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Abstract A tricyclic graph G = (V (G), E(G)) is a connected and simple graph such that

|E(G)| = |V (G)|+2. Let T g
n be the set of all tricyclic graphs on n vertices with girth g. In this

paper, we will show that there exists the unique graph which has the largest signless Laplacian

spectral radius among all tricyclic graphs with girth g containing exactly three (resp., four)

cycles. And at the same time, we also give an upper bound of the signless Laplacian spectral

radius and the extremal graph having the largest signless Laplacian spectral radius in T g
n ,

where g is even.
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1. Introduction

All graphs considered here are connected and simple. Let G = (V,E) be a graph with vertex

set V = V (G) = {v1, v2, . . . , vn} and edge set E = E(G) = {e1, e2, . . . , em}. The order of a graph

is the cardinality of its vertex set. Especially, if m = n + 2, then G is called a tricyclic graph.

Let NG(v) or N(v) denote the adjacent vertex set of v in G and dv or d(v) the degree of v. Let

∆ = ∆(G) be the maximum degree of G. The girth g = g(G) of G is the length of the shortest

cycle contained in G. The adjacency matrix of G is A(G) = (aij), where aij = 1 if and only

if vi and vj are adjacent in G and aij = 0 otherwise. The characteristic polynomial P (G, x) =

|xIn−A(G)| of the adjacency matrix A(G) of G is called the characteristic polynomial of G. The

spectrum of A(G) is also called the spectrum of G. Let D = D(G) = diag(dv1 , dv2 , . . . , dvn) be

the vertex degree diagonal matrix of G. The spectral radius of G, denoted by ρ1(G), is the largest

eigenvalue of its adjacency matrix A(G). The Laplacian spectral radius of G, denoted by µ1(G),

is the largest eigenvalue of its Laplacian matrix L(G) = D(G)−A(G), and the signless Laplacian

spectral radius of G, denoted by q1(G), is the largest eigenvalue of its signless Laplacian matrix

Q(G) = D(G) +A(G). Moreover, if G is connected, by the Perron-Frobenius Theorem, we have

that Q-spectral radius is simple and has a unique unit positive eigenvector. We refer to such an

eigenvector as Perron vector of G.
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The adjacency matrix A(G) and Laplacian matrix L(G) are studied extensively in the

literature (see e.g., books [2–4] and survey papers [1, 19]), respectively. Recently, the problem

about determining the extremal graphs with the maximal signless Laplacian spectral radius for

a class of graphs attracts people’s attention. Some properties of signless Laplacian spectra of

graphs and some possibilities for developing the spectral theory of graphs based on Q(G) are

discussed in [6–8]. Fan and Yang studied the signless Laplacian spectral radius of graphs with

a given number of pendent vertices in [9]. Feng and Yu studied the signless Laplacian spectral

radius of unicyclic graphs with a given number of pendent vertices or independence number in

[10]. Li, Wang and Zhao studied the signless Laplacian spectral radius of tricyclic graphs and

trees with k pendant vertices in [14], and the signless Laplacian spectral radius of unicyclic and

bicyclic graphs with a given girth in [13]. Liu, Tan and Liu studied the (signless) Laplacian

spectral radius of unicyclic and bicyclic graphs with n vertices and k pendent vertices in [17].

Zhai, Yu and Shu determined the extremal graph with the maximal Laplacian spectral radius

among all bicyclic graphs with a given girth in [20]. Li and Yan discussed the Laplacian spectral

radius of tricyclic graphs with a given girth [15]. In this paper, we will show that there exists

the unique graph which has the largest signless Laplacian spectral radius among all tricyclic

graphs with girth g and containing exactly three (resp., four) cycles. Meanwhile, we also give an

upper bound of the signless Laplacian spectral radius and the extremal graph having the largest

signless Laplacian spectral radius in T g
n , where g is even.
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Figure 1 T1 − T15

2. Preliminaries

Denote by Cn and Pn the cycle and the path, respectively, each on n vertices. A pendent



The signless Laplacian spectral radius of tricyclic graphs with a given girth 381

edge is an edge incident with a pendent vertex. A path P = vv1v2 · · · vk of G is said to be

a pendent path from a vertex v if d(v1) = d(v2) = · · · = d(vk−1) = 2, and d(vk) = 1. For

convenience, we denote by T g
n the set of all the n-vertex tricycle graphs of girth g. We know,

by Geng and Li [11], that a tricyclic graph G contains at least 3 cycles and at most 7 cycles,

furthermore, there does not exist 5 cycles in G. Let T g,i
n ⊂ T g

n be the set of all graphs with

exact i cycles for i = 3, 4, 6, 7. Then T g
n = T g,3

n ∪ T g,4
n ∪ T g,6

n ∪ T g,7
n .

For any G ∈ T g
n , G can be obtained from some Ti in Figure 1 by attaching trees to some

vertices. It is easy to see that each of Ti in Figure 1 is a minimal tricycle graph, i.e., it contains

no pendent vertices. For convenience, denote by TG the minimal tricyclic graph contained in G,

if G is an n-vertex tricyclic graph. Furthermore, we say that TG is of type Ti, i ∈ 1, 2, . . . , 15, if

the arrangement of cycles contained in TG is the same as that of Ti. Let T
k
p,q,r, T

k
p,q,r;s, T

k
p,q,r,l be

the graphs as shown in Figure 2.
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Figure 2 The tricyclic graphs T k
p,q,r, T

k
p,q,r;s, T

k
p,q,r,l

In order to complete the proof of our main results, we need the following lemmas.

Lemma 2.1 ([18]) Let G be a graph on n vertices. Then

q1(G) ≤ max{du +mu : u ∈ V (G)},

where mu = (
∑

uv∈E(G) dv)/du is the average of the degrees of the vertices of G adjacent to u,

the equality holds if and only if G is regular or semi-regular bipartite.

