
Journal of Mathematical Research with Applications

Jul., 2014, Vol. 34, No. 4, pp. 423–434

DOI:10.3770/j.issn:2095-2651.2014.04.005

Http://jmre.dlut.edu.cn

Multiplicative Perturbation Bounds for the SR
Factorization

Yanfei YANG, Hanyu LI∗

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, P. R. China

Abstract In this paper, we present the first order perturbation bounds for the SR fac-

torization with respect to left multiplicative perturbation, and the first order and rigorous

perturbation bounds for this factorization with respect to right multiplicative perturbation.

Moreover, taking the properties of SR factors into consideration, we also provide some refined

perturbation bounds.
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1. Introduction

Let Rm×n be the set of m×n real matrices, AT be the transpose of the matrix A, and Ir be

the identity matrix of order r. Let A ∈ R2n×2n, and P = [e1, e3, . . . , e2n−1, e2, e4, . . . , e2n] with

ek representing the k-th unit vector. If all even leading principal submatrices of PATJAPT are

nonsingular, Bunse-Gerstner [1] showed that A has the following SR factorization

A =SR =

[
S11 S12

S21 S22

][
R11 R12

R21 R22

]
, (1.1)

where S is a symplectic matrix, i.e., it satisfies

STJS = J, J =

[
0 In

In 0

]
, (1.2)

Rij (i, j = 1, 2) are upper triangular, and diag(R21) = 0. Further, if

diag(R11) = |diag(R22)| and diag(R12) = 0 (1.3)

hold, then the SR factorization (1.1) is unique [2]. Here, for any matrix X = (xij) ∈ Rm×n, |X|
is defined by (|xij |). In the following, when it comes to the unique SR decomposition, it means

that its factor R satisfies (1.3).

Since the SR factorization is widely used in the computation of some optimal control prob-

lems (e.g., [3–5]) and is a key step for some important structure-preserving eigenproblems (e.g.,

Received May 21, 2013; Accepted February 24, 2014

Supported by the National Natural Science Foundation of China (Grant No. 11201507).

* Corresponding author

E-mail address: yangyanfei2008@yeah.net (Yanfei YANG); lihy.hy@gmail.com or hyli@cqu.edu.cn (Hanyu LI)



424 Yanfei YANG and Hanyu LI

[1, 6–8]), some authors studied its algorithms, error analysis, and perturbation analysis (e.g.,

[1, 2, 5, 9–13]). The first order additive perturbation bounds of this factorization were derived

by Bhatia [9] and Chang [2]. In this paper, using the classical and refined matrix equation ap-

proaches from [14, 15], we consider the perturbation bounds for the SR factorization with respect

to multiplicative perturbations. That is, the original A is perturbed to

ÃL = DLA, (1.4)

or

ÃR = ADR, (1.5)

where DL ∈ R2n×2n and DR ∈ R2n×2n approach to the identity matrix I2n, multiples of the

identity matrix, or symplectic matrices, and they are called the left and right multiplicative

perturbations, respectively. Of course, the multiplicative perturbations can easily be turned into

additive perturbation. However, in this case, the perturbations will lose their nature and the

obtained additive perturbation bounds will not reveal the special structures of multiplicative

perturbations. Therefore, it is worth deriving the multiplicative perturbation bounds for the SR

factorization.

The rest of this paper is organized as follows. Section 2 gives some notation and prelim-

inaries. In Section 3, we present some lemmas which will be necessary for the following two

sections. Sections 4 and 5 are devoted to deriving the multiplicative perturbation bounds for the

SR factorization.

2. Notation and preliminaries

Throughout this paper, for any matrix A ∈ Rm×n, the symbols ∥A∥2 and ∥A∥F represent

its spectral norm and Frobenius norm, respectively. For these two norms, the following relations

hold [16, pp. 80]

∥XY Z∥F 6 ∥X∥2∥Y ∥F ∥Z∥2, ∥XY Z∥2 6 ∥X∥2∥Y ∥2∥Z∥2, (2.1)

whenever the matrix product XY Z is defined. If the matrix A ∈ Rn×n is nonsingular, define its

condition number as k2 (A) = ∥A∥2
∥∥A−1

∥∥
2
. For any matrix A = (aij) ∈ Rn×n, define

up (A) =


1
2a11 a12 · · · a1n

0 1
2a22 · · · a2n

...
...

