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On Non-Bi-Lipschitz Homogeneity of Some Hyperspaces

Zhilang ZHANG, Zhongqiang YANG∗

Department of Mathematics, Shantou University, Guangdong 515063, P. R. China

Abstract A metric space (X, d) is called bi-Lipschitz homogeneous if for any points x, y ∈ X,

there exists a self-homeomorphism h ofX such that both h and h−1 are Lipschitz and h(x) = y.

Let 2(X,d) denote the family of all non-empty compact subsets of metric space (X, d) with the

Hausdorff metric. In 1985, Hohti proved that 2([0,1],d) is not bi-Lipschitz homogeneous, where

d is the standard metric on [0, 1]. We extend this result in two aspects. One is that 2([0,1],ϱ) is

not bi-Lipschitz homogeneous for an admissible metric ϱ satisfying some conditions. Another

is that 2(X,d) is not bi-Lipschitz homogeneous if (X, d) has a nonempty open subspace which

is isometric to an open subspace of m-dimensional Euclidean space Rm.
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1. Introduction and main results

Let (X1, d1) and (X2, d2) be metric spaces. We call a homeomorphism φ : X1 → X2 a

bi-Lipschitz homeomorphism if there exists a real number L > 0 such that

L−1d1(x, y) ≤ d2(φ(x), φ(y)) ≤ Ld1(x, y)

for all points x, y ∈ X1. This concept plays an important role in fractal geometry. Recently,

there are a lot of interests in related topics [2, 5]. Trivially, L ≥ 1 and there exists the minimum

positive number L with the property above. Let bilipφ denote the least such constant L. We

say that φ is a K-bi-Lipschitz homeomorphism if bilipφ ≤ K. Let us recall that a topological

space X is called homogeneous if for all points x, y ∈ X there exists a self-homeomorphism h of

X such that h(x) = y. A metric space X is called bi-Lipschitz homogeneous, if for all points

x, y ∈ X there exists a bi-Lipschitz self-homeomorphism h : X → X such that h(x) = y. 2X is

used to denote the metric space of all non-empty compact subsets of metric space (X, d) with

Hausdorff metric dH defined by

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)},

for each pair of points A,B ∈ 2(X,d). 2(X,d) will be called the hyperspace of (X, d) and it may

be denoted as 2X for short if there is no confusion.
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Let I denote [0, 1] with the standard metric unless otherwise stated. Recall that the admis-

sible metric on a metrizable topological space X means the metric which induces the original

topology of X.

Earlier in 1931, Keller in [4] proved that Hilbert cube Q, countable infinite product of I with
product topology, is homogeneous. This fact is very different from a well-known theorem that no

finite dimensional cube In is homogeneous for any n ∈ N. Later, Curtis and Schori proved in [1]

that the hyperspace 2X is homeomorphic to Hilbert cube Q for every non-degenerate connected

local-connected compact metrizable topological space X. This remarkable work built a bridge

between hyperspace theory and infinite dimensional topology. In particular, 2I is homeomorphic

to Hilbert cube Q. From these two results, we know that 2I is homogeneous. However, Hohti in

[3, Proposition 7.2] showed that 2(I,d) is not bi-Lipschitz homogeneous, where d is the standard

metric on I. In [3, Theorem 3.1] the author also proved that Hilbert cube Q can be bi-Lipschitz

homogeneous if it is endowed with some special admissible metric. Therefore, we know that

bi-Lipschitz homogeneity is not a topological invariant.

We extend [3, Proposition 7.2] in two aspects. One is the following theorem which is a

generalization in the sense of metric.

Theorem 1.1 Let f : I → [0,+∞) be a continuous strictly monotone increasing function which

satisfies:

(1) f(0) = 0 and f(x+ y) ≤ f(x) + f(y);

(2) For L ∈ (0,+∞) and 1/n ∈ [0, f(1)/L), we have nf−1( 1
Ln ) = O(1) and αnf

−1( 1
Ln ) → 0

as n→ +∞, where αn = f−1(Lf(f−1(1/n)/n))

f−1( 1
Ln )/n

.

Define a function ϱf : I × I → [0,+∞) by (x, y) 7→ f(|x − y|). Then ϱf is an admissible metric

on I. Moreover, 2(I,ϱ
f ) is not bi-Lipschitz homogeneous. We call ϱf a metric on I induced by the

function f .

Example 1.1 Let g(x) be a linear combination, with positive coefficient, of functions xµ, where

µ ∈ (0, 1]. Clearly, g(x) satisfies the condition of Theorem 1.1. Hence the hyperspace of I with
the metric induced by g is not bi-Lipschitz homogeneous.