Lemma 2.2 ([18]) LetG be a simple and connected graph, its degree sequence is dv1 , dv2 , . . . , dvn .

Then we have

(1) q1(G) ≤ max{du(du+mu)+dv(dv+mv)
du+dv

: uv ∈ E}.
(2) q1(G) ≤ max{du + dv : uv ∈ E}.

Lemma 2.3 ([12]) Let G be a connected graph and u, v be the two vertices of G. Suppose

v1, v2, . . . , vs ∈ N(v)\{N(u) ∪ {u}} (1 ≤ s ≤ dv) and G∗ is the graph obtained from G by

deleting the edges vvi and adding uvi (1 ≤ i ≤ s). Let X = (x1, x2, . . . , xn)
t be the principal

eigenvector of Q(G), where xi corresponds to vi (1 ≤ i ≤ n). If xu ≥ xv, then q1(G) < q1(G
∗).

Lemma 2.4 ([6]) Suppose G is a nontrivial simple and connected graph. Let v be some vertex

of G. For nonnegative integers k, l, let G(k, l) denote the graph obtained from G by adding

pendant paths of length k, l at v. If k ≥ l ≥ 1, then q1(G(k, l)) > q1(G(k + 1, l − 1)).

Lemma 2.5 ([5]) Let G be a graph on n vertices with at least an edge and the maximum degree
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of G be ∆. Then q1(G) ≥ ∆+ 1, the equality holds if only if G is a star Sn = K1,n−1.

Lemma 2.6 ([16]) If a graph G is a bipartite graph, then µ1(G) = q1(G).

Lemma 2.7 ([16]) If G is a graph with at least one edge, then q1(G) ≥ µ1(G) ≥ ∆(G) + 1. If

G is connected, the first equality holds if and only if G is bipartite, the second equality holds if

and only if ∆ = n− 1.

Lemma 2.8 Let G∗ have the maximal signless Laplacian spectral radius among all graphs in

T g,3
n (resp., T g,4

n T g,6
n T g,7

n ). Then G∗ is obtained from TG∗ by attaching all the pendant edges

(if exists) to a unique vertex of TG∗ .

Proof Let X = (x1, x2, . . . , xn)
T be the principal eigenvector of G∗. Above all, we claim that all

pendant vertices of G∗ have a unique neighbour. Otherwise, let u′
1, u

′
2 be two pendant vertices

with different neighbours u1, u2, respectively.

1
u

2
u

k
u

'vv
*G

T

Figure 3 G∗ is obtained by jioning TG∗ and a star K1,k by a path

Without loss of generality, suppose xu1
≥ xu2

. By Lemma 2.3, q1(G
∗) < q1(G

∗ − u2u
′
2 +

u1u
′
2), but G∗ is an extremal graph, a contradiction. This claim implies that G∗ is the graph

obtained from TG∗ and a star S by joining a path between a vertex v of TG∗ and the center v′ of

the star K1,k (see Figure 3). Now it suffices to show that v = v′. Assume to the contrary that

v ̸= v′. If xv ≥ xv′ , then by Lemma 2.3, q1(G
∗) < q1(G

′), a contradiction, where

G′ = G∗ −
k
∪
i=1

v′ui +
k
∪
i=1

vui.

Similarly if xv < xv′ , by Lemma 2.3, q1(G
∗) < q1(G

′′), a contradiction, where

G′′ = G∗ − ∪
vi∈NTG∗ (v)

vvi + ∪
vi∈NTG∗ (v)

v′vi.

Thus the proof is completed. �

3. The graph with the largest signless Laplacian spectral radius in T g,3
n

In this section, we will determine the graph with the largest signless Laplacian spectral

radius in T g,3
n .

Lemma 3.1 Let G∗ be the graph with the largest signless Laplacian spectral radius among all

graphs in T g,p,q
n = {G ∈ T g,3

n : G contains three cycles Cp, Cq, Cg}. Then G∗ ∼= T
n−(g+p+q−2)
g,p,q

for some p, q ≥ g.

Proof Since TG∗ is the minimal tricyclic graph contained in G∗, TG∗ is a tricyclic graph without
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pendent vertices. Thus we consider two following cases.

Case 1 G∗ has no pendant vertices.

In this case, if G∗ is of type Ti (see Figure 1), i = 2, 4, 6, 7. By Lemma 2.1, q1(G
∗) <

max{du +mu : u ∈ V (G∗)} < 5 + 3 = 8 since G∗ cannot be regular or semiregular in such case.

However, q1(T
1
g,p,q) ≥ ∆+1 = 8. For |V (G∗)| ≥ |V (T 1

g,p,q,)|, we can find a graph G ∈ T g,p,q
n that

contains T 1
g,p,q as a subgraph. This means q1(G) ≥ q1(T

1
g,p,q) > q1(G

∗), a contradiction.

If G∗ is of type T3, by Lemma 2.1 q1(G
∗) < max{du+mu : u ∈ V (G∗)} = 6.5 for G∗ cannot

be regular or semiregular in this case. Since q1(T
0
g,p,q) ≥ ∆+1 = 7 and |V (G∗)| ≥ |V (T 0

g,p,q)|, we
can find a graph G ∈ T g,p,q

n that contains T 0
g,p,q as a subgraph. Then q1(G) ≥ q1(T

0
g,p,q) > q1(G

∗),

a contradiction.

Thus we obtain that G∗ ∼= T
n−(g+p+q−2)
g,p,q for some p, q ≥ g with n = g + p+ q − 2.

Case 2 G∗ has pendant vertices.

