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Abstract For a simple graph G, the energy E(G) is defined as the sum of the absolute values

of all eigenvalues of its adjacency matrix. Let Un denote the set of all connected unicyclic

graphs with order n, and U r
n = {G ∈ Un| d(x) = r for any vertex x ∈ V (Cℓ)}, where r ≥ 2 and

Cℓ is the unique cycle in G. Every unicyclic graph in U r
n is said to be a cycle-r-regular graph.

In this paper, we completely characterize that C3
9 (2, 2, 2) ◦ Sn−8 is the unique graph having

minimal energy in U 4
n . Moreover, the graph with minimal energy is uniquely determined in

U r
n for r = 3, 4.
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1. Introduction

Let G be a graph of order n and A(G) the adjacency matrix of G. The characteristic

polynomial of G is

ϕ(G, x) = det(λI −A(G)) =
n∑

i=0

aiλ
n−i. (1.1)

The roots λ1, λ2, . . . , λn of ϕ(G,λ) = 0 are called the eigenvalues of G. Since A(G) is symmetric,

all the eigenvalues of G are real.

The energy of G, denoted by E(G), is defined as E(G) =
∑n

i=0 |λi|. It is known from [1]

that E(G) can be expressed as the Coulson integral foumula

E(G) =
1

2π

∫ +∞

−∞

1

x2
ln
[
(

⌊n/2⌋∑
i=0

(−1)ia2ix
2i)2 + (

⌊n/2⌋∑
i=0

(−1)ia2i+1x
2i+1)2

]
dx, (1.2)

where a0, a1, . . . , an are coefficients of characteristic polynomial ϕ(G, x) of G.

The graphs under our consideration are finite, connected and simple. Let Pn, Cn and

Sn denote the path, cycle and star with n vertices, respectively. Let Un denote the set of all

connected unicyclic graphs of order n.

Let U r
n = {G ∈ Un| d(x) = r for any vertex x ∈ V (Cℓ)}, where r ≥ 2 and Cℓ is the unique

cycle in G. Every graph in U r
n is said to be a cycle-r-regular graph. Since U 2

n contains exactly
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one single element, we will suppose r ≥ 3. Let G be a connected unicyclic graph and Cℓ the

unique cycle of length ℓ (3 ≤ ℓ ≤ n) of G. Let the vertices of Pn be ordered successively as

x1, x2, . . . , xn. Then, the graph P k
n is obtained from Pn by attaching exactly two pendent edges

to each of the vertices xk, xk+1, . . . , xn, respectively; for example, P 2
2 = S4. P k,1

n is the graph

obtained from P k
n by joining just one pendent vertex to the vertex x1 with k ≥ 2 (as shown in

Figure 1).

Let the vertices of Cℓ be ordered successively as y1, y2, . . . , yℓ. Let Cℓ
n(s1, s2, . . . , sℓ) de-

note the graph obtained from Cℓ by attaching exactly si pendent edges to the vertex yi for i =

1, 2, . . . , ℓ, where si ≥ 0 and
∑ℓ

i=1 si = n−ℓ. Clearly, Cℓ
ℓ (0, 0, . . . , 0)

∼= Cℓ. Let C
ℓ
ℓ(s+1)(s, s, . . . , s)◦

Sn−ℓ(s+1)+1 (For convenience, simply denote it by Cℓ
ℓ(s+1) · Sn−ℓ(s+1)+1) be the graph obtained

by fusing the center of the star Sn−ℓ(s+1)+1 with one pendent vertex of Cℓ
ℓ(s+1)(s, s, . . . , s), where

s ≥ 1 (as shown in Figure 2).

