Unique Weighted Representation Basis of Integers

Ran XIONG

School of Mathematics and Computer Science, Anhui Normal University, Anhui 241003, P. R. China

Abstract

Let k_{1}, k_{2} be nonzero integers with $\left(k_{1}, k_{2}\right)=1$ and $k_{1} k_{2} \neq-1$. In this paper, we prove that there is a set $A \subseteq \mathbb{Z}$ such that every integer can be represented uniquely in the form $n=k_{1} a_{1}+k_{2} a_{2}, a_{1}, a_{2} \in A$.

Keywords additive basis; representation function.

MR(2010) Subject Classification 11B34

1. Introduction

For sets A and B of integers and integers k_{1}, k_{2}, let

$$
k_{1} A+k_{2} B=\left\{k_{1} a+k_{2} b: a \in A, b \in B\right\} .
$$

Let

$$
r_{k_{1}, k_{2}}(A, n)=\operatorname{card}\left\{\left(a_{1}, a_{2}\right): n=k_{1} a_{1}+k_{2} a_{2}, a_{1}, a_{2} \in A\right\} .
$$

The counting function for the set A is

$$
A(y, x)=\operatorname{card}\{a \in A: y \leq a \leq x\}
$$

We call A a weighted representation basis if $r_{k_{1}, k_{2}}(A, n) \geq 1$ for all $n \in \mathbb{Z}$. In 2003, Nathanson [3] constructed a family of arbitrarily sparse bases $A \subseteq \mathbb{Z}$ satisfying $r_{1,1}(n)=1$ for all $n \in \mathbb{Z}$. In 2011, Tang et al. [5] proved that there exists a family of bases of $A \subseteq \mathbb{Z}$ satisfying $r_{1,-1}(n)=1$ for all $n \neq 0$. For related problems, see $[1,2,4,6]$.

In this paper, we obtain the following result.
Theorem 1.1 Let $f(x)$ be a function such that $\lim _{x \rightarrow \infty} f(x)=+\infty$ and k_{1}, k_{2} be nonzero integers with $\left(k_{1}, k_{2}\right)=1, k_{1} k_{2} \neq-1$. Then there exists a set A of integers such that

$$
r_{k_{1}, k_{2}}(A, n)=1 \text { for all } n \in \mathbb{Z}
$$

and $A(-x, x) \leq f(x)$ for all sufficiently large x.

2. Proof of Theorem 1.1

Received April 3, 2013; Accepted June 4, 2013
Supported by the National Natural Science Foundation of China (Grant No. 10901002) and the Natural Science Foundation of Anhui Province (Grant No. 1208085QA02).
E-mail address: ranxiong2012@163.com

By the result of Nathanson [3], we may assume that $\left|k_{1}\right|>\left|k_{2}\right| \geq 1$. We shall construct an ascending sequence of finite sets $A_{1} \subseteq A_{2} \subseteq \cdots$ such that
(i) $\operatorname{card}\left(A_{l}\right)=2 l$ for all $l \geq 1$,
(ii) $r_{k_{1}, k_{2}}\left(A_{l}, n\right) \leq 1$ for all $n \in \mathbb{Z}$,
(iii) If l is even, then $r_{k_{1}, k_{2}}\left(A_{l}, n\right)=1$ for $-\frac{l}{2}+1 \leq n \leq \frac{l}{2}$. If l is odd, then $r_{k_{1}, k_{2}}\left(A_{l}, n\right)=1$ for $|n| \leq \frac{l-1}{2}$.

We shall show that the infinite set

$$
A=\bigcup_{l=1}^{\infty} A_{l}
$$

is a unique $\left(k_{1}, k_{2}\right)$-weighted basis of \mathbb{Z}.
We construct A_{l} by induction. Let $A_{1}=\left\{0, k_{1}\right\}$. Assume that for some l, we have constructed

$$
A_{1} \subseteq A_{2} \subseteq \cdots \subseteq A_{l}
$$

satisfying (i), (ii), (iii). Now we construct A_{l+1}.
We define the integer

$$
d_{l}=\max \left\{|a|: a \in A_{l}\right\}
$$

Then

$$
A_{l} \subseteq\left[-d_{l}, d_{l}\right]
$$

and

$$
k_{1} A_{l}+k_{2} A_{l} \subseteq\left[-\left(\left|k_{1}\right|+\left|k_{2}\right|\right) d_{l},\left(\left|k_{1}\right|+\left|k_{2}\right|\right) d_{l}\right] .
$$