In this case, by Lemma 2.8, we know thatG∗ is a tricyclic graph obtained from TG∗ and a star

by identifying the center of the star with a vertex, say v, of TG∗ . Denote V ∗ = {u : dTG∗ (u) ≥ 3}.
It is clear that |V ∗| ≤ 4 in such case. Next we will show that v ∈ V ∗ and |V ∗| = 1.

First, assume that v ̸∈ V ∗. It is apparent that |V ∗| ≥ 1, thus we choose u ∈ V ∗ on some

cycle, say Cp and v is not on Cp. Denote NCp(u) = {w1, w2}. Let X = (x1, x2, . . . , xn) be the

principal eigenvector of G∗. Hence xi ≥ 0, i = 1, 2, . . . , n. Let

G′ = G∗ − {uw1, uw2}+ {vw1, vw2}.

Then G′ ∈ T g,p,q
n . If xv ≥ xu, by Lemma 2.3 we get q1(G

∗) < q1(G
′), a contradiction. Denote

by {u1, u2, . . . , uk} the set of pendant vertices adjacent to v. Let

G′′ = G∗ − {vu1, vu2, . . . , vuk}+ {uu1, uu2, . . . , uuk}.

Then G′′ ∈ T g,p,q
n . If xv < xu, then by Lemma 2.3 we have q1(G

∗) < q1(G
′′), a contradiction.

Thus we get v ∈ V ∗.

Next, we show that |V ∗| = 1. To the contrary, we assume that |V ∗| ≥ 2. Then there exists

another vertex w ∈ V ∗ different from v. By a similar discussion as above, we can get that in

T g,p,q
n there is a graph G such that q1(G

∗) < q1(G), a contradiction.

Finally, we obtain that G∗ ∼= T
n−(g+p+q−2)
g,p,q for some p, q ≥ g. Thus the proof is completed.

�

Theorem 3.2 Let G∗ be the graph with the largest signless Laplacian spectral radius among

all graphs in T g,3
n , where n ≥ 3g − 2. Then G∗ ∼= Tn−3g+2

g,g,g and q1(G
∗) < n− 3g + 9+ 6

n−3g+8 .

Proof From Lemma 3.1, we know that G∗ ∼= T
n−(g+p+q−2)
g,p,q for some p, q ≥ g. Now we show

p = q = g. Suppose that p ≥ g + 1, then n ≥ 3g − 1. Let k = n− (g + p+ q − 2) be the number

of pendant vertices of G∗. Then k ≤ n− 3g + 1. Since G∗ cannot be regular or semiregular, by
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Lemma 2.1, we get

q1(G
∗) < max{du +mu : u ∈ V (G∗)} = k + 6 +

k + 12

k + 6
= k + 7 +

6

k + 6
.

Clearly, k + 7 + 6
k+6 is increasing with nonegative number k. Hence

q1(G
∗) < n− 3g + 8 +

6

n− 3g + 9
≤ n− 3g + 9

for n ≥ 3g − 1. However, by Lemma 2.7, q1(T
n−3g+2
g,g,g ) ≥ ∆ + 1 = n − 3g + 9 > q1(G

∗), a

contradiction. Thus p = g. Similarly, we can obtain that q = g, which implies G∗ ∼= Tn−3g+2
g,g,g .

Since Tn−3g+2
g,g,g is neither regular nor semiregular,

q1(G
∗) < max{du +mu : u ∈ V (Tn−3g+2

g,g,g )} = n− 3g + 9 +
6

n− 3g + 8
.

Thus the proof is completed. �

4. The graph with the largest signless spectral radius in T g,4
n

Denote by P (p, q, r) the graph consisting of three pairwise internal disjoint paths Pp+1, Pq+1,

Pr+1 with common endpoints. For all G ∈ T g,4
n , we have that TG is of type Ti, i = 8, 9, 10, 11

(see Figure 1). Let Cs be a cycle with s ≥ g and Pl = u1u2 · · ·ul the path connecting P (p, q, r)

and Cs, where u1 ∈ V (P (p, q, r)) and ul ∈ V (Cs). When l = 1, TG is of type T8 or T9. When

l ≥ 2 we have that TG is of type T10 or T11. Let G and H be two disjoint graphs with u ∈ V (G)

and v ∈ V (H). we denote by GuvH the graph obtained from G and H by identifying u with v.

Lemma 4.1 Let G∗ be the graph with the largest sigless Laplacian spectral radius among graphs

in T g,4
n . Then G∗ ∼= TG∗u1vS, where TG∗ is of type T8 or T9, u1 is the vertex of maximum degree

in TG∗ and v is the center of the star S.

Proof By Lemma 2.8 we know that G∗ is a graph obtained from TG∗ and a star S by identifying

a vertex u of TG∗ with the center v of S. That is G∗ ∼= TG∗uvS. Let k be the number of pendant

vertices of G∗. Then k ≥ 0 and |V (S)| = k + 1.

First, we show that TG∗ is neither of type T10 nor T11. Assume that TG∗ is of type T10 or

T11. By Lemma 2.1, we have

q1(G
∗) < max{du +mu : u ∈ V (G∗)} = max{k + 4 +

k + 10

k + 4
, k + 3 +

k + 9

k + 3
} < k + 7

for k ≥ 0. But q1(T
k+l−1
p,q.r;s ) ≥ ∆+1 = k+l+5 ≥ k+7 for l ≥ 2. Thus q1(G

∗) < k+7 ≤ q1(T
k+l−1
p,q.r;s ).

This contradicts the hypothesis.

Next we will show that u = u1. By contradiction, suppose that u ̸= u1. Let X =

(x1, x2, . . . , xn)
T be the principal eigenvector of G∗. Then xi ≥ 0, i = 1, 2, . . . , n. If xu ≤ xu1 ,

by Lemma 2.3, q1(G
∗) < q1(TG∗u1vS), a contradiction. If xu > xu1 , then we have two subcases.