Since 1980s, the energy E(G) of a graph G has been studied extensively. And many re-

searchers have obtained lots of beautiful results for, such as, acyclic graphs, unicyclic graphs,

bicyclic graphs, tricyclic graphs and bipartite graphs. Readers can refer to [3–11, 13–20] and

book [12] for more details.
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Figure 1 Graphs used in the proof of Theorem 3.4
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Figure 2 Graphs used in the proof of Lemma 3.5

Recently, Wang et al. [19] characterized that C3
6 (1, 1, 1) ◦ Sn−5 is the unique graph with

minimal energy among all graphs in U 3
n . In this paper, we will investigate the minimal energy

for graphs in U 4
n , and obtain that C3

9 (2, 2, 2) ◦ Sn−8 is the unique graph with minimal energy in

U 4
n . Moreover, the graph with minimal energy is uniquely determined in U r

n for r = 3, 4.
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2. Some lemmas

Let G be a graph with characteristic polynomial ϕ(G,λ) =
∑n

i=0 aiλ
n−i. Sachs Theorem

states [2] that for i ≥ 1,

ai =
∑
S∈Li

(−1)p(S)2c(S), (2.1)

where Li denotes the set of Sachs subgraphs of G with i vertices, that is, the subgraphs in which

every component is either a K2 or a cycle, p(S) is the number of components of S and c(S) is

the number of cycles contained in S. Let bi(G) = |ai| (i = 0, 1, . . . , n). Clearly, b0(G) = 1 and

b2(G) equals the number of edges of G.

Let m(G; k) denote the number of matchings of size k in a graph G. For convenience, let

m(G; 0) = 1 and m(G; k) = 0 for all k < 0. If G is a bipartite graph, then b2k(G) = m(G; k) and

b2k+1(G) = 0.

Lemma 2.1 ([2]) Let e = uv be an edge of a graph G with n ≥ 2 vertices. Then the m(G; k)

for the k-matchings of G is determined by

m(G; k) = m(G− uv; k) +m(G− u− v; k − 1)

for k = 1, 2, . . . , ⌊n
2 ⌋, where m(G; 0) = 1.

Lemma 2.2 ([7]) Let G be a unicyclic graph with unique cycle Cℓ. Then (−1)ka2k ≥ 0 for all

k ≥ 0; and (−1)ka2k+1 ≥ 0 (resp.,≤ 0) for all k ≥ 0 if ℓ = 2r + 1 and r is odd (resp., even).

By Lemma 2.2, Eq. (1.1) can be reduced to

E(G) =
1

π

∫ +∞

0

1

x2
ln
[
(

⌊n/2⌋∑
i=0

b2ix
2i)2 + (

⌊n/2⌋∑
i=0

b2i+1x
2i+1)2

]
dx. (2.2)

It follows from Eq. (2.1) that E(G) is a monotonically increasing function in bi(G) for i =

0, 1, . . . , n. That is, for any two unicyclic graphs G1 and G2, we have

bi(G1) ≥ bi(G2) for all i ≥ 0 =⇒ E(G1) ≥ E(G2). (2.3)

If bi(G1) ≥ bi(G2) holds for all i ≥ 0, then we denote G1 ≽ G2 or G2 ≼ G1. If G1 ≽ G2

(orG2 ≼ G1) and there is some i0 satisfying bi0(G1) > bi0(G2), then we denote G1 ≻ G2

(orG2 ≺ G1). Therefore, we have the following relations:

G1 ≽ G2 =⇒ E(G1) ≥ E(G2),

G1 ≻ G2 =⇒ E(G1) > E(G2), (2.4)

where G1 and G2 are two unicyclic graphs.

Lemma 2.3 ([19]) Let G be a unicyclic graph of order n with unique cycle Cℓ. Let uv be an

edge in E(G). Then we have

(a) If uv ∈ Cℓ, then bi(G) = bi(G− uv) + bi−2(G− u− v)− 2bi−ℓ(G−Cℓ) if ℓ ≡ 0 (mod 4)

and bi(G) = bi(G− uv) + bi−2(G− u− v) + 2bi−ℓ(G− Cℓ) if ℓ ̸≡ 0 (mod 4);
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(b) If uv ̸∈ Cℓ, then bi(G) = bi(G− uv) + bi−2(G− u− v); in particular, if uv is a pendent

edge with pendent vertex v, then bi(G) = bi(G− v) + bi−2(G− u− v).

