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On Non-Bi-Lipschitz Homogeneity of Some Hyperspaces
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Abstract A metric space (X, d) is called bi-Lipschitz homogeneous if for any points z,y € X,
there exists a self-homeomorphism k of X such that both h and h~! are Lipschitz and h(z) = y.
Let 259 denote the family of all non-empty compact subsets of metric space (X, d) with the
Hausdorff metric. In 1985, Hohti proved that 2(%1-%) is not bi-Lipschitz homogeneous, where
d is the standard metric on [0, 1]. We extend this result in two aspects. One is that 2(10:11.0) jg
not bi-Lipschitz homogeneous for an admissible metric ¢ satisfying some conditions. Another
is that 2% is not bi-Lipschitz homogeneous if (X, d) has a nonempty open subspace which
is isometric to an open subspace of m-dimensional Euclidean space R™.
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1. Introduction and main results

Let (X7,d;) and (X3,ds) be metric spaces. We call a homeomorphism ¢ : X; — X5 a

bi-Lipschitz homeomorphism if there exists a real number L > 0 such that

L dy(x,y) < da(p(z), o(y)) < Ldi(z,y)

for all points x,y € X;. This concept plays an important role in fractal geometry. Recently,
there are a lot of interests in related topics [2,5]. Trivially, L > 1 and there exists the minimum
positive number L with the property above. Let bilipy denote the least such constant L. We
say that ¢ is a K-bi-Lipschitz homeomorphism if bilipp < K. Let us recall that a topological
space X is called homogeneous if for all points =,y € X there exists a self-homeomorphism h of
X such that h(z) = y. A metric space X is called bi-Lipschitz homogeneous, if for all points
2,y € X there exists a bi-Lipschitz self-homeomorphism h : X — X such that h(z) = y. 2% is
used to denote the metric space of all non-empty compact subsets of metric space (X, d) with
Hausdorff metric dg defined by

di (A, B) = inf d(a, b inf d(a,b
(A, B) max{jggb%g (a, ),ggg;gA (a,b)},

for each pair of points A, B € 254 2(X:4) will be called the hyperspace of (X, d) and it may

be denoted as 2% for short if there is no confusion.
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Let I denote [0, 1] with the standard metric unless otherwise stated. Recall that the admis-
sible metric on a metrizable topological space X means the metric which induces the original
topology of X.

Earlier in 1931, Keller in [4] proved that Hilbert cube @), countable infinite product of I with
product topology, is homogeneous. This fact is very different from a well-known theorem that no
finite dimensional cube I" is homogeneous for any n € N. Later, Curtis and Schori proved in [1]
that the hyperspace 2% is homeomorphic to Hilbert cube @ for every non-degenerate connected
local-connected compact metrizable topological space X. This remarkable work built a bridge
between hyperspace theory and infinite dimensional topology. In particular, 2' is homeomorphic
to Hilbert cube Q. From these two results, we know that 2! is homogeneous. However, Hohti in
[3, Proposition 7.2] showed that 2(59) is not bi-Lipschitz homogeneous, where d is the standard
metric on I. In [3, Theorem 3.1] the author also proved that Hilbert cube @ can be bi-Lipschitz
homogeneous if it is endowed with some special admissible metric. Therefore, we know that
bi-Lipschitz homogeneity is not a topological invariant.

We extend [3, Proposition 7.2] in two aspects. One is the following theorem which is a

generalization in the sense of metric.

Theorem 1.1 Let f : 1 — [0,+00) be a continuous strictly monotone increasing function which

satisfies:

(1) f(0) =0 and f(z+y) < f(z)+ fy);

(2) For L € (0,400) and 1/n € [0, f(1)/L), we have nf~*(2-) = O(1) and a,, f 71 (£) = 0
as n — +oo, where a,, = fﬁl(ﬁc{(ﬂii(;;n)/”)).
Define a function ¢/ : 1 x 1 — [0, igo) by (z,y) = f(|x —y|). Then o is an admissible metric

on I. Moreover, 2:e") js not bi-Lipschitz homogeneous. We call of a metric on I induced by the

function f.

Example 1.1 Let g(z) be a linear combination, with positive coefficient, of functions x*, where

€ (0,1]. Clearly, g(x) satisfies the condition of Theorem 1.1. Hence the hyperspace of I with
the metric induced by g is not bi-Lipschitz homogeneous.