If u ∈ Cs, denote by v1, v2, v3 the neighbours of u1 not in Cs, then q1(G
∗) < q1(G

′), where G′ =

G∗−{u1v1, u1v2, u1v3}+ {uv1, uv2, uv3}, a contradiction. If u ̸∈ Cs, then q1(G
∗) < q1(TG∗uvS),

a contradiction. That means u = u1 as desired. The proof is completed. �
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Theorem 4.2 Let G∗ be the graph with the maximal signless Laplacian spectral radius a-

mong all graphs in T g,4
n , where n ≥ ⌈ 5

2g⌉ − 2. Then G∗ ∼= T
n−⌈ 5

2 g⌉+2

⌊ g
2 ⌋,⌈

g
2 ⌉,⌈

g
2 ⌉;g

and q1(G
∗) <

n− ⌈ 5
2g⌉+ 8 + 6

n−⌈ 5
2 g⌉+7

.

Proof By Lemma 4.1, we have that G∗ ∼= TG∗u1vS, where TG∗u1vS is defined in Lemma 4.1.

Clearly TG∗ is obtained by attaching a cycle Cs to a vertex of P (p, q, r). Without loss of gener-

ality, let s ≥ g, p ≤ q ≤ r and p+ q = g.

Case 1 TG∗ is of type T8.

In this case, let g = 2a if g is even and g = 2a + 1 otherwise. Then we only need to show

that p = q = r = a and s = 2a if g = 2a, or p = a, q = r = a + 1 and s = 2a + 1 if g = 2a + 1.

Here we prove the latter case only. The former case can be proved similarly, and we omit the

procedure here. It is clear that p+ q = 2a+1, p+ r ≥ 2a+1, q+ r ≥ 2a+1 and s ≥ 2a+1 when

g = 2a+ 1, then we have p+ q+ r+ s ≥ 5a+ 5
2 > 5a+ 2. Thus n ≥ (p+ q+ r+ s)− 2 ≥ 5a+ 1

and 0 ≤ k ≤ n− 5a− 1.

If n = ⌈ 5
2g⌉ − 2 = 5a + 1, then G∗ contains no pendent edges and p + q + r + s = 5a + 3.

For p + q = 2a + 1, we have r + s = 3a + 2. Note that p + q + r ≥ 3a + 2, thus r ≥ a + 1

and then s ≤ 2a + 1. For s ≥ g = 2a + 1, we have s = 2a + 1, whence r = a + 1. Therefore,

p ≥ q ≥ r = a+ 1. If p = a− 1, then q = a+ 2, a contradiction to q ≤ r = a+ 1. Hence, p ≥ a.

If p = a+ 1, then q = a, a contradiction to p ≤ q. Therefore, p = a. Hence, q = a+ 1. That is

p = a, q = r = a+ 1, s = 2a+ 1.

If n = ⌈ 5
2g⌉−1 = 5a+2, then p+q+r+s ≤ n+2 = 5a+4. Since p+q = 2a+1, s ≥ 2a+1,

we have a + 1 ≤ r ≤ a + 2, which implies that q ≤ a + 2 and p ≥ a − 1. Thus (p, q, r, s) ∈
{(a, a+1, a+2, 2a+1), (a−1, a+2, a+2, 2a+1), (a, a+1, a+1, 2a+1), (a, a+1, a+1, 2a+2)}. If
(p, q, r, s) ∈ {(a, a+1, a+2, 2a+1), (a−1, a+2, a+2, 2a+1), (a, a+1, a+1, 2a+2)}, thenG∗ contains

no pendant edges. When a = 2, then G∗ ∼= G1, G2, or G3 (see Figure 4). By direct calculations,

we have q1(G1) = 6.2716, q1(G2) = 6.3494, q1(G3) = 6.2752, whereas q1(T
1
2,3,3;5) = 7.1809, thus

q1(Gi) < q1(T
1
2,3,3;5), i = 1, 2, 3, a contradiction. When a ≥ 3, then the 3-vertex and 5-vertex

are not adjacent in G∗. Hence by Lemma 2.2(2), q1(G
∗) ≤ max{du + dv : uv ∈ E(G∗)} = 7.

But, q1(T
1
a,a+1,a+1;2a+1) > ∆ + 1 = 7 by Lemma 2.7. Thus q1(G

∗) < q1(T
1
a,a+1,a+1;2a+1), a

contradiction. That is p = a, p = r = a+ 1, s = 2a+ 1.

If n ≥ ⌈ 5
2g⌉ = 5a + 3, note that p ≤ q ≤ r and p + q = g = 2a + 1, then r ≥ a + 1. If

r ≥ a+ 2, then p+ q + r + s ≥ 5a+ 4 and k ≤ n− 5a− 2. By Lemma 2.1, we have

q1(G
∗) < max{du +mu : u ∈ V (G∗)} = k + 5 +

k + 11

k + 5
= k + 6 +

6

k + 5

as G∗ cannot be regular or semiregular. Note that k + 6 + 6
k+5 is increasing with nonnegative

number k. Hence q1(G
∗) < n−5a+4+ 6

n−5a+3 ≤ n−5a+5 for n ≥ 5a+3. However, by Lemma

2.5, q1(T
n−5a−1
a,a+1,a+1;2a+1) ≥ ∆+ 1 = n− 5a+ 5 > q1(G

∗), a contradiction. Then r < a+ 2. That

is r = a + 1. Then it is clear that p = a, q = a + 1. Now it suffices to show that s = 2a + 1.
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Assume that s ≥ 2a+ 2, then k = n− (p+ q + r+ s) + 2 ≤ n− 5a− 2. By Lemma 2.1, we have

q1(G
∗) < max{du +mu : u ∈ V (G∗)} = k + 5 +

k + 11

k + 6
= k + 6 +

6

k + 5

for G∗ cannot be regular or semiregular. Note that k + 6 + 6
k+5 is increasing with nonnegative

number k. Thus q1(G
∗) < n− 5a+4+ 6

n−5a+3 ≤ n− 5a+5 for n ≥ 5a+3. However by Lemma

2.5, q1(T
n−5a−1
a,a+1,a+1;2a+1) ≥ ∆+ 1 = n− 5a+ 5 > q1(G

∗), a contradiction. That is s = 2a+ 1.