Lemma 2.4 ([2, 11]) Let G be an acyclic (or uncyclic) graph of order n, and G′ a proper

subgraph of G. Then, G ≻ G′.

By simple calculation, it is not difficult to obtain the next result.

Lemma 2.5 Let Pn be a path with n vertices. Then m(Pn; k) =
(
n−k
k

)
for 1 ≤ k ≤ ⌊n

2 ⌋.
From Lemmas 2.1 and 2.5, we can easily obtain the following lemma.

Lemma 2.6 Let Cn be a cycle with order n. Then m(Cn; k) =
n
k

(
n−k−1
k−1

)
.

3. Main results

Denote by U 4
n (ℓ) the subset of U 4

n such that the unique cycle of any graph G ∈ U 4
n (ℓ) has a

length ℓ. Let V1(G) denote the set of pendent vertices of G, and let dG(x, y) denote the distance

between x and y, and dG(x,Cℓ) = min{dG(x, y)| y ∈ V (Cℓ) and x ̸∈ V (Cℓ)}. Let V2(G) denote

the subset of V1(G) such that for any vertex x in V2(G) we have dG(x,Cℓ) = max{dG(y, Cℓ)| y ∈
V1(G)}.

Theorem 3.1 Let G ∈ U 4
n (ℓ). Then E(G) ≥ E(Cℓ

3ℓ · Sn−3ℓ+1). Equality holds if and only if

G ∼= Cℓ
3ℓ · Sn−3ℓ+1.

Proof By Eq. (2.4), it suffices to prove that if G ̸∼= Cℓ
3ℓ · Sn−3ℓ+1, then G ≻ Cℓ

3ℓ · Sn−3ℓ+1.

We proceed by induction on n− 3ℓ.

When n− 3ℓ = 0, we get G ∼= Cℓ
3ℓ · S1 since G ∈ U 4

n (ℓ). So the statement is true.

Now assume t ≥ 1 and the above result is true when n − 3ℓ < t. Now let n − 3ℓ = t.

Obviously, V2(G) ̸= ∅. Let x be any vertex in V2(G). Since n ≥ 3ℓ+ 1 and G ∈ U 4
n (ℓ), we have

dG(x,Cℓ) ≥ 2. Take x as v and its unique neighbor as u. From Lemma 2.3, we have

bi(G) = bi(G− v) + bi−2(G− v − u) (3.1)

and

bi(C
ℓ
3ℓ · Sn−3ℓ+1) = bi(C

ℓ
3ℓ · Sn−3ℓ) + bi−2(C

ℓ
3ℓ(1, 2, . . . , 2)). (3.2)

Note that G− v ∈ U 4
n−1(l) and Cℓ

3ℓ · Sn−3ℓ ∈ U 4
n−1(ℓ). Then

G− v ≻ Cℓ
3ℓ · Sn−3ℓ (3.3)

with equality if and only if G− v ∼= Cℓ
3ℓ · Sn−3ℓ by the induction assumption.

Moreover, since Cℓ
3ℓ(1, 2, . . . , 2) is a proper subgraph of G− v − u, by Lemma 2.4 we have

G− v − u ≻ Cℓ
3ℓ(1, 2, . . . , 2). (3.4)

From Ineqs. (3.3) and (3.4), for all i ≥ 0, it is obvious that

bi(G− v) ≥ bi(C
ℓ
3ℓ · Sn−3ℓ), (3.5)
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bi(G− v − u) ≥ bi(C
ℓ
3ℓ(1, 2, . . . , 2)). (3.6)

Ineqs. (3.1) and (3.2) result in

bi(G) ≥ bi(C
ℓ
3ℓ · Sn−3ℓ+1).

From Ineq. (3.4), there exists some i0 such that

bi0(G) > bi0(C
ℓ
3ℓ · Sn−3ℓ+1).