Denote by R™ the m-fold products of real line R with the Euclidean metric. Another gen-

eralization of [3, Proposition 7.2] is the following theorem:

Theorem 1.2 For a metric space X, 2% is not bi-Lipschitz homogeneous if there exists a

nonempty open subspace of X which is bi-Lipschitz homeomorphic to an open subspace of R™.

Remark 1.1 By Theorem 1.2, we may study the non-bi-Lipschitz homogeneity of a hyperspace
2% by studying the local metrical property of X. In particular, 2% is not bi-Lipschitz homoge-

neous if X has a nonempty open subspace which is isometric to an open subspace of R™.

Example 1.2 According to Theorem 2, we can deduce that no hyperspace of surface in R™ like
sphere or torus is bi-Lipschitz homogeneous. Moreover, no hyperspace of subspace in R™ which

has non-empty interior is bi-Lipschitz homogeneous.
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In this paper, N denotes the set of all positive integers, P(A) denotes the power set of
a set A and P*(A) = P(A)\{0}. For a finite set B, |B| denotes the number of all elements
in B. For m € R, we use [m] to denote the largest integer n such that n < m. We say
that a subset S of a metric space (X,d) is e-discrete if d(x,y) > e for every pair of points
x,y € S. For a compact metric space X and € > 0, we use N(X,¢) to denote the maximum
cardinality of all e-discrete subsets of X. For a metric space (X, d) and a compact set A in (X, d),
B, (A,e)={B € 2X|dy(B, A) < ¢}, where ¢ > 0.

In [3], Hohti gave the following result which will be useful in our proofs:

Comparison Principle Let X and Y be two compact metric spaces. If there is an L-bi-
Lipschitz homeomorphism ¢ : X — Y, then for every ¢ > 0 we have N(Y,Le) < N(X,e). If
for every L > 1 there exists an n € N with N(Y,L/n) > N(X,1/n), then Y is not bi-Lipschitz
homeomorphic to X.

Using the Comparison Principle and some estimations of the cardinality of e-discrete set,
the author proved in [3, Proposition 7.2] that 2! is not bi-Lipschitz homogeneous. We prove

Theorems 1.1 and 1.2 by similar but more complicated estimations.

2. Proof of Theorem 1.1

Lemma 2.1 Let f : T — R be a continuous strictly monotone increasing function with f(0) =0
and f(x +y) < f(x) + f(y). Define a function of : 1 x T — [0,+00) by of (z,y) = f(|z — yl).
Then o is an admissible metric on I and we have, in 2(H’Qf),

f_;(%>)) —_ 2n+1 -1

— 1
for large enough n.

Proof Clearly, of (z,y) = of (y,2) and of (z,y) > 0. of(x,y) = 0 if and only if z = y since
f(0) = 0 and the function f is strictly monotone increasing. It follows from f(z+y) < f(x)+f(y)
that the function of satisfies the triangle inequality. Therefore, of is a metric on I. Moreover,
of is an admissible metric on I since f is continuous strictly monotone increasing.

The rest of proof is based on large enough n such that f’l(%l) € I. Since f is strictly

monotone increasing on I,

1 —1,1
2y = 9lo,f 7 ()]
B, ({0}, 1) =2

1,1
for large enough n. Let A = {ZfT(”) | 0 < i < n}. For any two distinct numbers i1,is €

{0,...,n}, let a::il%, y:iQ%. Clearly,
) ')
o () = 11— ol > p Ly

Hence P*(A) is an f(%)—discrete subset of 2(0:/ 7" (he”) - Moreover, |P*(A)] = 27+ — 1.
5 -
Suppose €2 is an f(fT(’%))—discrete subset of 200/ (he”)  We define a map F : Q — P*(A)
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by
cAl ((i—l)f (ﬁ>,if n(ﬁ)]mpyé@,ie {1,...,n}}.

D —
{i -

S
n
Trivially, F is injective. Hence |Q| < |P*(A)| = 2"T1 — 1. We are done. [J

Proof of Theorem 1.1 Since we have proved that of is an admissible metric on I in Lemma
2.1, it suffices to prove that 2(Le”) ig not bi-Lipschitz homogeneous. If 2" ig bi-Lipschitz
homogeneous, then there exists an L-bi-Lipschitz homeomorphism 1 : 252 — 2@e”) for some

positive number L, such that
¥({0}) =L

The rest of our proof is based on large enough n such that all terms with n are well defined.

According to the Comparison Principle and Lemma 2.1,

&)

V(B (100 ) L) < N (B 0 s < o

Clearly,

B, (L7-) C (B ({0}, ).

