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Abstract The Balaban index of a connected graph G is defined as

J(G) =
|E(G)|
µ+ 1

∑
e=uv∈E(G)

1√
DG(u)DG(v)

,

and the Sum-Balaban index is defined as

SJ(G) =
|E(G)|
µ+ 1

∑
e=uv∈E(G)

1√
DG(u)+DG(v)

,

where DG(u) =
∑

w∈V (G) dG(u,w), and µ is the cyclomatic number of G. In this paper, the

unicyclic graphs with the maximum Balaban index and the maximum Sum-Balaban index

among all unicyclic graphs on n vertices are characterized, respectively.
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1. Introduction

Let G be a simple connected graph with vertex set V (G) and edge set E(G). The distance

between vertices u and v in G, denoted by dG(u, v), is the length of the shortest path connecting

u and v in G. Let DG(u) =
∑

v∈V (G) dG(u, v), which is the distance sum of vertex u in G.

Let |V (G)| = n and |E(G)| = m. The cyclomatic number µ of G is the minimum number

of edges that must be removed from G in order to transform it to an acyclic graph. It is known

that µ = m− n+ 1 (see [1]).

The Balaban index of a connected graph G is defined as

J(G) =
m

µ+ 1

∑
uv∈E(G)

1√
DG(u)DG(v)

.

It was proposed by A. T. Balaban [2, 3], which is also called the average distance-sum connectivity

index or J index. It appears to be a very useful molecular descriptor with attractive properties.
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Balaban et al. [4] also proposed the study of the Sum-Balaban index of a connected graph G,

which is defined as

SJ(G) =
m

µ+ 1

∑
uv∈E(G)

1√
DG(u) +DG(v)

.

Balaban index and Sum-Balaban index were used subsequently in various QSAR and QSPR

studies. It has been shown that Balaban index and Sum-Balaban index have a strong correlation

with chemical properties of the chemical compound and other topological indices of octanes and

lower benzenoids. Mathematical properties of Balaban index can be found in [5–11]. Mathemat-

ical properties of Sum-Balaban index can be found in [10] and [12, 13].

Theorem 1.1 ([5–9, 12, 13]) Let T be a tree on n(≥ 2) vertices. Then

J(Pn) ≤ J(T ) ≤ J(Sn), SJ(Pn) ≤ SJ(T ) ≤ SJ(Sn)

with left (or right) equality if and only if T = Pn (or T = Sn), where Pn is the path on n vertices

and Sn is the star on n vertices.

In this paper, the unicyclic graphs with the maximum Balaban index and the maximum

Sum-Balaban index among all unicyclic graphs on n vertices are characterized, respectively.

2. Preliminaries

In this section, we will introduce two transformations which are useful to the proofs of the

main results.

Lemma 2.1 ([7]) Let a, a′, b, b′, w, x, y, z ∈ R+ such that b
x ≥ a

w , b′

y ≥ a′

z , w ≥ x and z ≥ y.

Then 1√
(w+a)(z+a′)

+ 1√
xy ≥ 1√

wz
+ 1√

(x+b)(y+b′)
, and the equality holds if and only if b = a, b′ =

a′, w = x and z = y.

Lemma 2.2 ([7]) Let x, y, a ∈ R+ such that x ≥ y + a. Then 1√
xy ≥ 1√

(x−a)(y+a)
, and the

equality holds if and only if x = y + a.

Lemma 2.3 Let x1, y1, x2, y2 ∈ R+ such that x1 > y1 and x2 − x1 = y2 − y1 > 0. Then
1√
x1

+ 1√
y2

< 1√
x2

+ 1√
y1
.

Proof Let a = x2 − x1 = y2 − y1 > 0 and f(t) = 1√
t
− 1√

t+a
. It is clear that f ′(t) < 0, then

f(t) is a decreasing function of t. So we have 1√
x1

− 1√
x1+a

< 1√
y1

− 1√
y1+a

by x1 > y1, that is

to say, 1√
x1

+ 1√
y2

< 1√
x2

+ 1√
y1
. �

The edge-lifting transformation ([5]) Let G1, G2 be two graphs with n1 ≥ 2 and n2 ≥ 2

vertices, respectively. If G is the graph obtained from G1 and G2 by adding an edge between a

vertex u0 of G1 and a vertex v0 of G2, G
′ is the graph obtained by identifying u0 of G1 to v0 of

G2 and adding a pendent edge to u0(v0), then G′ is called the edge-lifting transformation of G

(see Figure 1).