1
G

3
G

2
G

4
G

5
G

6
G

7
G

Figure 4 G1, G2, . . . , G7

Therefore, p = a, q = r = a+ 1, s = 2a+ 1 and then G∗ ∼= T
n−⌈ 5

2 g⌉+2

⌊ g
2 ⌋,⌈

g
2 ⌉,⌈

g
2 ⌉;g

.

Case 2 TG∗ is of type T8.

Similarly to Case 1, we can obtain that, in this case, p = q = r = a and s = 2a in TG∗

if the girth g is even, and p = a, q = r = a + 1 and s = 2a + 1 in TG∗ if g is odd. We only

discuss the latter case here. The former case can be proved by the similar way, and we omit

the procedure here. In the latter case, let k be the number of pendant vertices of G∗. Then

k = n − (p + q + r + s − 2) = n − 5a + 1. Note there exists a 4-vertex, denote by u1, and two

3-vertices, say u2, u3 in TG∗ . We now show that TG∗ is not of type T9.

If k = 0, then n = 5a + 1. First, if a = 1, then G∗ ∼= G4 (see Figure 4). By direct

calculations, we have q1(G4) = 6.0000, q1(T
0
1,2,2;3) = 6.6262. Hence q1(G

∗) < q1(T
0
1,2,2;3), a

contradiction. Second, if a = 2, then G∗ ∼= G5 or G6 (see Figure 4). By direct calculations, we

have q1(G5) = 5.6585, q1(G6) = 5.5560, but q1(T
0
2,3,3;5) = 6.2791. Hence q1(G

∗) < q1(T
0
2,3,3;5).

Third, if a ≥ 3, then g = 2a + 1 ≥ 7 and G∗[u1, u2, u3] and C3 are not isomorphic. Thus by

Lemma 2.2(1), we get

q1(G
∗) <max

{4(4 + 9
4 ) + 3(3 + 8

3 )

4 + 3
,
4(4 + 9

4 ) + 2(2 + 6
2 )

4 + 2
,
3(3 + 8

3 ) + 2(2 + 5
2 )

3 + 2
,

2(2 + 5
2 ) + 2(2 + 6

2 )

2 + 2

}
= 6,

for G∗ is neither regular nor semiregular. And by Lemma 2.5, q1(T
0
a,a+1,a+1;2a+1) ≥ ∆+ 1 = 6,

hence q1(T
0
a,a+1,a+1;2a+1) ≥ 6 > q1(G

∗), a contradiction.

If k = 1, thus there exists exactly one pendant vertex attached to u1 in G∗. We firstly

consider a = 1. That is G∗ ∼= G7 (see Figure 4). We can obtain q1(G7) = 6.6352, q1(T
1
1,2,2;3) =

7.4346 by direct calculations. That is q1(G7) < q1(T
1
1,2,2;3). Secondly, we discuss a ≥ 2. By

Lemma 2.2(1), we get

q1(G
∗) <max

{5(5 + 11
5 ) + 3(3 + 9

3 )

5 + 3
,
5(5 + 11

5 ) + 2(2 + 7
2 )

5 + 2
,
5(5 + 11

5 ) + 6

5 + 1
,

3(3 + 9
3 ) + 2(2 + 5

2 )

3 + 2
,
2(2 + 5

2 ) + 2(2 + 7
2 )

2 + 2

}
= 7,
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for G∗ is neither regular nor semiregular. And by Lemma 2.5, q1(T
1
a,a+1,a+1;2a+1) ≥ ∆+ 1 = 7,

hence q1(T
1
a,a+1,a+1;2a+1) ≥ 7 > q1(G

∗), a contradiction.

If k ≥ 2, we can get, by Lemma 2.1,

q1(G
∗) < max{du +mu : u ∈ V (V ∗)} = k + 4 +

k + 10

k + 4
≤ k + 6,

for k ≥ 2. However by Lemma 2.5, we have q1(T
k
a,a+1,a+1;2a+1) ≥ ∆ + 1 = k + 6. Thus

q1(T
k
a,a+1,a+1;2a+1) ≥ k + 6 > q1(G

∗), a contradiction.

By the above discussion, we obtain G∗ ∼= T
n−⌈ 5

2 g⌉+2

⌊ g
2 ⌋,⌈

g
2 ⌉,⌈

g
2 ⌉;g

. Finally we can get, by Lemma 2.1,

q1(G
∗) < max{du +mu : u ∈ V (G∗)} = k + 6 +

6

k + 5
= n− ⌈5

2
g⌉+ 8 +

6

n− ⌈ 5
2g⌉+ 7

.

Thus the proof is completed. �

5. The graph with the largest signless Laplacian spectral radius in T g,6
n

∪T g,7
n

For all G ∈ T g,6
n ∪T g,7

n , we have that TG is of type Ti, i = 12, 13, 14, 15. Let P (p, q, r, l) be

the graph consisting of four pairwise internal disjoint paths Pp+1, Pq+1, Pr+1, Pl+1 with common

endpoints. Then we get T12 = P (p, q, r, l).