The proof is thus completed. �

Lemma 3.2 Let G be a unicyclic graph of U 4
n (ℓ). If ℓ ≥ 11, then b2k = m(G; k) and b2k−1 = 0

for 1 ≤ k ≤ 5.

Proof If ℓ ≥ 11, it means that the length of the cycle of G is not less than 11. Thus, a Sachs

subgraph of G with i vertices does not contain any cycle, for i ≤ 10. So from Eq. (2.1), the result

holds.

From Lemmas 2.5 and 2.6, and by simple computing, we obtain the following two tables,

where the graph G in Table 1 is isomorphic to G ∼= Cl
3l · S1.

G b2(G) b3(G) b4(G) b5(G) b6(G) b7(G) b8(G) b9(G) b10(G)

l = 5 15 0 75 2 150 0 120 0 32

l = 6 18 0 157 0 344 0 468 0 288

l = 7 21 0 172 0 651 2 1320 0 1342

l = 8 24 0 228 0 1112 0 2944 0 4416

l = 9 27 0 297 0 1728 0 5805 2 11610

l = 10 30 0 375 0 2550 0 10365 0 18356

Table 1 G ∼= Cl
3l · S1.

b2k(G)\G G1
∼= C4

12 · Sn−11 G2
∼= Cl

3l · S1(3l = n)

b4(G) 11n− 90 9
2 l

2 − 15
2 l

b6(G) 34n− 360 9
2 l

3 − 45
2 l2 + 30l

b8(G) 32n− 368 27
8 l4 − 135

4 l3 + 945
8 l2 − 579

4 l

b10(G) 8n− 96 81
40 l

5 − 135
4 l4 + 1755

4 l3 − 2637
4 l2 + 3858

5 l

Table 2 The coefficients of characteristic polynomial of two graphs

We next consider the minimal energy on graphs Cℓ
ℓ(s+1) ·Sn−ℓ(s+1)+1. Before exhibiting the

first main result, we introduce the following Claim.

Claim 1 For 0 ≤ k ≤ 5, b2k(C
ℓ
3ℓ · S1) ≥ b2k(C

4
12 · S3ℓ−11).

Proof It is trivial to show that b2k(C
ℓ
3ℓ · S1) ≥ b2k(C

4
12 · S3ℓ−11), for 0 ≤ k ≤ 1. In view of

Eq. (2.1), we only need to consider the following four cases.
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Case 1 k = 2.

From Table 2, we have that b4(C
ℓ
3ℓ · S1) =

9
2ℓ

2 − 15
2 ℓ and b4(C

4
12 · S3ℓ−11) = 33ℓ− 90.

Now let f1(x) = 9
2x

2 − 15
2 x − (33x − 90) = 9

2x
2 − 81

2 x + 90. From the property of a

quadratic function, f1(x) is a monotonically increasing function on interval [10,+∞). Moreover,

f1(10) = 25 > 0. Therefore, b4(C
l
3l · S1) > b4(C

4
12 · S3ℓ−11).

Case 2 k = 3.

From Table 2, it is not difficult to get that b6(C
l
3l · S1) = 9

2ℓ
3 − 45

2 ℓ2 + 30ℓ and b6(C
4
12 ·

S3ℓ−11) = 102ℓ − 360. By examining the function f2(x) =
9
2x

3 − 45
2 x2 + 30x − (102x − 360) =

9
2x

3 − 45
2 x2 − 72x + 360, f2 : [10,+∞) −→ R, and its first derivative f ′

2(x) =
27
2 x2 − 45x − 72,

we see that f ′
2(x) > 0 for any x with 10 ≤ x ≤ +∞, hence f(x) is a monotonically increasing

function, and f2(10) = 1790. So b6(C
ℓ
3ℓ · S1) > b6(C

4
12 · S3ℓ−11).

Case 3 k = 4.