Denote by Rm the m-fold products of real line R with the Euclidean metric. Another gen-

eralization of [3, Proposition 7.2] is the following theorem:

Theorem 1.2 For a metric space X, 2X is not bi-Lipschitz homogeneous if there exists a

nonempty open subspace of X which is bi-Lipschitz homeomorphic to an open subspace of Rm.

Remark 1.1 By Theorem 1.2, we may study the non-bi-Lipschitz homogeneity of a hyperspace

2X by studying the local metrical property of X. In particular, 2X is not bi-Lipschitz homoge-

neous if X has a nonempty open subspace which is isometric to an open subspace of Rm.

Example 1.2 According to Theorem 2, we can deduce that no hyperspace of surface in Rm like

sphere or torus is bi-Lipschitz homogeneous. Moreover, no hyperspace of subspace in Rm which

has non-empty interior is bi-Lipschitz homogeneous.
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In this paper, N denotes the set of all positive integers, P (A) denotes the power set of

a set A and P ∗(A) = P (A)\{∅}. For a finite set B, |B| denotes the number of all elements

in B. For m ∈ R, we use [m] to denote the largest integer n such that n ≤ m. We say

that a subset S of a metric space (X, d) is ε-discrete if d(x, y) ≥ ε for every pair of points

x, y ∈ S. For a compact metric space X and ε > 0, we use N(X, ε) to denote the maximum

cardinality of all ε-discrete subsets of X. For a metric space (X, d) and a compact set A in (X, d),

BdH
(A, ε)={B ∈ 2X |dH(B,A) ≤ ε}, where ε > 0.

In [3], Hohti gave the following result which will be useful in our proofs:

Comparison Principle Let X and Y be two compact metric spaces. If there is an L-bi-

Lipschitz homeomorphism φ : X → Y , then for every ε > 0 we have N(Y, Lε) ≤ N(X, ε). If

for every L ≥ 1 there exists an n ∈ N with N(Y, L/n) > N(X, 1/n), then Y is not bi-Lipschitz

homeomorphic to X.

Using the Comparison Principle and some estimations of the cardinality of ε-discrete set,

the author proved in [3, Proposition 7.2] that 2I is not bi-Lipschitz homogeneous. We prove

Theorems 1.1 and 1.2 by similar but more complicated estimations.

2. Proof of Theorem 1.1

Lemma 2.1 Let f : I → R be a continuous strictly monotone increasing function with f(0) = 0

and f(x + y) ≤ f(x) + f(y). Define a function ϱf : I × I → [0,+∞) by ϱf (x, y) = f(|x − y|).
Then ϱf is an admissible metric on I and we have, in 2(I,ϱ

f ),

N(Bϱf
H
({0}, 1

n
), f(

f−1( 1n )

n
)) = 2n+1 − 1

for large enough n.

Proof Clearly, ϱf (x, y) = ϱf (y, x) and ϱf (x, y) ≥ 0. ϱf (x, y) = 0 if and only if x = y since

f(0) = 0 and the function f is strictly monotone increasing. It follows from f(x+y) ≤ f(x)+f(y)

that the function ϱf satisfies the triangle inequality. Therefore, ϱf is a metric on I. Moreover,

ϱf is an admissible metric on I since f is continuous strictly monotone increasing.

The rest of proof is based on large enough n such that f−1( 1n ) ∈ I. Since f is strictly

monotone increasing on I,

Bϱf
H
({0}, 1

n
) = 2[0,f

−1( 1
n )]

for large enough n. Let A = {i f
−1( 1

n )

n | 0 ≤ i ≤ n}. For any two distinct numbers i1, i2 ∈
{0, . . . , n}, let x = i1

f−1( 1
n )

n , y = i2
f−1( 1

n )

n . Clearly,

ϱf (x, y) = f(|i1 − i2|
f−1( 1n )

n
) > f(

f−1( 1n )

n
).

Hence P ∗(A) is an f(
f−1( 1

n )

n )-discrete subset of 2([0,f
−1( 1

n )],ϱf ). Moreover, |P ∗(A)| = 2n+1 − 1.

Suppose Ω is an f(
f−1( 1

n )

n )-discrete subset of 2([0,f
−1( 1

n )],ϱf ). We define a map F : Ω → P ∗(A)
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by

D 7→ {i
f−1( 1n )

n
∈ A | ((i− 1)

f−1( 1n )

n
, i
f−1( 1n )

n
] ∩D ̸= ∅, i ∈ {1, . . . , n}}.