Lemma 5.1 Let G∗ be the graph with the largest signless Laplacian spectral radius among all

graphs in T g,6
n ∪T g,7

n , where n ≥ 2g−2. If TG∗ is of type T12 and g is even, then G∗ ∼= Pn−2g+2
g
2 ,

g
2 ,

g
2 ,

g
2

and q1(G
∗) < n− 2g + 7 + 6

n−2g+6 .

Proof By Lemma 2.8, we have that G∗ can be obtained from P (p, q, r, l) by attaching n− (p+

q+r+ l)+2 pendent vertices to a unique vertex of TG∗ . Then we suppose that TG∗ = P (p, q, r, l)

with p ≤ q ≤ r ≤ l. Let g = 2a. Then p+ q = g = 2a.

First, we show that p = q = r = l = g
2 . As g = 2a, we obtain p + q + r + l ≥ 4a and

n ≥ p+ q + r + l ≥ 4a− 2. Then we have four cases as follows:

(1) If n = 4a+ 2, then G∗ ∼= TG∗ and p+ q + r + l = 4a. Thus r + l = 2a for p+ q = 2a.

Since p ≤ q ≤ r ≤ l, we have l ≥ r ≥ a. Therefore we have p = q = r = l = a.

(2) If n = 4a − 1, then p + q + r + l ≤ 4a − 1, and r + l ≤ 2a + 1. And obviously

r + l ≥ g = 2a, hence r + l = 2a or r + l = 2a + 1. Since p + q = 2a and p ≤ q ≤ r ≤ l,

we have that the 4-tuple (p, q, r, l) ∈ {(a, a, a, a), (a, a, a, a + 1)}. If (p, q, r, l) = (a, a, a, a + 1),

G∗ ∼= P (a, a, a, a + 1). Since g > 3, we get that a ≥ 2 and the two 4-vertices of G∗ are not

adjacent. Then we have q1(G
∗) ≤ max{du + dv : uv ∈ E(G∗)} = 6 by Lemma 2.2(2). And by

Lemma 2.5, q1(P
1
a,a,a,a) > ∆+ 1 = 6 since G∗ is not a star. Thus we have q1(G

∗) < q1(P
1
a,a,a,a),

a contradiction. Therefore we have p = q = r = l = a.

(3) If n = 4a, then p + q + r + l ≤ 4a + 2. As p + q = 2g, we have r + l ≤ 2a + 2. And

apparently r + l ≥ g = 2a, hence r + l = 2a, r + l = 2a+ 1, or r + l = 2a+ 2. Since p+ q = 2a

and p ≤ q ≤ r ≤ l, we have that the 4-tuple (p, q, r, l) ∈ {(a, a, a, a), (a, a, a, a + 1), (a, a, a, a +
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2), (a− 1, a+1, a+1, a+1), (a, a, a+1, a+1)}. It suffices to show that (p, q, r, l) ̸∈ {(a, a, a, a+
1), (a, a, a, a + 2), (a − 1, a + 1, a + 1, a + 1), (a, a, a + 1, a + 1)}. If (p, q, r, l) = (a, a, a, a + 1),

then TG∗ ∼= P (a, a, a, a + 1). By Lemma 2.2(2), we obtain that q1(G
∗) ≤ max{du + dv : uv ∈

E(G∗)} = max{3 + 4, 4 + 2, 3 + 2, 2 + 2, 5 + 2, 5 + 1, 4 + 1} = 7. However, q1(P
2
a,a,a,a,) >

∆+1 = 7 since P 2
a,a,a,a is not a star. Then q1(G

∗) < q1(P
2
a,a,a,a), a contradiction. If (p, q, r, l) ∈

{(a, a, a, a + 2), (a − 1, a + 1, a + 1, a + 1), (a, a, a + 1, a + 1)}, then we have G∗ ∼= P (a, a, a, a +

2), P (a − 1, a + 1, a + 1, a + 1) or P (a, a, a + 1, a + 1). If a = 2, by direct calculations, we

obtain max{q1(P (2, 2, 2, 4)), q1(P (1, 3, 3, 3)), q1(P (2, 2, 3, 3))} < q1(P
2
2,2,2,2), a contradiction. If

a ≥ 3, then the two vertices of degree 4 of G∗ are not adjacent. Thus, by Lemma 2.2(2), we get

q1(G
∗) ≤ max{du + dv : uv ∈ E(G∗)} = 6. However q1(P

2
a,a,a,a) > ∆+1 = 7 since P 2

a,a,a,a is not

a star. Hence q1(G
∗) < q1(P

2
a,a,a,a), a contradiction. Therefore, we have p = q = r = l = a.

(4) If n ≥ 4a+ 1, then it is clear that p = q = r = a when l = a. Suppose that l ≥ a+ 1.

Let k be the number of pendant vertices of G∗. Then k = n− (p+ q + r+ l) + 2. Thus we have

k ≤ n− 4a+ 1. By Lemma 2.1, we obtain that

q1(G
∗) ≤ max{du +mu : u ∈ V (G∗)} = k + 4 +

k + 10

k + 4
= k + 5 +

6

k + 5
.

Note that k + 5 + 6
k+5 is increasing with nonnegative number k. Hence q1(G

∗) ≤ n − 4a + 6 +
6

n−4a+5 ≤ n−4a+7 for n ≥ 4a+1. By Lemma 2.5 we have q1(P
n−4a+2
a,a,a,a ) > ∆+1 = n−4a+7 ≥

q1(G
∗), a contradiction. Hence we have p = q = r = l = a.

Therefore, we have that TG∗ ∼= P ( g2 ,
g
2 ,

g
2 ,

g
2 ).