From Table 2, we obtain that b8(C
ℓ
3ℓ ·S1) =

27
8 ℓ4− 135

4 ℓ3+ 945
8 ℓ2− 579

4 ℓ and b8(C
4
12 ·S3ℓ−11) =

96ℓ− 368. Now we consider the function f3(x) =
27
8 x4 − 135

4 x3 + 945
8 x2 − 579

4 x− (96x− 368) =
27
8 x4− 135

4 x3+ 945
8 x2− 963

4 x+368. Moreover, its first derivative f ′
3(x) =

27
2 x3− 405

4 x2+ 945
4 x− 963

4 ,

implies that f ′
3(x) > 0 for any x with 10 ≤ x ≤ +∞. Hence b8(C

ℓ
3ℓ · S1) > b8(C

4
12 · S3ℓ−11).

Case 4 k = 5.

Table 2 implies that b10(C
ℓ
3ℓ·S1) =

81
40ℓ

5− 135
4 ℓ4+ 1755

4 ℓ3− 2637
4 ℓ2+ 3858

5 ℓ and b10(C
4
12·S3ℓ−11) =

24ℓ − 96. Seeing function f4(x) = 81
40x

5 − 135
4 x4 + 1755

4 x3 − 2637
4 x2 + 3858

5 x − (24x − 96) =
81
40x

5 − 135
4 x4 + 1755

4 x3 − 2637
4 x2 + 3738

5 x + 96 and its first derivative f ′
4(x) = 81

8 x4 − 135x3 +
5265
4 x2 − 2637

4 x2 + 3738
5 x, we get that f ′

4(x) > 0 for any x with 10 ≤ x ≤ +∞. Therefore,

b10(C
ℓ
3ℓ · S1) > b10(C

4
12 · S3ℓ−11).

Theorem 3.3 For ℓ ≥ 5, E(Cℓ
3ℓ · S1) > E(C4

12 · S3ℓ−11).

Proof From Eq. (2.4), it suffices to prove that Cℓ
3ℓ · S1 ≻ C4

12 · S3ℓ−11. When 5 ≤ ℓ ≤ 10, we

know, from Table 1, that the conclusion is true by simple comparison. Hence, we now only need

to consider the remainder part ℓ ≥ 11.

Since C4
12 · S3ℓ−11 is bipartite, b2k+1(G) = 0 for all k ≥ 0. Note that the number of i-

matchings of C4
12 · S3ℓ−11 equals 0 for i ≥ 6. Thus, it suffices to prove b2k(C

ℓ
3ℓ · S1) ≥ b2k(C

4
12 ·

S3ℓ−11), for 0 ≤ k ≤ 5.

By Claim 1, we complete the proof. �
We now describe an important conclusion which will be used in the proof of the next main

result.

Claim 2 If ℓ ≥ 5, then m(T ℓ; k)+m(P 1
ℓ−2∪Sn−3ℓ+1; k−1)−m(T ℓ−1; k)+m(P 1

ℓ−3∪Sn−3ℓ+4; k−
1) > m(P 1

ℓ−4 ∪ Sn−3ℓ+1; k − 2).

Proof Let f1(ℓ) = m(T ℓ; k) +m(P 1
ℓ−2 ∪ Sn−3ℓ+1; k − 1). Then

f1(ℓ) =m(T ℓ; k) +m(P 1
ℓ−2 ∪ Sn−3ℓ+1; k − 1)
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=m(P 2,1
ℓ ∪ Sn−3ℓ+1; k) +m(P 1

ℓ−1; k − 1) +m(P 1
ℓ−2 ∪ Sn−3ℓ+1; k − 1)

=m(P 2,1
ℓ−1 ∪ P3 ∪ Sn−3ℓ+1; k) +m(P 2,1

ℓ−2 ∪ Sn−3ℓ+1; k − 1) +m(P 1
ℓ−1; k − 1)+

m(P 1
ℓ−3 ∪ P3 ∪ Sn−3ℓ+1; k − 1) +m(P 1

ℓ−4 ∪ Sn−3ℓ+1; k − 2)