Lemma 2.4 ([5, 12]) Let G′ be the edge-lifting transformation of G. Then J(G) < J(G′) and
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SJ(G) < SJ(G′).
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Figure 1 The edge-lifting transformation

A rooted graph has one of its vertices, called the root, distinguished from the others.

Let T1, T2, . . . , Tk be k rooted trees with |V (Ti)| ≥ 2 (1 ≤ i ≤ k) and roots u1, u2, . . . , uk,

respectively. Let Cr be a cycle with length r (r ≥ 3).

Define G(n, r, 0) = Cn. For 1 ≤ k ≤ r ≤ n, define G(n, r, k) to be a unicyclic graph on n

vertices obtained from Cr, T1, T2, . . . , Tk, by attaching k rooted trees T1, T2, . . . , Tk to k distinct

vertices of the cycle Cr, that is to say, G(n, r, k) is a unicyclic graph on n vertices by identifying

some vertex of Cr with the root ui of Ti for each i (1 ≤ i ≤ k), where |V (Ti)| ≥ 2 (1 ≤ i ≤ k).

Clearly, 3 ≤ r ≤ n− k.

Let S = {S|S is a rooted star and the root is its center}.

Let G∗(n, r, k) be the set of all unicyclic graphs on n vertices obtained from Cr by attaching

k rooted stars in S to k distinct vertices of Cr (see Figure 2).
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Figure 2 A graph G∗(n, r, k) in the set G∗(n, r, k)

By Lemma 2.4, we can repeat the edge-lifting transformation to the rooted trees ofG(n, r, k),

and we have

Lemma 2.5 Let n, r, k be positive integers with 1 ≤ k ≤ r and 3 ≤ r ≤ n − k, G(n, r, k) be

defined as above, and G∗(n, r, k) ∈ G∗(n, r, k) obtained from G(n, r, k) by repeating edge-lifting

transformation. Then

J(G(n, r, k)) ≤ J(G∗(n, r, k)), SJ(G(n, r, k)) ≤ SJ(G∗(n, r, k)),

and the equality holds if and only if G(n, r, k) ∼= G∗(n, r, k).

Figure 3 shows an example how to obtain G∗(n, r, 1) ∈ G∗(n, r, 1) by repeating edge-lifting

transformation from graph G(n, r, 1).
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Figure 3 An example

Branch transformation Let G = G∗(n, r, k) ∈ G∗(n, r, k) be defined as above. For conve-

nience, let m =
⌊
r
2

⌋
. If r is even, define Cr = v1v2 · · · vmum · · ·u2u1v1; if r is odd, define

Cr = v1v2 · · · vmvm+1um · · ·u2u1v1. Then G′ is obtained from G by deleting the pendent edge

uiw and adding the pendent edge viw for any i ∈ {1, 2, . . . ,m} (if there exists the pendent edge

uiw), where w ∈ V (G)\V (Cr). We say G′ is obtained from G by branch transformation (see

Figure 4, where pi ≥ 0, qi ≥ 0 for any i ∈ {1, 2, . . . ,m}).
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Figure 4 The branch transformation

G = G∗(n, r, k) for r is even G′

Let G be a graph and U( ̸= ϕ) ⊆ V (G). The subgraph with vertex set U and edge set

consisting of those pairs of vertices that are edges in G is called the induced subgraph of G,

denoted by G[U ], and for any vertex u ∈ V (G), we define DG(u,U) =
∑

v∈U dG(u, v).

Lemma 2.6 Let n, r, k be positive integers with 2 ≤ k ≤ r, 3 ≤ r ≤ n − k, G = G∗(n, r, k) ∈
G∗(n, r, k), G′ be the graph obtained from G by branch transformation. Then J(G) < J(G′).