Secondly, we show that G∗ ∼= Pn−2g+2
g
2 ,

g
2 ,

g
2 ,

g
2
. If not, we have that G∗ is obtained from P (a, a, a, a)

by attaching n− 2g + 2 pendent vertices to a unique vertex u of P (a, a, a, a), which is of degree

2. Let k = n− 2g + 2. Then k ≥ 1, otherwise G∗ ∼= P 0
a,a,a,a. By Lemma 2.1, we obtain

q1(G
∗) < max{du +mu : u ∈ V (G∗)} = k + 2 +

k + 8

k + 2
≤ k + 5,

since G∗ is neither regular nor semiregular and k ≥ 1. However we get q1(P
k
a,a,a,a) ≥ ∆ + 1 =

k + 5 > q1(G
∗), a contradiction. Thus we have G∗ ∼= Pn−2g+2

g
2 ,

g
2 ,

g
2 ,

g
2
.

Now we show that q1(G
∗) < n − 2g + 7 + 6

n−2g+6 . Note that P 0
2,2,2,2

∼= K2,4, then g =

4, n = 2 × 4 − 2 = 6. Thus we have q1(P
0
2,2,2,2) = 6 < 13

2 = n − 2g + 7 + 6
n−2g+6 . Therefore, if

(n, g) ̸= (6, 4), Pn−2g+2
g
2 ,

g
2 ,

g
2 ,

g
2
is neither regular nor semiregular. By Lemma 2.1, we have that

q1(G
∗) < max{du +mu : u ∈ V (G∗)} ≤ n− 2g + 7 +

6

n− 2g + 6
.

Therefore, the proof is completed. �

Lemma 5.2 Let G∗ be the graph with the largest signless Laplacian spectral radius among

all graphs in {G : G ∈ T g,6
n ∪ T g,7

n and G contains at least three pendant vertices} with

TG∗ ∼= T13, T14 or T15 (see Figure 1). Then all the pendent edges of G∗ are attached to the

vertex of maximum degree of TG∗ and the length of each of the three independent cycles is the

girth g.

Proof Denote by Cp, Cq, Cr the three independent cycles in T13, T14, or T15, where p, q, r are
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the length of the cycles. Thus we have p, q, r ≥ g. Let k be the number of pendant vertices of

G∗. Thus 3 ≤ k = n− |V (TG∗)|. We will show that the Lemma is true when TG∗ is of type T13.

The other two cases can be proved similarly, and we omit the procedure here.

First, we show that G∗ can be obtained from TG∗ by attaching all the pendent edges to one

of the two vertices of degree four in TG∗ . If not, by Lemma 2.8 we have that the neighbour of

all pendant vertices is of degree 3 or 2. By Lemma 2.1, we obtain

q1(G
∗) < max{du +mu : u ∈ V (G∗)}

= max{k + 3 +
k + 9

k + 3
, k + 2 +

k + 7

k + 2
, 4 +

k + 10

4
, 3 +

k + 9

3
, 2 +

k + 7

2
}

≤ k + 5,

since G∗ is neither regular nor semiregular and k ≥ 3. However, by Lemma 2.5 we have q1(G
′) ≥

∆+ 1 = k + 5, where G′ is obtained from TG∗ by attaching k pendant edges to one of the two

vertices of degree four in TG∗ . Then q1(G
∗) < q1(G

′), a contradiction.

Secondly, we show that p = q = r = g. If not, then there exists at least one number, say p,

such that p ≥ g + 1. Then by Lemma 2.1, we have

q1(G
∗) < max{du +mu : u ∈ V (G∗)} = k + 4 +

k + 10

k + 4
≤ k + 6.

Let G′′ be a graph obtained from T13 by attaching k′ pendant vertices to its 4-vertex such that

the three independent cycles are Cg, Cq, Cr and |V (G′′)| = n. Hence k′ ≥ k + 1, and then

q1(G
′′) ≥ ∆+ 1 = k′ + 5 ≥ k + 6 > q1(G

∗), a contradiction. Thus we obtain p = q = r = g.

With the similar method, we can show that the Lemma is true when TG∗ is of type T14 or

T15. Thus the proof is completed. �

Theorem 5.3 Let G∗ be the graph with the largest signless Laplacian spectral radius among

graphs in {G : G ∈ T g,6
n ∪ T g,7

n and G contains at least three pendant vertices}. If g is even,

then G∗ ∼= Pn−2g+2
g
2 ,

g
2 ,

g
2 ,

g
2
and n ≥ 2g + 3.

Proof By Lemmas 5.1 and 5.2, it is enough for us to show that TG∗ is not of type T13, T14 or

T15. Let k be the number of pendant vertices of G∗. Thus k = n− |V (G∗)| ≥ 3.

If TG∗ is of type T13, then by Lemma 5.2 we have that the length of the three independent

cycles in G∗ is g. Thus |V (G∗)| ≥ 2g − 1. Therefore, 3 ≤ k ≤ n − |V (G∗)| ≤ n − 2g + 1, and

n ≥ 2g + 2. By Lemma 2.1 we have that

q1(G
∗) < max{du +mu : u ∈ V (G∗)} = k + 4 +

k + 10

k + 4
= k + 5 +

6

k + 4
.

Since k + 5 + 6
k+4 is increasing with nonnegative number k, we obtain q1(G

∗) < n − 2g + 6 +
6

n−2g+5 < n − 2g + 7 for n ≥ 2g + 2. However q1(P
n−2g+2
g
2 ,

g
2 ,

g
2 ,

g
2
) ≥ ∆ + 1 = n − 2g + 7. That is

q1(G
∗) < q1(P

n−2g+2
g
2 ,

g
2 ,

g
2 ,

g
2
), a contradiction.