Define

$$
b_{l}=\min \left\{b>0: b \notin k_{1} A_{l}+k_{2} A_{l}\right\}
$$

and

$$
b_{l}^{\prime}=\max \left\{b<0: b \notin k_{1} A_{l}+k_{2} A_{l}\right\} .
$$

Then

$$
\frac{l-1}{2} \leq b_{l},-b_{l}^{\prime} \leq\left(\left|k_{1}\right|+\left|k_{2}\right|\right) d_{l}+1
$$

To construct the set A_{l+1}, we choose an integer c_{l} such that $c_{l} \geq 3 k_{1}^{2} d_{l}$.
Case $1 l$ is odd. Since $\left(k_{1}, k_{2}\right)=1$, we know that there exist two different integers x, y satisfying $k_{1} x+k_{2} y=b_{l}$ with $k_{2} x \geq\left|k_{2}\right| c_{l},|y| \geq c_{l}$. Put $x_{l+1}=x, y_{l+1}=y, A_{l+1}=A_{l} \cup\left\{x_{l+1}, y_{l+1}\right\}$. We have

$$
k_{1} A_{l+1}+k_{2} A_{l+1}=\bigcup_{l=1}^{6} S_{l}
$$

where

$$
\begin{gathered}
S_{1}=\left\{b_{l},\left(k_{1}+k_{2}\right) x_{l+1},\left(k_{1}+k_{2}\right) y_{l+1}, k_{1} y_{l+1}+k_{2} x_{l+1}\right\}, \\
S_{2}=k_{1} A_{l}+k_{2} A_{l} \\
S_{3}=k_{1} x_{l+1}+k_{2} A_{l}, \quad S_{4}=k_{1} y_{l+1}+k_{2} A_{l}
\end{gathered}
$$

$$
S_{5}=k_{1} A_{l}+k_{2} x_{l+1}, \quad S_{6}=k_{1} A_{l}+k_{2} y_{l+1} .
$$

We shall show that $k_{1} A_{l+1}+k_{2} A_{l+1}$ is the disjoint union of the above six sets.
(i) $S_{1} \cap S_{2}=\varnothing$. In fact, by the definition of b_{l}, we know that $b_{l} \notin S_{2}$. Moreover,

$$
\begin{aligned}
&\left|\left(k_{1}+k_{2}\right) x_{l+1}\right|, \quad\left|\left(k_{1}+k_{2}\right) y_{l+1}\right| \geq c_{l}>\left(\left|k_{1}\right|+\left|k_{2}\right|\right) d_{l} \\
&\left|k_{1} y_{l+1}+k_{2} x_{l+1}\right|=\frac{\left|k_{1}\left(b_{l}-k_{1} x_{l+1}\right)+k_{2}^{2} x_{l+1}\right|}{\left|k_{2}\right|} \geq \frac{\left(k_{1}^{2}-k_{2}^{2}\right)\left|x_{l+1}\right|}{\left|k_{2}\right|}-\frac{\left|k_{1}\right|}{\left|k_{2}\right|} b_{l} \\
& \geq \frac{3\left(k_{1}^{2}-k_{2}^{2}\right) k_{1}^{2} d_{l}}{\left|k_{2}\right|}-\frac{\left|k_{1}\right|}{\left|k_{2}\right|}\left(\left(\left|k_{1}\right|+\left|k_{2}\right|\right) d_{l}+1\right) \\
&>\frac{6 k_{1}^{2}}{\left|k_{2}\right|} d_{l}>\left(\left|k_{1}\right|+\left|k_{2}\right|\right) d_{l} .
\end{aligned}
$$

(ii) $S_{1} \cap S_{3}=\varnothing$. Firstly, we have $b_{l},\left(k_{1}+k_{2}\right) x_{l+1} \notin S_{3}$. Secondly, we can show that $\left(k_{1}+k_{2}\right) y_{l+1}, k_{1} y_{l+1}+k_{2} x_{l+1} \notin S_{3}$. In fact, if $\left(k_{1}+k_{2}\right) y_{l+1}$ or $k_{1} y_{l+1}+k_{2} x_{l+1} \in S_{3}$, then there exists $a \in A_{l}$ such that

$$
\begin{equation*}
\left(k_{1}+k_{2}\right) y_{l+1}=k_{1} x_{l+1}+k_{2} a \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
k_{1} y_{l+1}+k_{2} x_{l+1}=k_{1} x_{l+1}+k_{2} a \tag{2}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\left(k_{1}+2 k_{2}\right) y_{l+1}=b_{l}+k_{2} a \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(k_{2}^{2}-k_{1}^{2}-k_{1} k_{2}\right) x_{l+1}=k_{2}^{2} a-k_{1} b_{l} . \tag{4}
\end{equation*}
$$