=m(P 2,1
ℓ−1 ∪ Sn−3ℓ+1; k) + 2m(P 2,1

ℓ−1 ∪ Sn−3ℓ+1; k − 1) +m(P 2,1
ℓ−2 ∪ Sn−3ℓ+1; k − 1)+

m(P 1
ℓ−1; k − 1) +m(P 1

ℓ−3 ∪ Sn−3ℓ+1; k − 1) + 2m(P 1
ℓ−3 ∪ Sn−3ℓ+1; k − 2)+

m(P 1
ℓ−4 ∪ Sn−3ℓ+1; k − 2), (3.7)

and

f1(ℓ− 1) =m(T ℓ−1; k) +m(P 1
ℓ−3 ∪ Sn−3ℓ+4; k − 1)

=m(P 2,1
ℓ−1 ∪ Sn−3ℓ+4; k) +m(P 1

ℓ−2; k − 1) +m(P 1
ℓ−3 ∪ Sn−3ℓ+4; k − 1)

=m(P 2,1
ℓ−1 ∪ Sn−3ℓ+1; k) + 3m(P 2,1

ℓ−1; k − 1) +m(P 1
ℓ−2; k − 1)+

m(P 1
ℓ−3 ∪ Sn−3ℓ+1; k − 1) + 3m(P 1

ℓ−3; k − 2). (3.8)

Note that, since n ≥ 3ℓ+ 1, we have

m(P 2,1
ℓ−1 ∪ Sn−3ℓ+1; k − 1) ≥ m(P 2,1

ℓ−1 ∪ P2; k − 1) = m(P 2,1
ℓ−1; k − 1) +m(P 2,1

ℓ−1; k − 2). (3.9)

Meanwhile,

m(P 1
ℓ−1; k − 1) = m(P 1

ℓ−2 ∪ P3; k − 1) +m(P 1
ℓ−3; k − 2)

= m(P 1
ℓ−2; k − 1) + 2m(P 1

ℓ−2; k − 2) +m(P 1
ℓ−3; k − 2), (3.10)

m(P 2,1
ℓ−1; k − 1) = m(P 2,1

ℓ−2 ∪ P3; k − 1) +m(P 2,1
ℓ−3; k − 2)

= m(P 2,1
ℓ−2; k − 1) + 2m(P 2,1

ℓ−2; k − 2) +m(P 2,1
ℓ−3; k − 2), (3.11)

and

m(P 2,1
ℓ−2 ∪ Sn−3ℓ+1; k − 1) > m(P 2,1

ℓ−2; k − 1),

m(P 1
ℓ−3 ∪ Sn−3ℓ+1; k − 2) > m(P 1

ℓ−3; k − 2). (3.12)

Combining the above Eqs. (3.7) through (3.12) with Lemma 2.4, we obtain

f1(ℓ)− f1(ℓ− 1) ≥ m(P 1
ℓ−2; k − 2) +m(P 1

ℓ−4 ∪ Sn−3ℓ+1; k − 2)

> m(P 1
ℓ−4 ∪ Sn−3ℓ+1; k − 2).

Therefore, the result holds. �

Theorem 3.4 For ℓ ≥ 5, E(Cℓ
3ℓ · Sn−3ℓ+1) > E(C4

12 · Sn−11).

Proof By Lemma 2.3, we conclude that

bi(C
4
12 · Sn−11) = bi(T

4) + bi−2(P
1
2 ∪ Sn−11)− 2bi−4(Sn−11),

while for ℓ ≡ 0 (mod 4),

bi(C
ℓ
3ℓ · Sn−3ℓ+1) = bi(T

ℓ) + bi−2(P
1
ℓ−2 ∪ Sn−3ℓ+1)− 2bi−ℓ(Sn−3ℓ+1),
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and for ℓ ̸≡ 0 (mod 4),

bi(C
ℓ
3ℓ · Sn−3ℓ+1) = bi(T

ℓ) + bi−2(P
1
ℓ−2 ∪ Sn−3ℓ+1) + 2bi−ℓ(Sn−3ℓ+1).