. . .
...

0 0 · · · 1
2ann

 , low (A) =


1
2a11 0 · · · 0

a21
1
2a22 · · · 0

...
...

. . .
...

an1 an2 · · · 1
2ann

 ,

sut (A) =


0 a12 · · · a1n

0 0 · · · a2n
...

...
. . .

...

0 0 · · · 0

 , lt (A) =


a11 0 · · · 0

a21 a22 · · · 0
...

...
. . .

...

an1 an2 · · · ann

 ,

where the symbols “up”, “low,” and “sut” can be found in [14, 15, 17].
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For any matrix

B =

[
B11 B12

B21 B22

]
∈ R2n×2n,

where Bij ∈ Rn×n (i, j = 1, 2), define

bup (B) =

[
sut (B11) up (B12)

up (B21) sut (B22)

]
, blow (B) =

[
lt (B11) low (B12)

low (B21) lt (B22)

]
,

B(2k) =B(1 : 2k, 1 : 2k), k = 1, 2, . . . , n,

where “b” in “bup” and “blow” means “block” and B(1 : 2k, 1 : 2k) is the MATLAB notation.

Clearly,

B − bup (B) = blow (B) , (2.2)

∥bup (B)∥F 6 ∥B∥F . (2.3)

Let D2n denote the set of all 2n×2n real positive definite diagonal matrices. Then for any matrix

D ≡

[
D(1)

D(2)

]
=diag

(
δ
(1)
1 , . . . , δ(1)n , δ

(2)
1 , . . . , δ(2)n

)
∈ D2n, (2.4)

it is easy to verify that the following properties hold

bup (BD) = bup (B)D, bup (DB) = Dbup (B) . (2.5)

Through out this paper, unless otherwise specified, D ∈ D2n is defined as in (2.4).

3. Some lemmas

The following lemmas will be used later in this paper.

Lemma 3.1 ([2]) For any matrix B ∈ R2n×2n and D ∈ D2n,

∥bup(B)−D−1bup(BT )D∥F 6
√

1 + ζ2D∥B∥F , (3.1)

where

ζD = max
{
max
i<j

{δ(1)j

δ
(1)
i

,
δ
(2)
j

δ
(2)
i

}
, max

i6j

{δ(1)j

δ
(2)
i

,
δ
(2)
j

δ
(1)
i

}}
.

In particular, if BT = −B and D = I2n, then (3.1) reduces to

∥bup (B)∥F 6 (1/
√
2)∥B∥F . (3.2)

Lemma 3.2 For any matrix B ∈ R2n×2n,

∥blow(B) + bup(BT )∥F 6
√
2∥B∥F . (3.3)

This lemma follows from [2, Lemma 3] with D = I2n. It is worth pointing out that ∥B −
bup(B)−D−1bup(BT )D∥F in Lemma 3 in [2] should be ∥B − bup(B) +D−1bup(BT )D∥F .

Lemma 3.3 ([14]) Let a, b > 0. Let c(·) be a continuous function of a parameter t ∈ [0, 1] such

that b2−4ac(t) > 0 holds for all t. Suppose that a continuous function x(t) satisfies the quadratic
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inequality ax(t)2 − bx(t) + c(t) > 0. If c(0) = x(0) = 0, then x(1) 6 (1/2a)
(
b−

√
b2 − 4ac(1)

)
.

Lemma 3.4 Suppose that A ∈ R2n×2n has the SR factorization (1.1) and all even leading

principal submatrices of P (A+∆A)TJ(A+∆A)PT are nonsingular. Then A + ∆A has the

unique SR factorization

A+∆A = (S +∆S)(R+∆R),

and

∥∆S∥F .
√
2k2(S)∥R−1∥2∥∆A∥F , (3.4)

∥∆R∥F .
√
2k2(R)∥S−1∥2∥∆A∥F . (3.5)

The above two inequalities were presented in [9, Corollary 4.4].

4. Left multiplicative perturbation

In this section, we present the first order perturbation bounds when A suffers from left

multiplicative perturbation. Moreover, based on the properties of SR factors, some refined

bounds are provided.