Proof Let U0 = {u1, u2, . . . , um}, U1 = {w|uiw ∈ E(G),deg(w) = 1, 1 ≤ i ≤ m}, V0 =

{v1, v2, . . . , vm}, and V1 = {w|viw ∈ E(G), deg(w) = 1, 1 ≤ i ≤ m} for r = 2m is even,

V1 = {w|viw ∈ E(G),deg(w) = 1, 1 ≤ i ≤ m+ 1} ∪ {vm+1} for r = 2m+ 1 is odd.
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For any s with 1 ≤ s ≤ m, it is clear that us ∈ U0 and vs ∈ V0, and

DG(us) = DG(us, U0) +DG(us, U1) +DG(us, V0) +DG(us, V1), (2.1)

and

DG′(vs) = DG′(vs, V0) +DG′(vs, U1) +DG′(vs, U0) +DG′(vs, V1). (2.2)

Noting that G[U0] ∼= G′[V0], G[V0] ∼= G′[U0] and G[U0

∪
U1] ∼= G′[V0

∪
U1], so

DG(us, U0) = DG′(vs, V0), DG(us, V0) = DG′(vs, U0),

and DG(us, U1) = DG′(vs, U1), DG(us, V1) > DG′(vs, V1). Thus we have

DG(us)−DG′(vs) = DG(us, V1)−DG′(vs, V1) > 0. (2.3)

Similarly, we have

DG(vs) = DG(vs, U0) +DG(vs, U1) +DG(vs, V0) +DG(vs, V1), (2.4)

and

DG′(us) = DG′(us, V0) +DG′(us, U1) +DG′(us, U0) +DG′(us, V1). (2.5)

Thus

DG′(us)−DG(vs) = DG′(us, V1)−DG(vs, V1) > 0. (2.6)

Noting that DG(us, V1) = DG′(us, V1) and DG′(vs, V1) = DG(vs, V1), by (2.3) and (2.6), we

have

DG(us)−DG′(vs) = DG′(us)−DG(vs) = DG(us, V1)−DG′(vs, V1) > 0. (2.7)

By (2.1), (2.2), (2.4) and (2.5), we have

DG′(us)−DG(us) = DG(vs)−DG′(vs) > 0. (2.8)

For any edge usut ∈ E(G[U0]) and vsvt ∈ E(G[V0]), take x = DG′(vs), y = DG′(vt),

w = DG(us), z = DG(ut), a = DG′(us) − DG(us), a′ = DG′(ut) − DG(ut), b = DG(vs) −
DG′(vs), b

′ = DG(vt) − DG′(vt). Then b = a > 0, b′ = a′ > 0 by (2.8). It is obvious that

a, a′, b, b′, w, x, y, z ∈ R+, w > x, z > y by (2.7). Then b
x > a

w , b′

y > a′

z . Thus by Lemma 2.1, we

have

1√
DG′(us)DG′(ut)

+
1√

DG′(vs)DG′(vt)
>

1√
DG(us)DG(ut)

+
1√

DG(vs)DG(vt)
. (2.9)

Similarly, for any vertex w ∈ U1

∪
V1, we can show DG(w) ≥ DG′(w), where equality holds

if and only if r = 2m + 1 is odd, w = vm+1 or r = 2m + 1 is odd, w is pendent vertex and

adjacent to vm+1. Then it implies that the following inequalities (2.10)–(2.12) hold.

For any edge usw ∈ E(G) with us ∈ U0 where 1 ≤ s ≤ m and w ∈ U1, the corresponding

edge is vsw ∈ E(G′), we have

1√
DG′(vs)DG′(w)

>
1√

DG(us)DG(w)
. (2.10)
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For any edge vsw ∈ E(G) with vs ∈ V0 where 1 ≤ s ≤ m and w ∈ V1, we have

1√
DG′(vs)DG′(w)

>
1√

DG(vs)DG(w)
. (2.11)

When r = 2m+ 1 is odd, then for any edge vm+1w ∈ E(G) with w ∈ V1, we have

1√
DG′(vm+1)DG′(w)

=
1√

DG(vm+1)DG(w)
. (2.12)

For edge u1v1, by (2.8) and Lemma 2.3, we have

1√
DG′(u1)DG′(v1)

>
1√

DG(u1)DG(v1)
. (2.13)

From (2.9) to (2.13), we obtain J(G′) > J(G) by the definition of Balaban index. �

Lemma 2.7 Let n, r, k be positive integers with 2 ≤ k ≤ r and 3 ≤ r ≤ n−k, G = G∗(n, r, k) ∈
G∗(n, r, k), G′ be the graph obtained from G by branch transformation. Then SJ(G) < SJ(G′).