Let f1(ℓ) = b2k(T
ℓ)+ b2k−2(P

1
ℓ−2 ∪Sn−3ℓ+1). From (2.1) (Sachs Theorem), we also have f1(ℓ) =

m(T ℓ; k) +m(P 1
ℓ−2 ∪ Sn−3ℓ+1; k − 1).

When ℓ ≡ 0 (mod 4), we arrive at

m(P 1
ℓ−4 ∪ Sn−3ℓ+1; k − 2)− 2b2k−ℓ(Sn−3ℓ+1)

>



(
ℓ− 4
ℓ
2 − 3

)
(n− 3ℓ)− 2 > 0 k =

ℓ

2
;(

ℓ− 4
ℓ
2 − 2

)
(n− 3ℓ)− 2(n− 3ℓ) > 0 k =

ℓ

2
+ 1;

0 k ̸= ℓ

2
,
ℓ

2
+ 1.

By Claim 2, we have

b2k(C
ℓ
3ℓ · Sn−3ℓ+1) = f1(ℓ)− 2b2k−ℓ(Sn−3ℓ+1)

> f1(ℓ− 1) +m(P 1
ℓ−4 ∪ Sn−3ℓ+1; k − 2)− 2b2k−ℓ(Sn−3ℓ+1)

> f1(ℓ− 1) ≥ f1(4) ≥ f1(4)− 2b2k−4(Sn−11)

= b2k(C
4
12 · Sn−11).

When ℓ ̸≡ 0 (mod 4), from Claim 2, we get

b2k(C
ℓ
3ℓ · Sn−3ℓ+1) = f1(ℓ) + 2b2k−ℓ(Sn−3ℓ+1)

> f1(ℓ− 1) +m(P 1
ℓ−4 ∪ Sn−3ℓ+1; k − 2) + 2b2k−ℓ(Sn−3ℓ+1)

> f1(ℓ− 1) ≥ f1(4) ≥ f1(4)− 2b2k−4(Sn−11)

= b2k(C
4
12 · Sn−11).

So we conclude that b10(C
ℓ
3ℓ · Sn−3ℓ+1) > b10(C

4
12 · Sn−11).

Thus the proof is completed. �

Lemma 3.5 For n ≥ 12, E(C4
12 · Sn−11) > E(C3

9 · Sn−8).

Proof Note that

ϕ(C3
9 · Sn−8) = xn−8(x8 − nx6 − 2x5 + (8n− 54)x4 + 2(n− 9)x3 − (14n− 118)x2 + 4(n− 9)),

ϕ(C4
12 · Sn−11) = xn−10(x10 − nx8 + (11n− 90)x6 − (3n− 336)x4 + (32n− 368)x2 + (8n− 96)),

where the graphs C4
12 ·Sn−11 and C3

9 ·Sn−8 refer to Figure 2. Therefore, from Eq. (2.2), we have

E(C4
12 · Sn−11)− E(C3

9 · Sn−8) =
1

π

∫ +∞

0

1

x2
ln

h1(x)

h2(x)
dx,

where h1(x) = (1 + nx2 + (11n − 90)x4 + (3n − 336)x6 + (32n − 368)x8 + (8n − 96)x10)2 and

h2(x) = (1 + nx2 + (8n− 54)x4 + (14n− 118)x6 + 4(n− 9)x8)2 + (2x3 + 2(n− 9)x5)2. Then, by

a simple calculation, we can obtain the result.
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Combining Lemma 3.5 and Theorem 3.1 with Theorem 3.4, we get the main result of the

paper.

Theorem 3.6 For n ≥ 9, C3
9 · Sn−8 has the minimal energy among all graphs in U 4

n .

Therefore, from [19, Theorem 11] and Theorem 3.6, we have an additional result as the next

corollary.

Corollary 3.7 For n ≥ 9, C3
6 (1, 1, 1) ·Sn−5 has the minimal energy among all graphs in U r

n for

r = 3, 4.
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