Theorem 4.1 Assume that A ∈ R2n×2n has the unique SR factorization (1.1). Let DL =

I2n + E ∈ R2n×2n and ÃL be defined as in (1.4). If

k2(S)∥E∥2 <
√
2− 1, (4.1)

then ÃL has the unique SR factorization

ÃL = DLA = S̃R̃ = (S +∆S)(R+∆R), (4.2)

and
∥∆S∥F
∥S∥2

.
√
2k2(S)∥DL − I2n∥F , (4.3)

∥∆R∥F
∥R∥2

.
√
2k2(S)∥DL − I2n∥F . (4.4)

Proof Noting (1.4), (1.1), and the fact that S is nonsingular, we have

ÃL = DLA = (I2n + E)SR = S(I2n + S−1ES)R. (4.5)

Considering (1.2), we get

P [(I2n + E)S]
T
J(I2n + E)SPT = P (I2n + S−1ES)TJ(I2n + S−1ES)PT

= P (J +M)PT = Ĵ +N, (4.6)

where M = JS−1ES + STETS−TJ + STETS−TJS−1ES,N = PMPT , and

Ĵ = PJPT = diag(J0, J0, . . . , J0), J0 =

[
0 1

−1 0

]
. (4.7)

Noting (2.1) and (4.1), we obtain

∥N∥2 = ∥PMPT ∥2 = ∥M∥2 6 2∥S−1ES∥2 + ∥S−1ES∥22 6 2k2(S)∥E∥2 + k22(S)∥E∥22 < 1.
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As a result [15], ∥∥N(2k)

∥∥
2
< 1, k = 1, 2, . . . , n.

Furthermore, obviously, ∥Ĵ(2k)∥2 = 1. Then ∥Ĵ(2k)N(2k)∥2 < 1, which implies I2k − Ĵ(2k)N(2k) is

nonsingular. Therefore,

(Ĵ +N)(2k) = Ĵ(2k) +N(2k) = Ĵ(2k)[I2k − Ĵ(2k)N(2k)]

is nonsingular since Ĵ(2k) is nonsingular. Noting (4.6), we obtain that all even leading principal

submatrices of P [(I2n + E)S]
T
J(I2n+E)SPT are nonsingular. Thus, (I2n+E)S has the unique

SR factorization

(I2n + E)S = S̃R, (4.8)

which, combined with (4.5), leads to

ÃL = (I2n + E)SR = S̃RR = S̃R̃, (4.9)

where R̃ = RR. It is easy to check that the structure of R̃ is the same as that of R defined

in (1.1) and (1.3). Thus, (4.9) is the unique SR factorization of ÃL. So, the proof of (4.2) is

completed. �
In the following, we consider (4.3) and (4.4). Noting (4.8) and (4.9), by Lemma 3.4 and

using (2.1), we have

∥∆S∥F =∥S̃ − S∥F .
√
2k2(S)∥ES∥F .

√
2k2(S)∥S∥2∥E∥F , (4.10)

∥∆R∥F =∥R̃−R∥F = ∥RR−R∥F 6 ∥R− I2n∥F ∥R∥2
.
√
2∥S−1∥2∥R∥2∥ES∥F .

√
2k2(S)∥R∥2∥E∥F . (4.11)

Note E = DL − I2n. It is easy to get (4.3) and (4.4) from (4.10) and (4.11).

Note that if DL is a scalar multiple of the identity matrix, the real perturbation bound of

the factor S is zero and if DL is a symplectic matrix, the real perturbation bound of the factor

R is zero. However, in these cases, the bounds of S and R in (4.3) and (4.4) are far from zero.

Therefore, the bounds (4.3) and (4.4) are not good enough. Next, following the idea of [15] and

employing the following properties of SR factors:

• the factor S is invariant when A suffers from a left multiplicative perturbation by any

positive constant,

• the factor R is invariant when A suffers from a left multiplicative perturbation by any

symplectic matrix,

we refine the bounds (4.3) and (4.4), respectively.