Trivially, F is injective. Hence |Ω| ≤ |P ∗(A)| = 2n+1 − 1. We are done. �

Proof of Theorem 1.1 Since we have proved that ϱf is an admissible metric on I in Lemma

2.1, it suffices to prove that 2(I,ϱ
f ) is not bi-Lipschitz homogeneous. If 2(I,ϱ

f ) is bi-Lipschitz

homogeneous, then there exists an L-bi-Lipschitz homeomorphism ψ : 2(I,ϱ
f ) → 2(I,ϱ

f ) for some

positive number L, such that

ψ({0}) = I.

The rest of our proof is based on large enough n such that all terms with n are well defined.

According to the Comparison Principle and Lemma 2.1,

N
(
ψ
(
Bϱf

H
({0}, 1

n
)
)
, Lf(

f−1( 1n )

n
)
)
≤ N

(
Bϱf

H
({0}, 1

n
), f(

f−1( 1n )

n
)
)
≤ 2n+1.

Clearly,

Bϱf
H
(I,

1

Ln
) ⊆ ψ

(
Bϱf

H
({0}, 1

n
)
)
.

Hence we have

N
(
Bϱf

H
(I,

1

Ln
), Lf(

f−1( 1n )

n
)
)
≤ N

(
Bϱf

H
({0}, 1

n
), f(

f−1( 1n )

n
)
)
≤ 2n+1. (2.1)

So we derive an upper bound of N(Bϱf
H
(I, 1

Ln ), Lf(
f−1( 1

n )

n )).

Now we estimate a lower bound of N(Bϱf
H
(I, 1

Ln ), Lf(
f−1( 1

n )

n )). Let r = [ 1
f−1( 1

Ln )
] and

D = {if−1( 1
Ln )|0 ≤ i ≤ r}. Clearly,

ϱfH(D, I) = f(f−1(
1

Ln
)) =

1

Ln
.

LetDi be a maximal Lf(
f−1( 1

n )

n )-discrete subset of open interval ((if−1( 1
Ln ), (i+1)f−1( 1

Ln )), ϱ
f ),

i = 0, . . . , r − 1. Clearly, there exists a number αn ∈ [1,+∞) such that

αnf
−1(

1

Ln
)/n = f−1

(
Lf(

f−1( 1n )

n
)
)
.

Hence every Lf(
f−1( 1

n )

n )-discrete subset of 2(I,ϱ
f ) is an

(
αnf

−1( 1
Ln )/n

)
-discrete subset of 2(I,d),

where d is the standard metric on I. Moreover,

|Di| ≥ [
f−1( 1

Ln )

αnf−1( 1
Ln )/n

] =
[ n
αn

]
> 2

for large enough n, since αnf
−1( 1

Ln ) → 0 and nf−1( 1
Ln ) = O(1) as n → +∞. Let Ei =

Di\{maxDi,minDi}. Trivially,

|Ei| ≥
[ n
αn

]
− 2 > 0

for large enough n. Denote C = D∪
∪r−1

i=0 Ei. Then C is an Lf(
f−1( 1

n )

n )-discrete subset of (I, ϱf ).
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Clearly, C ∈ Bϱf
H
(I, 1

Ln ). Thus we have

N
(
Bϱf

H
(I,

1

Ln
), Lf(

f−1( 1n )

n
)
)
≥

r−1∏
i=0

|P (Ei)| ≥
r−1∏
k=0

2

[
n

αn

]
−2 = 2

([
n

αn

]
−2

)
r

for large enough n. Since ([ n
αn

]
− 2

)[ 1

f−1( 1
Ln )

]
≥ n

4αnf−1( 1
Ln )

for large enough n and αnf
−1( 1

Ln ) → 0 as n→ +∞, we have

n

4αnf−1( 1
Ln )

> n+ 1

for large enough n. It follows that

N
(
Bϱf

H
(I,

1

Ln
), Lf(

f−1( 1n )

n
)
)
> 2n+1

for large enough n. However, it contradicts the inequality (2.1). �

3. Proof of Theorem 1.2

In this section, we use dX to denote the metric on X, where X is a metric space. [a, b]m

is endowed with the maximal metric unless otherwise stated for every non-degenerate closed

interval [a, b].

To prove Theorem 1.2, we have to prove the following lemmas.

Lemma 3.1 Suppose k ∈ N and ε > 0. For any non-degenerate closed interval [a, b] with

l = a−b
ε ∈ N, we have

N(2[a,b]
k

, ε) = 2(l+1)k − 1.