It follows from (4) that

$$
c_{l} \leq\left|x_{l+1}\right| \leq \frac{k_{2}^{2} d_{l}}{\left|k_{2}^{2}-k_{1}^{2}-k_{1} k_{2}\right|}+\frac{\left|k_{1} b_{l}\right|}{\left|k_{2}^{2}-k_{1}^{2}-k_{1} k_{2}\right|}<3 k_{1}^{2} d_{l} \leq c_{l}
$$

a contradiction. If $k_{1}+2 k_{2}=0$, by (3), we have $b_{l}=-k_{2} a=k_{1} a+k_{2} a \in k_{1} A_{l}+k_{2} A_{l}$, a contradiction. If $k_{1}+2 k_{2} \neq 0$, then

$$
c_{l} \leq\left|y_{l+1}\right| \leq \frac{\left|k_{2}\right| d_{l}}{\left|k_{1}+2 k_{2}\right|}+\frac{\left|b_{l}\right|}{\left|k_{1}+2 k_{2}\right|} \leq\left(\left|k_{1}\right|+2\left|k_{2}\right|\right) d_{l}+\left|k_{1}\right|<c_{l}
$$

a contradiction. Hence, $S_{1} \cap S_{3}=\varnothing$.
Similarly, we can show $S_{1} \cap S_{i}=\varnothing$ for $4 \leq i \leq 6$.
(iii) $S_{i} \cap S_{j}=\varnothing, 2 \leq i<j \leq 6$. We can assume that $k_{1} x_{l+1}>0$ (The condition $k_{1} x_{l+1}<0$ is similar). For $u_{4}=k_{1} y_{l+1}+k_{2} a_{4} \in S_{4}, u_{6}=k_{1} a_{6}+k_{2} y_{l+1} \in S_{6}$, we have

$$
u_{6}=k_{1} a_{6}+b_{l}-k_{1} x_{l+1} \leq-3\left|k_{1}\right|^{3} d_{l}+\left(2\left|k_{1}\right|+\left|k_{2}\right|\right) d_{l}+1<-\left(\left|k_{1}\right|+\left|k_{2}\right|\right) d_{l},
$$

and

$$
\begin{aligned}
u_{4} & =\frac{k_{1}\left(b_{l}-k_{1} x_{l+1}\right)}{k_{2}}+k_{2} a_{4} \\
& \leq-\frac{k_{1}^{2}}{k_{2}} x_{l+1}+\frac{k_{1}}{k_{2}} b_{l}+\left|k_{2}\right| d_{l} \leq \frac{-3 k_{1}^{4}+3 k_{1}^{2}}{\left|k_{2}\right|} d_{l}
\end{aligned}
$$

$$
\begin{aligned}
& <-\left(3\left|k_{1}\right|^{3}+\left|k_{1}\right|\right) d_{l}<-k_{1} x_{l+1}+b_{l}-\left|k_{1}\right| d_{l} \\
& \leq u_{6}
\end{aligned}
$$

For $u_{3}=k_{1} x_{l+1}+k_{2} a_{3} \in S_{3}, u_{5}=k_{1} a_{5}+k_{2} x_{l+1} \in S_{5}$,

$$
\begin{gathered}
u_{5}=k_{1} a_{5}+k_{2} x_{l+1} \geq 3 k_{1}^{2}\left|k_{2}\right| d_{l}-\left|k_{2}\right| d_{l}>\left(\left|k_{1}\right|+\left|k_{2}\right|\right) d_{l}, \\
u_{3}=k_{1} x_{l+1}+k_{2} a_{3} \geq k_{1} x_{l+1}-\left|k_{2}\right| d_{l}>k_{2} x_{l+1}+\left|k_{2}\right| d_{l} \geq u_{5} .
\end{gathered}
$$

These inequalities imply that the sets $S_{2}, S_{3}, S_{4}, S_{5}, S_{6}$ are pairwise disjoint, hence $S_{i} \cap S_{j}=\varnothing$ for $1 \leq i<j \leq 6$. It follows that $r_{k_{1}, k_{2}}\left(A_{l+1}, n\right) \leq 1$ for all n.