We first consider the factor S. For any constant α > 0, if the condition (4.1) holds, then

αDLA = [I2n + (αDL − I2n)]A = S̃(αR̃). (4.12)

Further, from Theorem 4.1, if

k2(S)∥αDL − I2n∥2 <
√
2− 1,
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then (4.12) also holds and

∥∆S∥F
∥S∥2

.
√
2k2(S)∥αDL − I2n∥F . (4.13)

Thus, we can find out α̂ such that ∥αDL − I2n∥F is minimal, and then substitute α̂ into (4.13)

to better the bound. Since

∥αDL − I2n∥2F = trace[(αDL − I2n)
T (αDL − I2n)] = ∥DL∥2Fα2 − 2trace(DL)α+ n,

we get

α̂ =
trace(DL)

∥DL∥2F
. (4.14)

In this case, k2(S)∥α̂DL − I2n∥2 6 k2(S)∥α̂DL − I2n∥F = 0 <
√
2− 1. In addition, we can also

verify that α̂ > 0 if (4.1) holds. As a result, we have the following theorem which improves the

bound of factor S in Theorem 4.1.

Theorem 4.2 Assume that the conditions of Theorem 4.1 hold and α̂ is defined as in (4.14).

Then
∥∆S∥F
∥S∥2

.
√
2k2(S)∥α̂DL − I2n∥F . (4.15)

Remark 4.3 We can see that if DL = kI2n for any k ∈ R, then α̂DL − I2n = 0. As a result,

the bound in (4.15) is zero, which shows that the bound (4.15) is also valid for some special

perturbations.

Now we consider the factor R. For any symplectic matrix G ∈ R2n×2n, if the condition (4.1)

holds, then

GDLA = [I2n + (GDL − I2n)]A = (GS̃)R̃. (4.16)

Further, from Theorem 4.1, if

k2(S)∥GDL − I2n∥2 <
√
2− 1,

then (4.16) also holds and

∥∆R∥F
∥R∥2

.
√
2k2(S)∥GDL − I2n∥F . (4.17)

Therefore, we can refine the bound (4.3) by a symplectic matrix G. What we only need to do is

to find a symplectic matrix Ĝ such that ∥GDL − I2n∥F is minimal and then substitute it into

(4.17). Unfortunately we have not found the suitable symplectic matrix so far.

5. Right multiplication perturbation

In this section, we first present the rigorous perturbation bounds for the SR factorization

when A suffers from right multiplicative perturbation. Then, the first order perturbation bounds

for this factorization are presented as the special case.

Theorem 5.1 Assume that A ∈ R2n×2n has the unique SR factorization (1.1). Let DR =
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I2n + F ∈ R2n×2n and ÃR be defined as in (1.5). If

k2(R)∥F∥F <
√
3/2− 1 <

√
2− 1, (5.1)

then ÃR has the unique SR factorization

ÃR = A(I2n + F ) = (S +∆S)(R+∆R), (5.2)

and

∥∆S∥F
∥S∥2

6(2 + 2
√
2 + 2

√
3 +

√
6)k2(R)∥DR − I2n∥F , (5.3)

∥∆R∥F
∥R∥2

6(
√
3 +

√
6) inf

D∈D2n

[√
1 + ζ2Dk2(D

−1R)
]
∥DR − I2n∥F . (5.4)

Proof For any t ∈ [0, 1], let

ÃR(t) = A(I2n + tF ) = SR(I2n + tF ).

Then, using (1.1) and (1.2), we have

PÃT
R(t)JÃR(t)P

T =P (I2n + tF )TRTJR(I2n + tF )PT

=PRT [J +K(t)]RPT = PRTPTP [J +K(t)]PTPRPT , (5.5)

where K(t) = tR−TFTRTJ + tJRFR−1 + t2R−TFTRTJRFR−1. Employing the same method

as Theorem 4.1, we have that all even leading principal submatrices of P [J + K(t)]PT are

nonsingular. Obviously, P [J +K(t)]PT is skew-symmetric. Thus, from [18], we get

P [J +K(t)]PT = RT (t)ĴR(t), (5.6)

where Ĵ is defined as in (4.7) and R(t) is upper triangular with 2× 2 main diagonal blocks:[
ri(t)

±ri(t)

]
, ri(t) > 0, i = 1, 2, . . . , n.

Substituting (5.6) into (5.5) gives

PÃT
R(t)JÃR(t)P

T = (PRTPT )RT (t)ĴR(t)(PRPT ),

where PRPT is upper triangular with 2× 2 main diagonal blocks:[
|ri|

ri

]
, i = 1, 2, . . . , n.

Here, ri are the diagonal elements of R22, which is defined as in (1.1). Let

R(t) =


R11(t) R12(t) · · · R1n(t)

0 R22(t) · · · R2n(t)
...

...
. . .

...