If TG∗ is of type T14, then |V (G∗)| ≥ 2g. Thus 3 ≤ k ≤ n−|V (G∗)| = n−2g and n ≥ 2g+3.

By Lemma 2.1, we have that

q1(G
∗) < max{du +mu : u ∈ V (G∗)} = k + 3 +

k + 8

k + 3
= k + 4

5

k + 3
.
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Since k+4+ 5
k+3 is increasing with nonnegative number k, we have q1(G

∗) < n−2g+4+ 5
n−2g+3 <

n− 2g + 5 for n ≥ 2g + 3. Then we obtain q1(G
∗) < n− 2g + 5 < n− 2g + 7 = q1(P

n−2g+2
g
2 ,

g
2 ,

g
2 ,

g
2
), a

contradiction.

If TG∗ is of type T15, then G∗ is obtained from TG∗ by attaching k pendant vertices to one

of the four vertices of degree three in TG∗ . Let m = |E(G∗)|. Then m ≥ 2g for the length

of all the three independent cycles in G∗ is g. Since G∗ is a tricyclic graph, we have that

|E(G∗)| = |V (G∗)|+2 and thus k+m = n+2. Hence 3 ≤ k = n+2−m ≤ n− 2g+2 and then

n ≥ 2g + 1. By Lemma 2.1, we have that

q1(G
∗) < max{du +mu : u ∈ V (G∗)} = k + 3 +

k + 9

k + 3
= k + 4 +

6

k + 3
.

Since k + 4 + 6
k+3 is increasing with nonnegative number k, we can obtain that q1(G

∗) < n −
2g+6+ 6

n−2g+5 ≤ n− 2g+7 for n ≥ 2g+1. Then we have q1(G
∗) < n− 2g+7 ≤ q1(P

n−2g+2
g
2 ,

g
2 ,

g
2 ,

g
2
),

a contradiction.

Therefore, we obtain that n ≥ 2g + 3 and G∗ ∼= Pn−2g+2
g
2 ,

g
2 ,

g
2 ,

g
2
. Thus the proof is completed. �

6. The results

Theorem 6.1 For each pair of positive integers n, g.

(1) If 3 ≤ g ≤ n+2
3 , then Tn−3g+2

g,g,g is the unique graph with the largest signless Laplacian

spectral radius among all graphs in T g,3
n .

(2) If 3 ≤ g ≤ 2(n+2)
5 , then T

n−⌈ 5g
2 ⌉+2

⌊ g
2 ⌋,⌈

g
2 ⌉,⌈

g
2 ⌉;g

is the unique graph with the largest signless

Laplacian spectral radius among graphs in T g,4
n .

(3) If g is even, then 4 ≤ g ≤ n−3
2 and Pn−2g+2

g
2 ,

g
2 ,

g
2 ,

g
2
is the unique graph with the largest signless

Laplacian spectra radius among all graphs in {G : G ∈ T g
n and G contains at least three pendant

vertices}.

Proof (1) and (2) can be obtained directly from Theorems 3.2 and 4.2, respectively. We only

show that (3) is true. Since T g
n = T g,3

n ∪ T g,4
n ∪ T g,6

n ∪ T g,7
n , by Theorems 3.2, 4.2 and 5.3, it

is enough for us to show that

q1(T
n−3g+2
g,g,g ) < q1(T

n−⌈ 5g
2 ⌉+2

⌊ g
2 ⌋,⌈

g
2 ⌉,⌈

g
2 ⌉;g

) < q1(P
n−2g+2
g
2 ,

g
2 ,

g
2 ,

g
2
).

By Theorem 3.2, we have q1(T
n−3g+2
g,g,g ) < n − 3g + 9 + 6

n−3g+8 ≤ n − 3g + 10 for n ≤ 3g − 2.

However q1(T
n−⌈ 5g

2 ⌉+2

⌊ g
2 ⌋,⌈

g
2 ⌉,⌈

g
2 ⌉;g

) ≥ ∆+1 = n− 5g
2 +8. Note that n− 5g

2 +8− (n−3g+10) = g
2 −2 ≥ 0

for g ≤ 4. Thus q1(T
n−3g+2
g,g,g ) < q1(T

n−⌈ 5g
2 ⌉+2

⌊ g
2 ⌋,⌈

g
2 ⌉,⌈

g
2 ⌉;g

).

We now prove the second inequality. If n = 5g
2 − 2, then T

n−⌈ 5g
2 ⌉+2

⌊ g
2 ⌋,⌈

g
2 ⌉,⌈

g
2 ⌉;g

contains no pendant

vertices. Thus n ≥ 5g
2 − 1, and then by Theorem 4.2 we have q1(T

n−⌈ 5g
2 ⌉+2

⌊ g
2 ⌋,⌈

g
2 ⌉,⌈

g
2 ⌉;g

) < n− 5g
2 + 8 +

6
n− 5g

2 +7
≤ n− 5g

2 +9. However, by Theorem 5.3, we have q1(P
n−2g+2
g
2 ,

g
2 ,

g
2 ,

g
2
) > ∆+1 = n−2g+7. Then

we have n−2g+7−(n− 5g
2 +9) = g

2−2 ≤ 0 for g ≥ 4. Therefore q1(T
n−⌈ 5g

2 ⌉+2

⌊ g
2 ⌋,⌈

g
2 ⌉,⌈

g
2 ⌉;g

) < q1(P
n−2g+2
g
2 ,

g
2 ,

g
2 ,

g
2
).

By the above discussion, the proof is completed. �
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[6] D. CVETKOVIĆ, S. K. SIMIĆ. Towards a spectral theory of graphs based on the signless Laplacian (I).

Publ. Inst. Math. (Beograd) (N.S.), 2009, 85: 19–33.
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