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Unique Weighted Representation Basis of Integers
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Abstract Let k1, k2 be nonzero integers with (k1, k2) = 1 and k1k2 ̸= −1. In this paper, we

prove that there is a set A ⊆ Z such that every integer can be represented uniquely in the

form n = k1a1 + k2a2, a1, a2 ∈ A.
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1. Introduction

For sets A and B of integers and integers k1, k2, let

k1A+ k2B = {k1a+ k2b : a ∈ A, b ∈ B}.

Let

rk1,k2(A,n) = card{(a1, a2) : n = k1a1 + k2a2, a1, a2 ∈ A}.

The counting function for the set A is

A(y, x) = card{a ∈ A : y ≤ a ≤ x}.

We call A a weighted representation basis if rk1,k2(A,n) ≥ 1 for all n ∈ Z. In 2003,

Nathanson [3] constructed a family of arbitrarily sparse bases A ⊆ Z satisfying r1,1(n) = 1 for

all n ∈ Z. In 2011, Tang et al. [5] proved that there exists a family of bases of A ⊆ Z satisfying

r1,−1(n) = 1 for all n ̸= 0. For related problems, see [1, 2, 4, 6].

In this paper, we obtain the following result.

Theorem 1.1 Let f(x) be a function such that limx→∞ f(x) = +∞ and k1, k2 be nonzero

integers with (k1, k2) = 1, k1k2 ̸= −1. Then there exists a set A of integers such that

rk1,k2(A,n) = 1 for all n ∈ Z,

and A(−x, x) ≤ f(x) for all sufficiently large x.

2. Proof of Theorem 1.1
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By the result of Nathanson [3], we may assume that |k1| > |k2| ≥ 1. We shall construct an

ascending sequence of finite sets A1 ⊆ A2 ⊆ · · · such that

(i) card(Al) = 2l for all l ≥ 1,

(ii) rk1,k2(Al, n) ≤ 1 for all n ∈ Z,
(iii) If l is even, then rk1,k2(Al, n) = 1 for − l

2 +1 ≤ n ≤ l
2 . If l is odd, then rk1,k2(Al, n) = 1

for |n| ≤ l−1
2 .

We shall show that the infinite set

A =

∞∪
l=1

Al

is a unique (k1, k2)-weighted basis of Z.
We construct Al by induction. Let A1 = {0, k1}. Assume that for some l, we have con-

structed

A1 ⊆ A2 ⊆ · · · ⊆ Al

satisfying (i), (ii), (iii). Now we construct Al+1.

We define the integer

dl = max{|a| : a ∈ Al}.

Then

Al ⊆ [−dl, dl]

and

k1Al + k2Al ⊆ [−(|k1|+ |k2|)dl, (|k1|+ |k2|)dl].

Define

bl = min{b > 0 : b ̸∈ k1Al + k2Al}

and

b′l = max{b < 0 : b ̸∈ k1Al + k2Al}.

Then
l − 1

2
≤ bl,−b′l ≤ (|k1|+ |k2|)dl + 1.

To construct the set Al+1, we choose an integer cl such that cl ≥ 3k21dl.

Case 1 l is odd. Since (k1, k2) = 1, we know that there exist two different integers x, y satisfying

k1x+ k2y = bl with k2x ≥ |k2|cl, |y| ≥ cl. Put xl+1 = x, yl+1 = y, Al+1 = Al ∪ {xl+1, yl+1}. We

have

k1Al+1 + k2Al+1 =
6∪

l=1

Sl,

where

S1 = {bl, (k1 + k2)xl+1, (k1 + k2)yl+1, k1yl+1 + k2xl+1},

S2 = k1Al + k2Al,

S3 = k1xl+1 + k2Al, S4 = k1yl+1 + k2Al,
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S5 = k1Al + k2xl+1, S6 = k1Al + k2yl+1.

We shall show that k1Al+1 + k2Al+1 is the disjoint union of the above six sets.

(i) S1 ∩ S2 = ∅. In fact, by the definition of bl, we know that bl /∈ S2. Moreover,

|(k1 + k2)xl+1|, |(k1 + k2)yl+1| ≥ cl > (|k1|+ |k2|)dl,

|k1yl+1 + k2xl+1| =
|k1(bl − k1xl+1) + k22xl+1|

|k2|
≥ (k21 − k22)|xl+1|

|k2|
− |k1|

|k2|
bl

≥ 3(k21 − k22)k
2
1dl

|k2|
− |k1|

|k2|
((|k1|+ |k2|)dl + 1)

>
6k21
|k2|

dl > (|k1|+ |k2|)dl.