0 0 · · · Rnn(t)

 , PRPT =


R11 R12 · · · R1n

0 R22 · · · R2n

...
...

. . .
...

0 0 · · · Rnn

 ,

where Rij(t) and Rij (i, j = 1, 2, . . . , n) are 2 × 2 matrices, and Rii(t) and Rii (i = 1, 2, . . . , n)
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are defined above. After some computations, we have

R(t)(PRPT ) =


R11(t)R11 R11(t)R12 +R12(t)R22 · · · Σn

k=1R1k(t)Rkn

0 R22(t)R22 · · · Σn
k=2R2k(t)Rkn

...
...

. . .
...

0 0 · · · Rnn(t)Rnn

 .

Further, noting (4.7), we have

PÃT
R(t)JÃR(t)P

T

=


RT

11R
T
11(t)J0 0 · · · 0

RT
12(t)R

T
11(t) +RT

22R
T
12(t) RT

22R
T
22(t)J0 · · · 0

...
...

. . .
...

Σn
k=1R

T
knR

T
1k(t) Σn

k=2R
T
knR

T
2k(t) · · · RT

nnR
T
nn(t)J0

×


R11(t)R11 R11(t)R12 +R12(t)R22 · · · Σn

k=1R1k(t)Rkn

0 R22(t)R22 · · · Σn
k=2R2k(t)Rkn

...
...

. . .
...

0 0 · · · Rnn(t)Rnn

 .

Hence, the even leading principle submatrices of PÃT
R(t)JÃR(t)P

T are:
RT

11R
T
11(t)J0 0 · · · 0

RT
12(t)R

T
11(t) +RT

22R
T
12(t) RT

22R
T
22(t)J0 · · · 0

...
...

. . .
...

Σm
k=1R

T
kmRT

1k(t) Σm
k=2R

T
kmRT

2k(t) · · · RT
mmRT

mm(t)J0

×


R11(t)R11 R11(t)R12 +R12(t)R22 · · · Σm

k=1R1k(t)Rkm

0 R22(t)R22 · · · Σm
k=2R2k(t)Rkm

...
...

. . .
...

0 0 · · · Rmm(t)Rmm

 , m = 1, 2, . . . , n.

Noting that both the lower and the upper triangular matrices are nonsingular, we have that all

even leading principal submatrices of PÃT
R(t)JÃR(t)P

T are nonsingular. Then ÃR(t) has the

unique SR factorization

ÃR(t) = A(I2n + tF ) = SR(I2n + tF ) = (S +∆S(t))(R+∆R(t)), (5.7)

which, with ∆S(1) = ∆S, ∆R(1) = ∆R, leads to (5.2).

In the following, we consider (5.3) and (5.4). Noting (1.2) and (5.7), we obtain

(I2n + tF )TRTJR(I2n + tF ) = (R+∆R(t))TJ(R+∆R(t)).

We can see that through expanding the above equation

tRTJRF + tFTRTJR+ t2FTRTJRF −∆RT (t)J∆R(t) = RTJ∆R(t) + ∆RT (t)JR. (5.8)
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Left-multiplicating by R−T and right-multiplicating by R−1 on the both sides of (5.8), we get

tJRFR−1 + tR−TFTRTJ + t2R−TFTRTJRFR−1 −R−T∆RT (t)J∆R(t)R−1

= J∆R(t)R−1 +R−T∆RT (t)J. (5.9)

According to the fact that the structure of ∆R(t) is the same as that of Ṙ(0) in [2], by the same

method of [2], from (5.9), we get

J∆R(t)R−1 =bup
[
tJRFR−1 − t(JRFR−1)T

]
+ bup(t2R−TFTRTJRFR−1)−

bup
[
R−T∆RT (t)J∆R(t)R−1

]
. (5.10)

Taking the Frobenius norm on the both sides of (5.10), and using (3.1) with D = I2n, (3.2), and

(2.1) gives

∥∆R(t)R−1∥F 6
√
2∥RFR−1∥F t+ (1/

√
2)∥RFR−1∥2F t2 + (1/

√
2)∥∆R(t)R−1∥2F . (5.11)

Let x(t) = ∥∆R(t)R−1∥F and c(t) = 2∥RFR−1∥F t+∥RFR−1∥2F t2. Then (5.11) can be rewritten

as

x2(t)−
√
2x(t) + c(t) > 0.