Hence we have

101 -1l
N(B,, (). il 2y <Nz, ({0},1>,f<f Gy ot )
So we derive an upper bound of N(ng (I, &), Lf( ))
Now we estimate a lower bound of N(Bgf( ,Ln) Lf( )) Let r = [f*%i)] and
D ={if Y(££)0 <i < r}. Clearly, !
(DT = (7)) = 7

Let D; be a maximal Lf( %) )-discrete subset of open interval ((if ' (2:), (i+1)f~1(£)), o),
1=0,...,7 — 1. Clearly, there exists a number «,, € [1,+00) such that

f_n(ﬁ)))

Hence every Lf(%)—discrete subset of 2:¢") is an (anf~(£)/n)-discrete subset of 2(b4)
where d is the standard metric on I. Moreover,

f—l(ﬁ) }: [ﬂ] <9
O‘nf_l(ﬁ)/” Qn
for large enough n, since oy, f~'(£-) — 0 and nf~' () = O(1) as n — +oo. Let E; =
D;\{max D;, min D;}. Trivially,

w7 ) fm = 17 (L

1Dil > [

B > [=]-2>0

n

L
71

) discrete subset of (I, of).

for large enough n. Denote C = DUU1 o Ei. Then C'is an Lf(
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Clearly, C € EQ . (I Thus we have

T

r—1
N(Bf( ) f >H|P |>H2[%]—2:2([ﬁ]—2)’"
for large enough n. Since

n 1 n
([?n]_2)[f—1(Ln)] = danf- ( )
%

—) — 0 as n — 400, we have

for large enough n and a,, f ~1(

st
dan fHE)

for large enough n. It follows that
! (%)

N(B f ( ) Lf( )) > ontl

for large enough n. However, it contradicts the 1nequahty (2.1). O

3. Proof of Theorem 1.2

In this section, we use d¥ to denote the metric on X, where X is a metric space. [a,b]™
is endowed with the maximal metric unless otherwise stated for every non-degenerate closed
interval [a, b].

To prove Theorem 1.2, we have to prove the following lemmas.
Lemma 3.1 Suppose k € N and € > 0. For any non-degenerate closed interval [a,b] with
l:“T*bGN, we have

N2l g) = 20+D* _ 1.

Proof Let A = {(a + i16,...,a +ixe) | 0 < iy,d9,...,5, < I}. Then P*(A) is an e-discrete
subset of [a,b]* and |P*(A)| = 20+1D" _ 1. Suppose 2 is an e-discrete subset of 2[¢:%1" . Define a
map F: Q — P*(A) by
F(D)={(a+iie,...,a+ixe) | (a+ (i1 — )e,a+ire] x -+ X (a+ (ix — L)e,a+ ixe] N D # 0}.
Clearly, F is injective. Hence [©] < |P*(A)| = 20+D" — 1. We are done. [

Lemma 3.2 Let X, Y be two compact metric spaces and ¢ : X — Y be an L-bi-Lipschitz
homeomorphism. Then for W € 2% and € > § > 0, we have

N(Bay (W.2).6) < N (B (o). Le). ).

Proof Suppose A € Edﬁ (W,e). Since d}; (¢(A),p(W))/L <, <p(A)
over, if £, F € Edg(I/V, ¢) and d3(E, F) > §, then d};( (E) ) >

subset of Edf; (W, e) is mapped to a %—discrete subset of Bd‘{;( (W) Le). It follows that Lemma
3.2 holds. OO

€ Byy (¢(W), Le). More-
% Hence every d-discrete
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Lemma 3.3 Let s be a positive constant. Then for large enough n we have

N(Boam (0,27, 1), %) > o(la]-)"ena,

Proof Let n be a large enough number such that % < 2and > 2. Denote

Z‘1 Zm, . .
D:{(%,...,%) |0 <i; < [2ns], 0<j<m},
3 T ) .
Dl:{(nisw"’nig) €D|0<1i; <[2ns], Ogjgm}_
Clearly,
- 1
D€ B 2m([0,2], —
92 ([ ] ns)
and
|D:| = [2ns]™.
For every point (%7"-7%) € Dy, define
b1 jl Pm jm . n
=T 1< <[ 5] -1, k=1,...,m}.
Dpr"Pm {(ns + n27 ) ns + ’]’L2) | 1 STk S [82] 1, k 1’ 77’]’1,}

Clearly, Dy, ..., is -discrete in [0, 2]™ and

Daen = ([ ] = 1)
Moreover, let

B = U Dy,..p,, UD.