By the above discussion, we know that A_{l+1} satisfies (i) and (ii). By the hypothesis and the definition of b_{l}, we know $r_{k_{1}, k_{2}}\left(A_{l}, n\right)=1$ for all $|n| \leq \frac{l-1}{2}$ and $\frac{l+1}{2} \in k_{1} A_{l+1}+k_{2} A_{l+1}$. It follows that

$$
r_{k_{1}, k_{2}}\left(A_{l+1}, n\right)=1 \text { for } \frac{-l+1}{2} \leq n \leq \frac{l+1}{2}
$$

Hence, A_{l+1} satisfies (iii).
Case $2 l$ is even. We can find integers x, y such that $k_{1} x+k_{2} y=b_{l}^{\prime}$ with $k_{2} x>\left|k_{2}\right| c_{l},|y|>c_{l}$. Put $x_{l+1}=x, y_{l+1}=y, A_{l+1}=A_{l} \cup\left\{x_{l+1}, y_{l+1}\right\}$. Similarly, we can show that A_{l+1} satisfies (i), (ii) and (iii).

Let $A=\bigcup_{l=1}^{\infty} A_{l}$. If l is odd, then

$$
\left\{-\frac{l-1}{2} \cdots-1,0,1 \cdots \frac{l-1}{2}\right\} \subseteq k_{1} A_{l+1}+k_{2} A_{l+1}
$$

If l is even, then

$$
\left\{-\frac{l}{2}+1 \cdots-1,0,1 \cdots \frac{l}{2}\right\} \subseteq k_{1} A_{l+1}+k_{2} A_{l+1}
$$

So A is a $\left(k_{1}, k_{2}\right)$-weighted basis. If $r_{k_{1}, k_{2}}(A, n) \geq 2$ for some n, then there exists a set A_{l} such that $r_{k_{1}, k_{2}}\left(A_{l}, n\right) \geq 2$, which is impossible. Therefore, A is a unique $\left(k_{1}, k_{2}\right)$-weighted basis for the integers.

Given a function $f(x)$ that tends to infinity, we use induction to construct a sequence $\left\{c_{l}\right\}_{l=1}^{\infty}$ such that $A(-x, x) \leq f(x)$ for all $x>c_{1}$. We observe that

$$
A(-x, x)=A_{l+1}(-x, x) \leq 2(l+1) \text { for } d_{l} \leq x<d_{l+1}
$$

We begin by choosing an integer $c_{1} \geq 3 k_{1}^{2} d_{1}$ such that

$$
f(x) \geq 4 \text { for all } x \geq c_{1} .
$$

Then

$$
A(-x, x) \leq 4 \leq f(x) \text { for } c_{1} \leq x \leq d_{2}
$$

Let $l \geq 2$, and suppose we have selected an integer $c_{l-1} \geq 3 k_{1}^{2} d_{l-1}$ such that

$$
f(x) \geq 2 l \text { for } x \geq c_{l-1}
$$

and

$$
A(-x, x) \leq f(x) \text { for } c_{l-1} \leq x \leq d_{l}
$$

There exists an integer $c_{l} \geq 3 k_{1}^{2} d_{l}$ such that

$$
f(x) \geq 2 l+2 \text { for } \geq c_{l}
$$

Then

$$
A(-x, x)=2 l \leq f(x) \text { for } d_{l} \leq x<c_{l}
$$

and

$$
A(-x, x) \leq 2 l+2 \leq f(x) \text { for } c_{l} \leq x \leq d_{l+1}
$$

hence

$$
A(-x, x) \leq f(x) \text { for } c_{1} \leq x \leq d_{l+1}
$$

It follows that

$$
A(-x, x) \leq f(x) \text { for all } x \geq c_{1}
$$

This completes the proof of Theorem 1.1.

References

[1] Yonggao CHEN. A problem on unique representation bases. European J. Combin., 2007, 28(1): 33-35.
[2] J. CILLERUELO, J. RUÉ. On a question of Sárkozy and Sós for bilinear forms. Bull. Lond. Math. Soc., 2009, 41(2): 274-280.
[3] M. B. NATHANSON. Unique representation bases for integers. Acta Arith., 2003, 108(1): 1-8.
[4] M. B. NATHANSON. Representation functions of additive bases for abelian semigroups. Int. J. Math. Math. Sci., 2004, 30: 1589-1597.
[5] Chiwu TANG, Min TANG, Lei WU. Unique difference bases of \mathbb{Z}. Integer Seq., 2011, 14(1): 1-6.
[6] Min TANG. Dense sets of integers with a prescribed representation function. Bull. Aust. Math. Soc., 2011, 84(1): 40-43.