(ii) S1 ∩ S3 = ∅. Firstly, we have bl, (k1 + k2)xl+1 /∈ S3. Secondly, we can show that

(k1 + k2)yl+1, k1yl+1 + k2xl+1 /∈ S3. In fact, if (k1 + k2)yl+1 or k1yl+1 + k2xl+1 ∈ S3, then there

exists a ∈ Al such that

(k1 + k2)yl+1 = k1xl+1 + k2a (1)

or

k1yl+1 + k2xl+1 = k1xl+1 + k2a. (2)

That is,

(k1 + 2k2)yl+1 = bl + k2a (3)

or

(k22 − k21 − k1k2)xl+1 = k22a− k1bl. (4)

It follows from (4) that

cl ≤ |xl+1| ≤
k22dl

|k22 − k21 − k1k2|
+

|k1bl|
|k22 − k21 − k1k2|

< 3k21dl ≤ cl,

a contradiction. If k1 + 2k2 = 0, by (3), we have bl = −k2a = k1a + k2a ∈ k1Al + k2Al, a

contradiction. If k1 + 2k2 ̸= 0, then

cl ≤ |yl+1| ≤
|k2|dl

|k1 + 2k2|
+

|bl|
|k1 + 2k2|

≤ (|k1|+ 2|k2|)dl + |k1| < cl,

a contradiction. Hence, S1 ∩ S3 = ∅.

Similarly, we can show S1 ∩ Si = ∅ for 4 ≤ i ≤ 6.

(iii) Si ∩Sj = ∅, 2 ≤ i < j ≤ 6. We can assume that k1xl+1 > 0 (The condition k1xl+1 < 0

is similar). For u4 = k1yl+1 + k2a4 ∈ S4, u6 = k1a6 + k2yl+1 ∈ S6, we have

u6 = k1a6 + bl − k1xl+1 ≤ −3|k1|3dl + (2|k1|+ |k2|)dl + 1 < −(|k1|+ |k2|)dl,

and

u4 =
k1(bl − k1xl+1)

k2
+ k2a4

≤ −k21
k2

xl+1 +
k1
k2

bl + |k2|dl ≤
−3k41 + 3k21

|k2|
dl
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< −(3|k1|3 + |k1|)dl < −k1xl+1 + bl − |k1|dl
≤ u6.

For u3 = k1xl+1 + k2a3 ∈ S3, u5 = k1a5 + k2xl+1 ∈ S5,

u5 = k1a5 + k2xl+1 ≥ 3k21|k2|dl − |k2|dl > (|k1|+ |k2|)dl,

u3 = k1xl+1 + k2a3 ≥ k1xl+1 − |k2|dl > k2xl+1 + |k2|dl ≥ u5.

These inequalities imply that the sets S2, S3, S4, S5, S6 are pairwise disjoint, hence Si ∩ Sj = ∅
for 1 ≤ i < j ≤ 6. It follows that rk1,k2(Al+1, n) ≤ 1 for all n.

By the above discussion, we know that Al+1 satisfies (i) and (ii). By the hypothesis and the

definition of bl, we know rk1,k2(Al, n) = 1 for all |n| ≤ l−1
2 and l+1

2 ∈ k1Al+1+ k2Al+1. It follows

that

rk1,k2
(Al+1, n) = 1 for

−l + 1

2
≤ n ≤ l + 1

2
.

Hence, Al+1 satisfies (iii).

Case 2 l is even. We can find integers x, y such that k1x+ k2y = b′l with k2x > |k2|cl, |y| > cl.

Put xl+1 = x, yl+1 = y, Al+1 = Al ∪ {xl+1, yl+1}. Similarly, we can show that Al+1 satisfies (i),

(ii) and (iii).

Let A =
∪∞

l=1 Al. If l is odd, then

{− l − 1

2
· · · − 1, 0, 1 · · · l − 1

2
} ⊆ k1Al+1 + k2Al+1.

If l is even, then

{− l

2
+ 1 · · · − 1, 0, 1 · · · l

2
} ⊆ k1Al+1 + k2Al+1.

So A is a (k1, k2)-weighted basis. If rk1,k2(A,n) ≥ 2 for some n, then there exists a set Al such

that rk1,k2(Al, n) ≥ 2, which is impossible. Therefore, A is a unique (k1, k2)-weighted basis for

the integers.

Given a function f(x) that tends to infinity, we use induction to construct a sequence {cl}∞l=1

such that A(−x, x) ≤ f(x) for all x > c1. We observe that

A(−x, x) = Al+1(−x, x) ≤ 2(l + 1) for dl ≤ x < dl+1.

We begin by choosing an integer c1 ≥ 3k21d1 such that

f(x) ≥ 4 for all x ≥ c1.

Then

A(−x, x) ≤ 4 ≤ f(x) for c1 ≤ x ≤ d2.

Let l ≥ 2, and suppose we have selected an integer cl−1 ≥ 3k21dl−1 such that

f(x) ≥ 2l for x ≥ cl−1

and

A(−x, x) ≤ f(x) for cl−1 ≤ x ≤ dl.
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There exists an integer cl ≥ 3k21dl such that

f(x) ≥ 2l + 2 for ≥ cl.

Then

A(−x, x) = 2l ≤ f(x) for dl ≤ x < cl

and

A(−x, x) ≤ 2l + 2 ≤ f(x) for cl ≤ x ≤ dl+1,

hence

A(−x, x) ≤ f(x) for c1 ≤ x ≤ dl+1.

It follows that

A(−x, x) ≤ f(x) for all x ≥ c1.

This completes the proof of Theorem 1.1. �
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