(Pl Pm)eDl

ns’ " ns

Then B is an -%-discrete subset of [0,2]™. It follows that I' = {A € P*(B) | A 2 D} is an

~z-discrete subset of Ed[gﬂl"‘ ([O, 2™, %) Moreover,

IT| = |P(B\D)| = o([]=1)"1pul _ o([] 1) "2nei

Therefore,

N (B o ([0,2]™ i),i) > I = o([] 1) " -

" "ns’’ n?
Proof of Theorem 1.2 By the assumption of Theorem 2, there exists an open subset U
of X such that U and (a,b)™ are bi-Lipschitz homeomorphic. It follows that there exists an
open subset V of U such that V C U and V is bi-Lipschitz homeomorphic to [c,d]™ for some
[e,d] C (a,b). Obviously, [¢,d]™ with the Euclidean metric is bi-Lipschitz homeomorphic to
[0, 2]™ with the maximal metric. So we endow [0, 2]™ with the maximum metric for convenience.
We assume that

h:V —[0,2]™
is a K-bi-Lipschitz homeomorphism. Let

z=h"'((1,...,1)).
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Suppose that the hyperspace 2% is bi-Lipschitz homogeneous. Let H : 2X — 2% be an L-bi-

Lipschitz homeomorphism for some positive number L with
H({z})=V.

According to the Comparison Principle,

N(HB (), ), 3) < N (Bag (e, ).

The rest of our proof is based on large enough n such that
— 1

B )TV,
d(gjvn) =

1
n?

).

Then . )
Buz({z},—) = By ({z}, ).
hence B ) B )
H(Bdg({$}> ﬁ)) = H(Bdg({ﬂf}a g))-

It follows that

N(H(Bug (e}, 1), o) = N(H(Bg ({2, 2)), 7).
Using the Comparison Principle, we have
_ 1 L — 1. 1
N(H(Bg (5}, 1), ) < N(Bug (e}, 1), ). (31)

Since H is an L-bi-Lipschitz homeomorphism satisfying H({z}) = V, we have

By (V. ) € H(Bp(a), 1),

Hence ) I ) I
NBy W5 D) < NEB 5. ). )
Therefore,
— — 1. L — 1.1
On the other hand, according to Lemma 3.3, for the K-bi-Lipschitz homeomorphism h we have
_ 1.1 — K 1
N(Bdg({df}, E)7 ﬁ) < N(Bdggz]m)({(l, ey 1)}7 ;)7 W) (32)

Note that for large enough n,

- (K] +1)?

Bdgg’Q]m ({(17 R 1)}7 Tn)

K]+1)2 K]+1D2]™
[1-Uxen? g ax)en?] '

Moreover,
B o ({(1,...,1)},%) € Byoam ({(1,..., 1)}, %)'

It follows from Lemma 3.1 that

N(Ed[lg,z]m({(l,...,l)}K !

) ([K]+1)2%, 1

7K7n2) S N(Ed[g{’zlm({(]—a"'v]—)}a Kn )a Kn2)
(2[1_<[KI](+W}> 1 (KD ] ')Klnz)

,—
n
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— o@n([K]+1)*+1)™ _ 4

for large enough n. Using inqualities (3.1) and (3.2) we have for large enough n

— 1 L m
N (B (V. ), %) < gkl _y. (3.3)

. _ - 1 KL
N(BdZ(V’ E)ﬂ ﬁ) > N(Bdgg Z]m(h(V), m)’ F)
B . 1 KL

= N(Bygar (02", ) 25)-

for the K-bi-Lipschitz homeomorphism h~! : [0,2]™ — V and large enough n. Elementarily,
o([riz=] 1) "k S genrn® 4™

for large enough n. That is, we give a lower bound of N (E i (V, ﬁ), %) which is larger than

one of its upper bound in inequality (3.3) when n is large enough. A contradiction. O

4. Open Problems
After proving Theorem 1.1, it is natural to ask the following question:

Question 4.1 Whether there exists an admissible metric ¢ on [0, 1] such that 2(%19) is bi-
Lipschitz homogeneous?
According to the remark of Theorem 1.2, it is natural to ask the following question.

Question 4.2 Suppose that a metric space X has a “nice” open subspace whose hyperspace is

not bi-Lipschitz homogeneous. Whether 2% is not bi-Lipschitz homogeneous either?
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