Note that c(t) is continuous with respect to t, and the condition (5.1) guarantees that c(t) 6
2∥RFR−1∥F + ∥RFR−1∥2F 6 2k2(R)∥F∥F + k22(R)∥F∥2F < 1/2 with t ∈ [0, 1], which implies

∆ = 2 − 4c(t) > 2 − 4 × 1/2 = 0. Meanwhile, x(t) is continuous with respect to t and c(0) =

x(0) = 0. By Lemma 3.3, we obtain

∥∆RR−1∥F 6 1√
2

(
1−

√
1− 4∥RFR−1∥F − 2∥RFR−1∥2F

)
6 1/

√
2. (5.12)

From (5.10) with t = 1, we have

J∆RR−1 =bup(JRFR−1 +R−TFTRTJ +R−TFTRTJRFR−1−

R−T∆RTJ∆RR−1). (5.13)

Let R = DR̂ with D ∈ D2n. Thus, noting (2.5), from (5.13), it follows that

J∆RR̂−1 =bup
[
JRFR̂−1 −D−1(JRFR̂−1)TD

]
+ bup(R−TFTRTJRFR̂−1)−

bup(R−T∆RTJ∆RR̂−1). (5.14)

Taking the Frobenius norm on the both sides of (5.14), and using (3.1), (2.3) and (2.1), we get

∥∆RR̂−1∥F 6
√
1 + ζ2D∥RFR̂−1∥F + ∥RFR−1∥F ∥RFR̂−1∥F + ∥∆RR−1∥F ∥∆RR̂−1∥F ,

which, combined with the first inequality of (5.12), (5.1), the fact
√
1 + ζ2D > 1, and (2.1),

implies

∥∆RR̂−1∥F 6

√
2
(√

1 + ζ2D + ∥RFR−1∥F
)
∥RFR̂−1∥F

√
2− 1 +

√
1− 4∥RFR−1∥F − 2∥RFR−1∥2F

(5.15)

6(2 +
√
2)
(√

1 + ζ2D + k2(R)∥F∥F
)
∥RFR̂−1∥F (5.16)

6(
√
3 +

√
6)
√
1 + ζ2D∥RFR̂−1∥F . (5.17)
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Therefore, using (2.1), and combining (5.17) with

∥∆R∥F 6 ∥∆RR̂−1∥F ∥R̂∥2 (5.18)

and

F = DR − I2n (5.19)

leads to (5.4).

Expanding (5.2) and using (1.1), we get

SRF = S∆R+∆SR+∆S∆R. (5.20)

Left-multiplicating by STJ and right-multiplicating by R−1 on the both sides of (5.20) yields

STJ∆S = JRFR−1 − J∆RR−1 − STJ∆S∆RR−1. (5.21)

Putting (5.13) into (5.21) leads to

STJ∆S =JRFR−1 − bup(JRFR−1 +R−TFTRTJ)− bup(R−TFTRTJRFR−1)+

bup(R−T∆RJ∆RR−1)− STJ∆S∆RR−1. (5.22)

Noting (2.2), we have

JRFR−1 − bup(JRFR−1 +R−TFTRTJ) = blow(JRFR−1) + bup((JRFR−1)T ). (5.23)

By Lemma 3.2,

∥blow(JRFR−1) + bup((JRFR−1)T )∥F 6
√
2∥JRFR−1∥F =

√
2∥RFR−1∥F . (5.24)

Thus, taking the Frobenius norm on the both sides of (5.22), and noting (5.23), (5.24), (3.2),

(2.3) and (2.1), we obtain

∥STJ∆S∥F 6
√
2∥RFR−1∥F + (1/

√
2)∥RFR−1∥2F + (1/

√
2)∥∆RR−1∥2F+

∥STJ∆S∥F ∥∆RR−1∥F . (5.25)

Using the first inequality of (5.12) and (2.1), we have

∥∆RR−1∥F 6 1√
2

4∥RFR−1∥F + 2∥RFR−1∥2F
1 +

√
1− 4∥RFR−1∥F − 2∥RFR−1∥2F

6(1/
√
2)
(
4∥RFR−1∥F + 2∥RFR−1∥2F

)
6
√
2k2(R)∥F∥F (2 + k2(R)∥F∥F ) . (5.26)