Proof Let A = {(a + i1ε, . . . , a + ikε) | 0 ≤ i1, i2, . . . , ik ≤ l}. Then P ∗(A) is an ε-discrete

subset of [a, b]k and |P ∗(A)| = 2(l+1)k − 1. Suppose Ω is an ε-discrete subset of 2[a,b]
k

. Define a

map F : Ω → P ∗(A) by

F (D) =
{
(a+ i1ε, . . . , a+ ikε) | (a+ (i1 − 1)ε, a+ i1ε]× · · · × (a+ (ik − 1)ε, a+ ikε] ∩D ̸= ∅

}
.

Clearly, F is injective. Hence |Ω| ≤ |P ∗(A)| = 2(l+1)k − 1. We are done. �

Lemma 3.2 Let X, Y be two compact metric spaces and φ : X → Y be an L-bi-Lipschitz

homeomorphism. Then for W ∈ 2X and ε > δ > 0, we have

N
(
BdX

H
(W, ε), δ

)
≤ N

(
BdY

H
(φ(W ), Lε),

δ

L

)
.

Proof Suppose A ∈ BdX
H
(W, ε). Since dYH

(
φ(A), φ(W )

)
/L ≤ ε, φ(A) ∈ BdY

H

(
φ(W ), Lε

)
. More-

over, if E,F ∈ BdX
H
(W, ε) and dXH(E,F ) ≥ δ, then dYH

(
φ(E), φ(F )

)
≥ δ

L . Hence every δ-discrete

subset of BdX
H
(W, ε) is mapped to a δ

L -discrete subset of BdY
H

(
φ(W ), Lε

)
. It follows that Lemma

3.2 holds. �
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Lemma 3.3 Let s be a positive constant. Then for large enough n we have

N
(
B

d
[0,2]m

H

([0, 2]m,
1

ns
),
s

n2
)
≥ 2

([
n
s2

]
−1

)m
[2ns]m .

Proof Let n be a large enough number such that 1
ns < 2 and n

s2 > 2. Denote

D =
{( i1
ns
, . . . ,

im
ns

)
| 0 ≤ ij ≤ [2ns], 0 ≤ j ≤ m

}
,

D1 =
{( i1
ns
, . . . ,

im
ns

)
∈ D | 0 ≤ ij < [2ns], 0 ≤ j ≤ m

}
.

Clearly,

D ∈ B
d
[0,2]m

H

([0, 2]m,
1

ns
)

and

|D1| = [2ns]m.

For every point
(
p1

ns , . . . ,
pm

ns

)
∈ D1, define

Dp1···pm =
{
(
p1
ns

+
j1
n2
, . . . ,

pm
ns

+
jm
n2

) | 1 ≤ jk ≤ [
n

s2
]− 1, k = 1, . . . ,m

}
.

Clearly, Dp1···pm is s
n2 -discrete in [0, 2]m and

|Dp1···pm | =
([ n
s2

]
− 1

)m
.

Moreover, let

B =
∪(

p1
ns ,...,

pm
ns

)
∈D1

Dp1···pm ∪D.

Then B is an s
n2 -discrete subset of [0, 2]m. It follows that Γ =

{
A ∈ P ∗(B) | A ⊇ D

}
is an

s
n2 -discrete subset of B

d
[0,2]m

H

(
[0, 2]m, 1

ns

)
. Moreover,

|Γ| = |P (B\D)| = 2

([
n
s2

]
−1

)m
|D1| = 2

([
n
s2

]
−1

)m
[2ns]m .

Therefore,

N
(
B

d
[0,2]m

H

([0, 2]m,
1

ns
),
s

n2
)
≥ |Γ| = 2

([
n
s2

]
−1

)m
[2ns]m . �

Proof of Theorem 1.2 By the assumption of Theorem 2, there exists an open subset U

of X such that U and (a, b)m are bi-Lipschitz homeomorphic. It follows that there exists an

open subset V of U such that V ⊆ U and V is bi-Lipschitz homeomorphic to [c, d]m for some

[c, d] ⊆ (a, b). Obviously, [c, d]m with the Euclidean metric is bi-Lipschitz homeomorphic to

[0, 2]m with the maximal metric. So we endow [0, 2]m with the maximum metric for convenience.

We assume that

h : V → [0, 2]m

is a K-bi-Lipschitz homeomorphism. Let

x = h−1
(
(1, . . . , 1)

)
.
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Suppose that the hyperspace 2X is bi-Lipschitz homogeneous. Let H : 2X → 2X be an L-bi-

Lipschitz homeomorphism for some positive number L with

H({x}) = V .