Proof Let U0, U1, V0, V1, a, a
′, b, b′ be defined as Lemma 2.6. Let f(x) = 1√

x
− 1√

x+a+a′ .

Then f(x) is a decreasing function of x since f ′(x) < 0. Noting that DG(us) + DG(ut) >

DG′(vs) +DG′(vt) = DG(vs) +DG(vt)− a− a′, we have

1√
DG(us) +DG(ut)

− 1√
DG(us) +DG(ut) + a+ a′

<
1√

DG(vs) +DG(vt)− a− a′
− 1√

DG(vs) +DG(vt)
.

Thus

1√
DG′(us) +DG′(ut)

+
1√

DG′(vs) +DG′(vt)

>
1√

DG(us) +DG(ut)
+

1√
DG(vs) +DG(vt)

. (2.14)

Similarly, for any vertex w ∈ U1

∪
V1, we can show DG(w) ≥ DG′(w), where equality holds

if and only if r = 2m + 1 is odd, w = vm+1 or r = 2m + 1 is odd, w is pendent vertex and

adjacent to vm+1. Then it implies that the following inequalities (2.15)–(2.17) hold.

For any edge usw ∈ E(G) with us ∈ U0 where 1 ≤ s ≤ m and w ∈ U1, the corresponding

edge is vsw ∈ E(G′), we have

1√
DG′(vs) +DG′(w)

>
1√

DG(us) +DG(w)
. (2.15)

For any edge vsw ∈ E(G) with vs ∈ V0 where 1 ≤ s ≤ m and w ∈ V1, we have

1√
DG′(vs) +DG′(w)

>
1√

DG(vs) +DG(w)
. (2.16)

When r = 2m+ 1 is odd, then for any edge vm+1w ∈ E(G) with w ∈ V1, we have

1√
DG′(vm+1) +DG′(w)

=
1√

DG(vm+1) +DG(w)
. (2.17)
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For edge u1v1, by (2.8), we have

1√
DG′(u1) +DG′(v1)

=
1√

DG(u1) +DG(v1)
. (2.18)

From (2.14) to (2.18), we obtain SJ(G′) > SJ(G) by the definition of Sum-Balaban index.

�

Lemma 2.8 Let n, r, k be positive integers with 1 ≤ k ≤ r and 3 ≤ r ≤ n−k, G = G∗(n, r, k) ∈
G∗(n, r, k), and G′ obtained from G by repeating the branch transformation, and we cannot get

other graph from G′ by repeating branch transformation. Then

(1) G′ ∈ G∗(n, r, 1) (see Figure 5).

(2) J(G) ≤ J(G′), and the equality holds if and only if G ∼= G′.

(3) SJ(G) ≤ SJ(G′), and the equality holds if and only if G ∼= G′.

&%
'$qCr

...

qqq qu2

u1

ur qq n− r

}
...

�
A
A

Figure 5 graph G∗(n, r, 1) ∈ G∗(n, r, 1)

3. The maximum Balaban index of unicyclic graphs

In this section, we will show that G∗(n, 3, 1) is the graph which has the maximum Balaban

index among all unicyclic graphs on n vertices.

Let G be a unicyclic graph on n vertices. Then |E(G)| = n, µ = 1, and thus

J(G) =
n

2

∑
uv∈E(G)

1√
DG(u)DG(v)

.

Lemma 3.1 Let n, r be positive integers with 3 ≤ r ≤ n, G = G∗(n, r, 1) ∈ G∗(n, r, 1) (see

Figure 5). Then

2J(G)

n
=


n−r√

( r2

4 −r+2n−2)( r2

4 +n−r)
+

∑
1≤i≤ r

2

2√
[ r

2

4 +i(n−r)][ r
2

4 +(i+1)(n−r)]
, r is even;

n−r√
( r2

4 −r+2n− 9
4 )(

r2−1
4 +n−r)

+
∑

1≤i≤ r−1
2

2√
DG(ui)DG(ui+1)

+ 1
r2−1

4 + r+1
2 (n−r)

, r is odd;

(3.1)

where DG(ui) =
r2−1

4 + i(n− r) for r is odd and 1 ≤ i ≤ r+1
2 .

