can be partitioned into k color classes V1, V2, . . . , Vk, where |Vi| =
ni (i = 1, 2, . . . , k) and

∑k
i=1 ni = n. By Lemma 2.1, G = Kn1,n2,...,nk

, a complete k-partite

graph whose parts have size n1, n2, . . . , nk, respectively. Without loss of generality, assume

n1 ≥ n2 ≥ · · · ≥ nk.

Suppose that G is not the Turán graph. Then we have n1 − nk ≥ 2. Consider the graph

G′ = Kn1−1,n2,...,nk−1,nk+1 whose color classes are V ′
1 , V

′
2 , . . . , V

′
k, where |V ′

1 | = n1 − 1, |V ′
k| =

nk+1, and |V ′
i | = ni for i = 2, . . . , k−1. Let x be the unit Perron vector of DQ(G′). By Lemma

2.3, x may be written as

x = (x1, . . . , x1︸ ︷︷ ︸
n1−1

, x2, . . . , x2︸ ︷︷ ︸
n2

, . . . , xk−1, . . . , xk−1︸ ︷︷ ︸
nk−1

, xk, . . . , xk︸ ︷︷ ︸
nk+1

).

We will show x1 ≥ xk. Let u ∈ V ′
1 and v ∈ V ′

k. By (2.2) we have

[ρ(G′)− Tr(u)]x1 = 2(n1 − 2)x1 + n2x2 + · · ·+ nk−1xk−1 + (nk + 1)xk,

[ρ(G′)− Tr(v)]xk = (n1 − 1)x1 + n2x2 + · · ·+ nk−1xk−1 + 2nkxk.

So

[ρ(G′)− Tr(u)− n1 + 3]x1 = [ρ(G′)− Tr(v)− nk + 1]xk. (2.6)

Note that Tr(u) = n + n1 − 3, Tr(v) = n + nk − 1 and Tr(wi) = n + ni − 2 for wi ∈ V ′
i ,

i = 2, . . . , k − 1. So (2.6) becomes

[ρ(G′)− n− 2n1 + 6]x1 = [ρ(G′)− n− 2nk + 2]xk. (2.7)

By the theory of nonnegative matrices [21], ρ(G′) is at least the minimum row sum of

DQ(G′), so

ρ(G′) ≥ 2min{n+ n1 − 3, n+ nk − 1, n+ ni − 2, i = 2, . . . , k − 1} ≥ 2n− 2.

Hence, ρ(G′) − n − 2nk + 2 ≥ 2n − 2 − n − 2nk + 2 ≥ (n1 + nk) − 2nk = n1 − nk > 0, and

ρ(G′)− n− 2n1 + 6 ≤ ρ(G′)− n− 2nk + 2, which implies x1 ≥ xk.

By (2.1) we find that

xT [DQ(G′)−DQ(G)]x

= (n1 − 1)(x1 + xk)
2 + 2nk(xk + xk)

2 − [2(n1 − 1)(x1 + xk)
2 + nk(xk + xk)

2]

= nk(xk + xk)
2 − (n1 − 1)(x1 + xk)

2 < 0.
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So

ρ(G′) = xTDQ(G′)x < xTDQ(G)x ≤ ρ(G).

This completes the proof. �

Lemma 2.5 Let Tn,k be a Turán graph with s (0 ≤ s < k) parts of size d+ 1 and k − s parts

of size d (i.e., d = ⌊n
k ⌋). Then

ρ(Tn,k) =
3n+ 4d− 6 +

√
4− 4n+ n2 + 8sd+ 8s

2
≥ 2n+ 2d− 4

where equality holds if and only if s = 0, that is, n = kd or Tn,k is regular.

Proof Let V1, V2, . . . , Vk be the color classes of Tn,k, and let x be a Perron vector of DQ(Tn,k).

Firstly, we consider the case of 0 < s < k. By Lemma 2.3, for i = 1, 2, . . . , k, the vertices in Vi

have the same value given by x, denoted by xi. By (2.2), for each i = 1, 2, . . . , k,

[ρ(Tn,k)− (n+ ni − 2)]xi =
∑
j ̸=i

njxj + 2(ni − 1)xi,

that is,

[ρ(Tn,k) + 4− n− 2ni]xi =
k∑

j=1

njxj ,

which implies ρ(Tn,k) > n+ 2ni − 4 for all i = 1, 2, . . . , k, i.e., ρ(Tn,k) > n+ 2d− 2. Then

ni

ρ(Tn,k) + 4− n− 2ni
=

nixi∑k
j=1 njxj

,

and hence
k∑

i=1

ni

ρ(Tn,k) + 4− n− 2ni
= 1.

Denote

f(λ) =

k∑
i=1

ni

λ+ 4− n− 2ni
.

For each λ > n+ 2d− 2, f(λ) is positive, strictly decreasing with respect to λ, and goes to 0 as

λ → +∞. Therefore the equation f(λ) = 1 has exactly one root greater than n+2d− 2, namely

ρ(Tn,k). So ρ(Tn,k) is the largest root of the equation f(λ) = 1. Since Tn,k has s (0 < s < k)

parts of size d+ 1 and k − s parts of size d, f(λ) can be written as

f(λ) =
(k − s)d

λ+ 4− n− 2d
+

s(d+ 1)

λ+ 4− n− 2(d+ 1)
.

Noting that n = dk + s, we have

λ2 + (6− 3n− 4d)λ+ 2[(2− n− 2d)(2− n− d)− s(d+ 1)] = 0,

and hence

ρ(Tn,k) =
3n+ 4d− 6 +

√
4− 4n+ n2 + 8sd+ 8s

2
> 2n+ 2d− 4.
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Secondly, we consider the case of s = 0. In this case, Tn,k is regular, and DQ(Tn,k) has

constant row sum 2n + 2d − 4. So, ρ(Tn,k) = 2n + 2d − 4. Combining the above two cases, we

get the result. �
By Lemmas 2.4 and 2.5, we now arrive at the main result of this paper.

Theorem 2.6 Let G be a connected graph of order n and chromatic number k. Then

ρ(G) ≥ 2n+ 2
⌊n
k

⌋
− 4,

where equality holds if and only if G is a regular Turán graph.
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