According to the Comparison Principle,

N
(
H(BdX

H
({x}, 1

n
)),

L

n2
)
≤ N

(
BdX

H
({x}, 1

n
),

1

n2
)
.

The rest of our proof is based on large enough n such that

Bd(x,
1

n
) ⊆ V .

Then

BdX
H
({x}, 1

n
) = B

dV
H
({x}, 1

n
),

hence

H
(
BdX

H
({x}, 1

n
)
)
= H

(
B

dV
H
({x}, 1

n
)
)
.

It follows that

N
(
H
(
BdX

H
({x}, 1

n
)
)
,
L

n2
)
= N

(
H
(
B

dV
H
({x}, 1

n
)
)
,
L

n2
)
.

Using the Comparison Principle, we have

N
(
H
(
B

dV
H
({x}, 1

n
)
)
,
L

n2
)
≤ N

(
B

dV
H
({x}, 1

n
),

1

n2
)
. (3.1)

Since H is an L-bi-Lipschitz homeomorphism satisfying H({x}) = V , we have

B
dV
H

(
V ,

1

nL

)
⊆ H

(
B

dV
H
({x}, 1

n
)
)
.

Hence

N
(
B

dV
H
(V ,

1

nL
),
L

n2
)
≤ N

(
H
(
B

dV
H
({x}, 1

n
)
)
,
L

n2
)
.

Therefore,

N
(
B

dV
H
(V ,

1

nL
),
L

n2
)
≤ N

(
B

dV
H
({x}, 1

n
),

1

n2
)
.

On the other hand, according to Lemma 3.3, for the K-bi-Lipschitz homeomorphism h we have

N
(
B

dV
H
({x}, 1

n
),

1

n2
)
≤ N

(
B

d
[0,2]m)
H

({(1, . . . , 1)}, K
n
),

1

Kn2

)
. (3.2)

Note that for large enough n,

B
d
[0,2]m

H

(
{(1, . . . , 1)}, ([K] + 1)2

Kn

)
= 2

[
1− ([K]+1)2

Kn ,1+
([K]+1)2

Kn

]m
.

Moreover,

B
d
[0,2]m

H

(
{(1, . . . , 1)}, K

n

)
⊆ B

d
[0,2]m

H

(
{(1, . . . , 1)}, ([K] + 1)2

Kn

)
.

It follows from Lemma 3.1 that

N
(
B

d
[0,2]m

H

({(1, . . . , 1)}, K
n
),

1

Kn2

)
≤ N

(
B

d
[0,2]m

H

({(1, . . . , 1)}, ([K] + 1)2

Kn
),

1

Kn2

)
= N

(
2

[
1− ([K]+1)2

Kn ,1+
([K]+1)2

Kn

]m
,

1

Kn2

)
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= 2(2n([K]+1)2+1)m − 1

for large enough n. Using inqualities (3.1) and (3.2) we have for large enough n

N
(
B

dV
H
(V ,

1

nL
),
L

n2
)
≤ 2(2n([K]+1)2+1)m − 1. (3.3)

So we derive an upper bound of N
(
B

dV
H
(V , 1

nL ),
L
n2

)
.

Next, we give a lower bound of N
(
B

dV
H
(V , 1

nL ),
L
n2

)
. Using Lemmas 3.2 and 3.3, we have

N
(
B

dV
H
(V ,

1

nL
),
L

n2
)
≥ N

(
B

d
[0,2]m

H

(h(V ),
1

nKL
),
KL

n2
)

= N
(
B

d
[0,2]m

H

([0, 2]m,
1

nKL
),
KL

n2
)
.

≥ 2

([
n

K2L2

]
−1

)m
[2nKL]m

for the K-bi-Lipschitz homeomorphism h−1 : [0, 2]m → V and large enough n. Elementarily,

2

([
n

K2L2

]
−1

)m
[2nKL]m > 2(2n([K]+1)2+1)m

for large enough n. That is, we give a lower bound of N
(
B

dV
H
(V , 1

nL ),
L
n2

)
which is larger than

one of its upper bound in inequality (3.3) when n is large enough. A contradiction. �

4. Open Problems

After proving Theorem 1.1, it is natural to ask the following question:

Question 4.1 Whether there exists an admissible metric σ on [0, 1] such that 2([0,1],σ) is bi-

Lipschitz homogeneous?

According to the remark of Theorem 1.2, it is natural to ask the following question.

Question 4.2 Suppose that a metric space X has a “nice” open subspace whose hyperspace is

not bi-Lipschitz homogeneous. Whether 2X is not bi-Lipschitz homogeneous either?
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