Proof We calculate DG(u) for any vertex u ∈ V (G).

Case 1 r is even.

Subcase 1.1 u ∈ V (G)\V (Cr).

DG(u) = 2(n− r − 1) + (1 + 2 + · · ·+ r

2
) + (2 + 3 + · · ·+ r + 2

2
) =

r2

4
− r + 2n− 2.

Subcase 1.2 u = ui ∈ V (Cr) where 1 ≤ i ≤ r.
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Noting that DG(ui) = DG(ur+2−i), we only need to calculate DG(ui) for 1 ≤ i ≤ r+2
2 .

Clearly, when 1 ≤ i ≤ r+2
2 , we have

DG(ui) = (1 + 2 + · · ·+ r

2
) + (1 + 2 + · · ·+ r − 2

2
) + i(n− r) =

r2

4
+ i(n− r).

Case 2 r is odd.

Subcase 2.1 u ∈ V (G)\V (Cr).

DG(u) = 2(n− r − 1) + (1 + 2 + · · ·+ r + 1

2
) + (2 + 3 + · · ·+ r + 1

2
) =

r2

4
− r + 2n− 9

4
.

Subcase 2.2 u = ui ∈ V (Cr) where 1 ≤ i ≤ r.

Noting that DG(ui) = DG(ur+2−i), we only need to calculate DG(ui) for 1 ≤ i ≤ r+1
2 .

Clearly, when 1 ≤ i ≤ r+1
2 , we have

DG(ui) = (1 + 2 + · · ·+ r − 1

2
) + (1 + 2 + · · ·+ r − 1

2
) + i(n− r) =

r2 − 1

4
+ i(n− r).

Combine the previous arguments and let w ∈ V (G)\V (Cr), then we can show (3.1) by the

following equation

J(G) =
n

2

∑
uv∈E(G)

1√
DG(u)DG(v)

=


n
2 (

∑
1≤i≤ r

2

2√
DG(ui)DG(ui+1)

+ n−r√
DG(u1)DG(w)

), r is even;

n
2 (

∑
1≤i≤ r−1

2

2√
DG(ui)DG(ui+1)

+ 1√
DG(u r+1

2
)DG(u r+3

2
)
+ n−r√

DG(u1)DG(w)
), r is odd. �

Theorem 3.2 Let n, r be integers with n ≥ 4, 3 ≤ r ≤ n, G ̸∼= Cn be a connected unicyclic

graph on n vertices, the length of unique cycle of G be r. Then

J(G) ≤ J(G∗(n, 3, 1)) =
n

2
· ( 1

2n− 4
+

2√
(2n− 4)(n− 1)

+
n− 3√

(2n− 3)(n− 1)
),

where the equality holds if and only if G ∼= G∗(n, 3, 1).

Proof Since G ̸∼= Cn, there exists positive integer k such that 1 ≤ k ≤ r ≤ n and G = G(n, r, k).

By Lemma 2.5, there exists G1 such that G1 ∈ G∗(n, r, k) and G1 is obtained from G by

repeating edge-lifting transformation. Then J(G) ≤ J(G1), where the equality holds if and only

if G = G(n, r, k) ∼= G1.

By Lemma 2.8, G2 = G∗(n, r, 1) ∈ G∗(n, r, 1) can be obtained from G1 by repeating branch

transformation such that J(G1) ≤ J(G2), where the equality holds if and only if G1
∼= G2.

Now by Lemma 3.1, we will show J(G∗(n, r, 1)) ≤ max{J(G∗(n, 3, 1)), J(G∗(n, 4, 1))} by

the following two cases.

Case 1 r is even.

Let f(r) = ( r
2

4 − r+ 2n− 2)( r
2

4 + n− r), and gi(r) = [ r
2

4 + i(n− r)][ r
2

4 + (i+ 1)(n− r)] for

1 ≤ i ≤ r
2 .