Squaring (5.26) and using (5.1) gives

∥∆RR−1∥2F 6 (5 + 2
√
6)k22(R)∥F∥2F . (5.27)

Putting (5.27) into (5.25) and using the second inequality of (5.12), (5.1), and (2.1), we get

∥STJ∆S∥F 6(2 + 2
√
2)k2(R)∥F∥F + (6 + 2

√
6)(

√
2 + 1)k22(R)∥F∥2F

6(2 + 2
√
2 + 2

√
3 +

√
6)k2(R)∥F∥F . (5.28)

Thus, combining (5.28) with ∥∆S∥F = ∥SJST∆S∥F 6 ∥S∥2∥STJ∆S∥F and (5.19) leads to

(5.3). �
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Remark 5.2 We can also get the following rigorous perturbation bounds from (5.15), (5.16),

(5.18), and (5.19) when A suffers from right multiplicative perturbation:

∥∆R∥F
∥R∥2

6

√
2 inf
D∈D2n

[√
1 + ζ2D + k2(R)∥DR − I2n∥F

]
k2(D

−1R)∥DR − I2n∥F
√
2− 1 +

√
1− 4k2(R)∥DR − I2n∥F − 2k22(R)∥DR − I2n∥2F

(5.29)

6(2 +
√
2) inf

D∈D2n

[√
1 + ζ2D + k2(R)∥DR − I2n∥F

]
k2(D

−1R)∥DR − I2n∥F . (5.30)

Remark 5.3 The following first order perturbation bounds of factor R with A suffering from

right multiplicative perturbation can be got from the proof of Theorem 5.1 by omitting the higher

order perturbation terms:

∥∆R∥F
∥R∥2

. inf
D∈D2n

[√
1 + ζ2Dk2(D

−1R)
]
∥DR − I2n∥F . (5.31)

Clearly, (5.4) is a small constant times of (5.31).

Remark 5.4 By omitting the higher order perturbation terms, we can also get the first or-

der perturbation bound of factor S from the proof of Theorem 5.1 when A suffers from right

multiplicative perturbation:

∥∆S∥F
∥S∥2

.
√
2k2(R)∥DR − I2n∥F . (5.32)

As we did for the left multiplicative perturbation, we can also better the bounds (5.3) and (5.32).

The refined bounds are presented in the following theorem.

Theorem 5.5 Suppose that the conditions of Theorem 5.1 hold. Then

∥∆S∥F
∥S∥2

6(2 + 2
√
2 + 2

√
3 +

√
6)k2(R)∥α̃DR − I2n∥F , (5.33)

∥∆S∥F
∥S∥2

.
√
2k2(R)∥α̃DR − I2n∥F , (5.34)

where α̃ = trace(DR)
∥DR∥2

F
.

6. Example

A simple example is given below to show that our first order multiplicative bounds are

better than the bounds (3.4) and (3.5), respectively.

Let S =

(
1 γ

0 1

)
, R =

(
γ 0

0 γ

)
and DL = DR =

(
1 + δ 0

0 1 + δ

)
with γ ≫ 1 and

δ > 0. Then we have
∥R−1∥2∥∆A∥F

∥S∥2
=
√
2 + γ2δ

and

∥DL − I2∥F =
√
2δ,

which show that the bounds (4.3) and (4.4) are much sharper than (3.4) and (3.5), respectively.
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Moreover, let D =

(
γ 0

0 γ

)
. Then

∥S−1∥2∥∆A∥F
∥R∥2

=
√
2 + γ2δ, ∥DR − I2∥F =

√
2δ,

and

√
2∥R−1∥2∥S−1|2∥∆A∥F =

√
2(2 + γ2)δ,

√
1 + ζ2Dk2(D

−1R)∥DR − I2∥F =

√
2(1 + γ2)

γ
δ.

Thus, the bounds (5.32) and (5.31) are much sharper than (3.4) and (3.5), respectively.

References

[1] A. BUNSE-GERSTNE. Matrix factorization for symplectic QR-like methods. Linear Algebra Appl., 1986,

83: 49–77.

[2] Xiaowen CHANG. On the sensitivity of the SR decomposition. Linear Algebra Appl., 1998, 282(1-3): 297–

310.

[3] H. ABOU KANDIL, G. FREILING, V. IONESCU, et al. Matrix Riccati Equations in Control and Systems
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