400 Lihua YOU and Xin DONG

It is obvious that f ′(r) > 0, g′1(r) > 0, g′2(r) > 0, . . . , and g′r
2
(r) > 0. So J(G∗(n, r, 1)) =

n
2 · ( n−r√

f(r)
+

∑
1≤i≤ r

2

2√
gi(r)

) is a decreasing function of r when r is even. Thus we have

J(G∗(n, 4, 1)) > J(G∗(n, 6, 1)) > · · · > J(G∗(n, 2⌊n− 1

2
⌋, 1)).

Case 2 r is odd.

Let f(r) = ( r
2

4 − r + 2n− 9
4 )(

r2−1
4 + n− r), gi(r) = [ r

2−1
4 + i(n− r)][ r

2−1
4 + (i+ 1)(n− r)]

for 1 ≤ i ≤ r−1
2 , and h(r) = r2−1

4 + r+1
2 (n− r).

It is obvious that f ′(r) > 0, g′1(r) > 0, g′2(r) > 0, . . . , g′r−1
2

(r) > 0 and h′(r) > 0. So

J(G∗(n, r, 1)) = n
2 · ( n−r√

f(r)
+

∑
1≤i≤ r−1

2

2√
gi(r)

+ 1
h(r) ) is a decreasing function of r when r is odd.

Thus we have J(G∗(n, 3, 1)) > J(G∗(n, 5, 1)) > · · · > J(G∗(n, 2⌊n−2
2 ⌋+ 1, 1)).

On the other hand, by calaulating, we have

2

n
· (J(G∗(n, 3, 1))− J(G∗(n, 4, 1)))

=
1

2n− 4
+

2√
(2n− 4)(n− 1)

+
n− 3√

(2n− 3)(n− 1)
−

(
2√

n(2n− 4)
+

2√
(2n− 4)(3n− 8)

+
n− 4√
n(2n− 2)

)

= (
1

2n− 4
− 1√

(2n− 4)(3n− 8)
) + (

2√
(2n− 4)(n− 1)

− 2√
n(2n− 4)

)+

(
n− 4√

(2n− 3)(n− 1)
− n− 4√

n(2n− 2)
) + (

1√
(2n− 3)(n− 1)

− 1√
(2n− 4)(3n− 8)

) > 0.

From above arguments, we have

J(G) ≤ J(G1) ≤ J(G2) ≤ max{J(G∗(n, 3, 1)), J(G∗(n, 4, 1))} = J(G∗(n, 3, 1)). �

If G = Cn, then for any vertex u ∈ V (Cn), DG(u) =
n2

4 for even n and DG(u) =
n2−1

4 for

odd n. Thus we have

Proposition 3.3 Let n ≥ 3. Then J(Cn) =

{
2, if n is even;
2n2

n2−1 , if n is odd.

Theorem 3.4 Let n, r be integers with n ≥ 4, 3 ≤ r ≤ n, G be a connected unicyclic graph on

n vertices, the length of unique cycle of G be r. Then

J(G) ≤ J(G∗(n, 3, 1)) =
n

2
· ( 1

2n− 4
+

2√
(2n− 4)(n− 1)

+
n− 3√

(2n− 3)(n− 1)
),

where the equality holds if and only if G ∈ G∗(n, 3, 1).

Proof By Theorem 3.2 and Proposition 3.3, we only need to show J(G∗(n, 3, 1)) > J(Cn).

Case 1 n = 4.

J(G∗(4, 3, 1))− J(C4) = 2(
1

4
+

2√
12

+
1√
15

)− 2 > 0.

Case 2 n ≥ 5.
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Then (n
2−1
4 )2 − (2n− 3)(n− 1) = n4−34n2+80n−47

16 = (n+5)2(n−5)2

16 + (n+ 5
2 )

2 − 772
16 > 0. So

J(G∗(n, 3, 1))− J(Cn) ≥
n

2
· ( 1

2n− 4
+

2√
(2n− 4)(n− 1)

+
n− 3√

(2n− 3)(n− 1)
)− 2n2

n2 − 1

=
n

2
· ( 1

2n− 4
+

2√
(2n− 4)(n− 1)

+
n− 3√

(2n− 3)(n− 1)
− n

n2−1
4

)

=
n

2
· [( 1

2n− 4
− 1

n2−1
4

) + (
2√

(2n− 4)(n− 1)
− 2

n2−1
4

) + (
n− 3√

(2n− 3)(n− 1)
− n− 3

n2−1
4

)] > 0.

Combining the above two cases, we complete the proof. �

4. The maximum Sum-Balaban index of unicyclic graphs

In this section, we will show that G∗(n, 3, 1) is the graph which has the maximum Sum-

Balaban index among all unicyclic graphs on n vertices.

Let G be a unicyclic graph on n vertices. Then |E(G)| = n, µ = 1, and thus

SJ(G) =
n

2

∑
uv∈E(G)

1√
DG(u) +DG(v)

.

Similarly to Section 3, we can obtain the following results immediately.

Lemma 4.1 Let n, r be positive integers with 3 ≤ r ≤ n, G = G∗(n, r, 1) ∈ G∗(n, r, 1) (see

Figure 5). Then

2SJ(G)

n
=


n−r√

r2

2 −2r+3n−2
+

∑
1≤i≤ r

2

2√
r2

2 +(2i+1)(n−r)
, r is even;

n−r√
r2

2 −2r+3n− 5
2

+
∑

1≤i≤ r−1
2

2√
r2−1

2 +(2i+1)(n−r)
+ 1√

nr− r2+1
2 +n−r

, r is odd;

Theorem 4.2 Let n, r be integers with n ≥ 4, 3 ≤ r ≤ n, G ̸∼= Cn be a connected unicyclic

graph on n vertices, the length of unique cycle of G be r. Then

SJ(G) ≤ SJ(G∗(n, 3, 1)) =
n

2
· ( 1√

4n− 8
+

2√
3n− 5

+
n− 3√
3n− 4

),

where the equality holds if and only if G ∼= G∗(n, 3, 1).

Proof Note that

SJ(G∗(n, 3, 1))− SJ(G∗(n, 4, 1))

=
n

2
· [( 1√

4n− 8
+

2√
3n− 5

+
n− 3√
3n− 4

)− (
2√

3n− 4
+

2√
5n− 12

+
n− 4√
3n− 2

)]

=
n

2
· [( 1√

4n− 8
− 1√

5n− 12
) + (

2√
3n− 5

− 2√
3n− 4

)+

(
n− 4√
3n− 4

− n− 4√
3n− 2

) + (
1√

3n− 4
− 1√

5n− 12
)] > 0.

Thus similarly to the proof of Theorem 3.2, we have

SJ(G) ≤ SJ(G1) ≤ SJ(G2) ≤ max{SJ(G∗(n, 3, 1)), SJ(G∗(n, 4, 1))} = SJ(G∗(n, 3, 1)). �
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Proposition 4.3 Let n ≥ 3. Then SJ(Cn) =

{ √
2n
2 , if n is even;
√
2n2

2
√
n2−1

, if n is odd.

Theorem 4.4 Let n, r be integers with n ≥ 4, 3 ≤ r ≤ n, G be a connected unicyclic graph on

n vertices, the length of unique cycle of G be r. Then

SJ(G) ≤ SJ(G∗(n, 3, 1)) =
n

2
· ( 1√

4n− 8
+

2√
3n− 5

+
n− 3√
3n− 4

),

where the equality holds if and only if G ∈ G∗(n, 3, 1).

Proof By Theorem 4.2 and Proposition 4.3, we only need to show SJ(G∗(n, 3, 1)) > SJ(Cn).

Case 1 n = 4.

SJ(G∗(4, 3, 1))− SJ(C4) = 2(
2√
8
+

2√
7
)− 2

√
2 =

4
√
7

7
−

√
2 > 0.

Case 2 n ≥ 5.

SJ(G∗(n, 3, 1))− SJ(Cn) ≥
n

2
· ( 1√

4n− 8
+

2√
3n− 5

+
n− 3√
3n− 4

)−
√
2n2

2
√
n2 − 1

=
n

2
· [( 1√

4n− 8
− 1√

n2−1
2

) + (
2√

3n− 5
− 2√

n2−1
2

) + (
n− 3√
3n− 4

− n− 3√
n2−1

2

)] > 0.

Combining the above two cases, we complete the proof. �
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